Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

From developmental disorder to heritable cancer: it's all in the BMP/TGF-β family

Key Points

  • Germline mutations in the genes that encode the BMP/TGF-β superfamily are associated with heritable vascular disorders and cancer syndromes.

  • The TGF-β pathway involves the heterodimerization of type II and type I receptors after ligand binding, which leads to heterodimerization of R-SMAD and Co-SMAD. The SMAD complex translocates to the nucleus, where it regulates transcription.

  • Germline mutations in BMPR2, which result in haploinsufficiency, cause primary pulmonary hypertension (PPH). BMPR2 encodes BMPR-II, which is a type II receptor in the TGF-β pathway. Most of these mutations occur in the ligand- or kinase-binding domains and disrupt the signal-transducing abilities of the receptor.

  • Germline mutations in ENG, which encodes endoglin (a co-receptor for type II receptors), are associated with hereditary haemorrhagic telangiectasia 1 (HHT1). Germline mutations cause haploinsufficiency or dominant-negative protein expression.

  • Germline mutations in ALK1, which encodes the type I receptor ALK1, are associated with HHT2. Mutations in ALK1 are predicted to cause truncated proteins and haploinsufficiency.

  • Germline mutations in either MADH4, which encodes SMAD4, or BMPR1A, which encodes the type IA receptor for BMP2, are involved in juvenile polyposis syndrome. Mutations in MADH4 prevent the heterodimerization of SMAD4 with R-SMADs, whereas mutations in BMPR1A result in the loss of ligand binding or kinase activity.

  • BMPR1A is a minor susceptibility gene for Cowden syndrome, which is a hamartoma-cancer syndrome.

  • The BMP and PTEN pathways might crosstalk.

Abstract

Transforming growth factor-β (TGF-β) regulates many cellular processes through complex signal-transduction pathways that have crucial roles in normal development. Disruption of these pathways can lead to a range of diseases, including cancer. Mutations in the genes that encode members of the TGF-β pathway are involved in vascular diseases as well as gastrointestinal neoplasia. More recently, they have been implicated in Cowden syndrome, which is normally associated with mutations in the phosphatase and tensin homologue gene PTEN. Molecular studies of TGF-β signalling are now showing why mutations in genes that encode components of this pathway result in inherited cancer and developmental diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Complexity of TGF-β signal transduction.
Figure 2: Model for TGF-β signalling in the cell.
Figure 3: Germline BMPR2 mutational spectrum in primary pulmonary hypertension.
Figure 4: Germline mutations in ENG in hereditary haemorrhagic telangiectasia.
Figure 5: Germline mutations in ACVRL1 in hereditary haemorrhagic telangiectasia.
Figure 6: Germline mutations in MADH4 in juvenile polyposis syndrome.
Figure 7: Spectrum of germline mutations in BMPR1A in juvenile polyposis syndrome.

Similar content being viewed by others

References

  1. Markowitz, S. et al. Inactivation of the type II TGF-B receptor in colon cancer cells with microsatellite instability. Science 268, 1336–1338 (1995).

    CAS  PubMed  Google Scholar 

  2. Teicher, B. A. Malignant cells, directors of the malignant process: role of transforming growth factor-β. Cancer Met. Rev. 20, 133–143 (2001).

    CAS  Google Scholar 

  3. Miyazono, K. TGF-B/SMAD signaling and its involvement in tumor progression. Biol. Pharm. Bull. 23, 1125–1130 (2000).

    CAS  PubMed  Google Scholar 

  4. Miyazono, K. TGF-B signaling by Smad proteins. Cytokine Growth Fact. Rev. 11, 15–22 (2000).

    CAS  Google Scholar 

  5. Zimmerman, C. M. & Padgett, R. W. Transforming growth factor-β signaling mediators and modulators. Gene 249, 17–30 (2000).

    CAS  PubMed  Google Scholar 

  6. Derynck, R., Akhurst, R. J. & Balmain, A. TGF-β signaling in tumor suppression and cancer progression. Nature Genet. 29, 117–129 (2001).

    CAS  PubMed  Google Scholar 

  7. Shi, Y. & Massague, J. Mechanisms of TGF-β signaling: from cell membrane to the nucleus. Cell 113, 685–700 (2003).

    CAS  PubMed  Google Scholar 

  8. Nichols, W. C. et al. Localization of the gene for familial primary pulmonary hypertension to chromosome 2q31-q33. Nature Genet. 15, 277–280 (1997).

    CAS  PubMed  Google Scholar 

  9. Morse, J. H. et al. Mapping of familial primary pulmonary hypertension locus (PPH1) to chromosome 2q31-q32. Circulation 95, 2603–2606 (1997).

    CAS  PubMed  Google Scholar 

  10. Machado, R. D. et al. A physical and transcript map based upon refinement of the critical interval for PPH1, a gene for familial primary pulmonary hypertension. Genomics 68, 220–228 (2000).

    CAS  PubMed  Google Scholar 

  11. International PPH Consortium. Heterozygous germline mutations in BMPR2, encoding a TGFβ receptor, cause familial primary pulmonary hypertension. Nature Genet. 26, 81–84 (2000). This study identifies BMPR2 as the susceptibility gene for familial primary pulmonary hypertension.

  12. Deng, Z. et al. Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene. Am. J. Hum. Genet. 67, 737–744 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Machado, R. D. et al. BMPR2 haploinsufficiency as the inherited molecular mechanism for primary pulmonary hypertension. Am. J. Hum. Genet. 68, 92–102 (2001).

    CAS  PubMed  Google Scholar 

  14. Thomson, J. R. et al. Sporadic primary pulmonary hypertension is associated with germline mutations of the gene encoding BMPR-II, a receptor member of the TGF-B family. J. Med. Genet. 37, 741–745 (2000). This paper reports that 25% of apparently sporadic cases of primary pulmonary hypertension carry unsuspected germline mutations in BMPR2.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Eng, C. et al. The relationship between specific RET proto-oncogene mutations and disease phenotype in multiple endocrine neoplasia type 2: International RET Mutation Consortium analysis. JAMA 276, 1575–1579 (1996).

    CAS  PubMed  Google Scholar 

  16. Dorai, H., Vukecevic, S. & Sampath, T. K. Bone morphogenetic protein-7 (Op-1) inhibits smooth muscle cell proliferation and stimulates the expression of markers that are characteristic of SMC phenotype in vitro. J. Cell. Physiol. 184, 37–45 (2000).

    CAS  PubMed  Google Scholar 

  17. Nakaoka, T. et al. Inhibition of rat vascular smooth muscle proliferation in vitro and in vivo by morphogenetic protein-2. J. Clin. Invest. 100, 2824–2832 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Morrell, N. W. et al. Altered growth responses of pulmonary artery smooth muscle cells from patients with primary pulmonary hypertension to transforming growth factor-B1 and bone morphogenetic proteins. Circulation 104, 790–795 (2001).

    CAS  PubMed  Google Scholar 

  19. Atkinson, C. et al. Primary pulmonary hypertension is associated with reduced pulmonary vascular expression of type II bone morphogenetic protein receptor. Circulation 105, 1672–1678 (2002).

    CAS  PubMed  Google Scholar 

  20. Rudarakanchana, N. et al. Functional analysis of bone morphogenetic protein type II receptor mutations underlying primary pulmonary hypertension. Hum. Mol. Genet. 11, 1517–1525 (2002).

    CAS  PubMed  Google Scholar 

  21. Nishihara, A., Watabe, T., Imamura, T. & Miyazono, K. Functional heterogeneity of bone morphogenetic protein receptor-II mutants found in patients with primary pulmonary hypertension. Mol. Biol. Cell 13, 3055–3063 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Massague, J. How cells read TGF-β signals. Nature Rev. Mol. Cell. Biol. 1, 169–178 (2000).

    CAS  Google Scholar 

  23. Roberts, A. B. The ever-increasing complexity of TGF-β signaling. Cytokine Growth Fact. Rev. 13, 3–5 (2002).

    CAS  Google Scholar 

  24. Eng, C. To be or not to BMP. Nature Genet. 28, 105–107 (2001).

    CAS  PubMed  Google Scholar 

  25. Eddahibi, S. et al. Serotonin transporter overexpression is responsible for pulmonary artery smooth muscle hyperplasia in primary pulmonary hypertension. J. Clin. Invest. 108, 1141–1150 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Porteus, M. E. M., Burn, J. & Proctor, S. Hereditary haemorrhagic telangeictasia: a clinical analysis. J. Med. Genet. 29, 527–530 (1992).

    Google Scholar 

  27. Guttmacher, A. E., Marchuk, D. A. & White, R. I. Hereditary hemorrhagic telangiectasia. N. Engl. J. Med. 333, 918–924 (1995).

    CAS  PubMed  Google Scholar 

  28. White, R. I. & Pollak, J. S. Pulmonary arteriovenous malformations: options for management. Ann. Thorac. Surg. 57, 519–521 (1994).

    PubMed  Google Scholar 

  29. Shovlin, C. L. et al. A gene for hereditary haemorrhagic telangiectasia maps to chromosome 9q. Nature Genet. 6, 205–209 (1994).

    CAS  PubMed  Google Scholar 

  30. Vincent, P. et al. A third locus for hereditary haemorrhagic telangiectasia maps to chromosome 12q. Hum. Mol. Genet. 4, 945–949 (1995).

    CAS  PubMed  Google Scholar 

  31. Johnson, D. W. et al. A second locus for hereditary haemorrhagic telangiectasia maps to chromosome 12. Genome Res. 5, 21–28 (1995).

    CAS  PubMed  Google Scholar 

  32. McAllister, K. A. et al. Endoglin, a TGF-β binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nature Genet. 8, 345–351 (1994). This study identifies ENG -encoding endoglin as a susceptibility gene for hereditary haemorrhagic telangiectasia.

    CAS  PubMed  Google Scholar 

  33. Johnson, D. W. et al. Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nature Genet. 13, 189–196 (1996). In this study, ALK1 (ACVRL1 ) is identified as a second susceptibility gene for hereditary haemorrhagic telangiectasia.

    CAS  PubMed  Google Scholar 

  34. Shovlin, C. L., Hughes, J. M. B., Scott, J., Seidman, C. E. & Seidman, J. G. Characterization of endoglin and identification of novel mutations in hereditary hemorrhagic telangiectasia. Am. J. Hum. Genet. 61, 68–79 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Berg, J. N., Guttmacher, A. E., Marchuk, D. A. & Porteous, M. E. M. Clinical heterogeneity in hereditary haemorrhagic telangiectasia — are pulmonary arteriovenous malformations more common in families linked to endoglin? J. Med. Genet. 33, 256–257 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Dakeishi, M. et al. Genetic epidemiology of hereditary hemorrhagic telangiectasia in a local community in the northern part of Japan. Hum. Mutat. 19, 140–148 (2002).

    CAS  PubMed  Google Scholar 

  37. Gallione, C. J. et al. Two common endoglin mutations in families with hereditary hemorrhagic telangiectasia in the Netherlands Antilles: evidence for a founder effect. Hum. Genet. 107, 40–44 (2000).

    CAS  PubMed  Google Scholar 

  38. Berg, J. N. et al. The activin receptor-like kinase 1 gene: genomic structure and mutations in hereditary hemorrhagic telangiectasia type 2. Am. J. Hum. Genet. 61, 60–67 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Abdalla, S. A., Cymerman, U., Johnson, R. M., Deber, C. M. & Letarte, M. Disease-associated mutations in conserved residues of ALK-1 kinase domain. Eur. J. Hum. Genet. 11, 279–287 (2003).

    CAS  PubMed  Google Scholar 

  40. Hanks, S. K., Quinn, A. M. & Hunter, T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domain. Science 241, 42–52 (1988).

    CAS  PubMed  Google Scholar 

  41. Garamszegi, N. et al. Transforming growth factor-β receptor signaling and endocytosis are linked through a COOH terminal activation motif in the type 1 receptor. Mol. Biol. Cell 12, 2881–2893 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Guerreoro-Esteo, M., Sanchez-Elsner, T., Letamendia, A. & Bernabeu, C. Extracellular and cytoplasmic domains of endoglin interact with the transforming growth factor-β receptors I and II. J. Biol. Chem. 277, 29197–29209 (2002).

    Google Scholar 

  43. Lastres, P. et al. Endoglin modulates cellular responses to TGF-β1. J. Cell. Biol. 133, 1109–1121 (1996).

    CAS  PubMed  Google Scholar 

  44. Barbara, N. P., Wrana, J. L. & Letarte, M. Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor B superfamily. J. Biol. Chem. 274, 584–594 (1999).

    CAS  PubMed  Google Scholar 

  45. Pece, S. et al. Mutant endoglin in hereditary hemorrhagic telangiectasia type 1 is transiently expressed intracellularly and is not a dominant negative. J. Clin. Invest. 100, 2568–2579 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Raab, U. et al. Expression of normal and truncated forms of human endoglin. Biochem. J. 339, 579–588 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lux, A., Gallione, C. J. & Marchuk, D. A. Expression analysis of endoglin missense and truncation mutations: insights into protein structure and disease mechanisms. Hum. Mol. Genet. 22, 745–755 (2000).

    Google Scholar 

  48. Paquet, M. E. et al. Analysis of several endoglin mutants reveals no endogenous mature or secreted protein capable of interfering with normal endoglin function. Hum. Mol. Genet. 10, 1347–1357 (2001).

    CAS  PubMed  Google Scholar 

  49. Bourdeau, A., Dumont, D. J. & Letarte, M. A. A murine model of hereditary hemorrhagic telangiectasia. J. Clin. Invest. 104, 1343–1351 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Bourdeau, A. et al. Potential role of modifier genes influencing transforming growth factor-B1 levels in the development of vascular defects in endoglin heterozygous mice with hereditary hemorrhagic telangiectasia. Am. J. Pathol. 158, 2011–2020 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Santomi, J. et al. Cerebral vascular abnormalities in a murine model for hereditary hemorrhagic telangiectasia. Stroke 34, 783–789 (2003).

    Google Scholar 

  52. Fanning, A. S. & Anderson, J. M. Protein modules as organizers of membrane structure. Curr. Opin. Cell Biol. 432–439 (1999).

  53. Kay, B. K., Williamson, M. P. & Sudol, M. The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. FASEB J. 14, 231–241 (2000).

    CAS  PubMed  Google Scholar 

  54. Howe, J. R. et al. Mutations in the SMAD4/DPC4 gene in juvenile polyposis. Science 280, 1086–1088 (1998). This study identifies MADH4 as a susceptibility gene for a subset of families with juvenile polyposis syndrome.

    CAS  PubMed  Google Scholar 

  55. Howe, J. R. et al. Germline mutations of BMPR1A in juvenile polyposis. Nature Genet. 28, 184–187 (2001). In this study, BMPR1A germline mutations are identified in MADH4 -mutation negative probands with familial juvenile polyposis syndrome.

    CAS  PubMed  Google Scholar 

  56. Zhou, X. P. et al. Germline mutations in BMPR1A/ALK3 cause a subset of juvenile polyposis syndrome and of Cowden and Bannayan–Riley–Ruvalcaba syndromes. Am. J. Hum. Genet. 69, 704–711 (2001). This paper reports that germline BMPR1A mutations cause sporadic juvenile polyposis syndrome as well as rare Cowden syndrome probands.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Eng, C. & Blackstone, M. O. Peutz–Jeghers syndrome. Med. Rounds 1, 165–171 (1988).

    Google Scholar 

  58. Jarvinen, J. & Franssila, K. O. Familial juvenile polyposis coli: increased risk of colorectal cancer. Gut 25, 792–800 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Coburn, M. C., Pricolo, V. E., DeLuca, F. G. & Bland, K. I. Malignant potential in intestinal juvenile polyposis syndromes. Ann. Surg. Oncol. 2, 386–391 (1995).

    CAS  PubMed  Google Scholar 

  60. Howe, J. R., Mitros, F. A. & Summers, R. W. The risk of gastrointestinal carcinoma in familial juvenile polyposis. Ann. Surg. Oncol. 5, 751–756 (1998).

    CAS  PubMed  Google Scholar 

  61. Hofting, I., Pott, G. & Stolte, M. Das syndrom der juvenilen polyposis. Leber Magen. Darm. 23, 107–108 (1993).

    CAS  PubMed  Google Scholar 

  62. Howe, J. R. et al. Common deletion of SMAD4 in juvenile polyposis is a mutational hotspot. Am. J. Hum. Genet. 70, 1357–1362 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Friedl, W. et al. Juvenile polyposis: massive gastric polyposis is more common in MADH4 mutation carriers than in BMPR1A mutation carriers. Hum. Genet. 111, 108–111 (2002). This study shows that MADH4 -mutation positive juvenile polyposis probands are at increased risk of giant gastric polyps compared with those that have BMPR1A mutations.

    CAS  PubMed  Google Scholar 

  64. Sayed, M. G. et al. Germline SMAD4 or BMPR1A mutations and phenotype in juvenile polyposis. Ann. Surg. Oncol. 9, 901–906 (2002).

    CAS  PubMed  Google Scholar 

  65. Shi, Y., Hata, A., Lo, R. S., Massague, J. & Pavletich, N. P. A structural basis for the mutational inactivation of the tumor suppressor Smad4. Nature 388, 87–93 (1997).

    CAS  PubMed  Google Scholar 

  66. Kawabata, M., Inoue, H., Hanyu, A., Imamura, T. & Miyazono, K. SMAD proteins exist as monomers in vivo and undergo homo- and hetero-oligomerisation upon activation by serine/threonine kinase receptors. EMBO J. 17, 4056–4065 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Bevan, S. et al. Screening SMAD1, SMAD2, SMAD3 and SMAD5 for germline mutations in juvenile polyposis syndrome. Gut 45, 406–408 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Olschwang, S., Serova-Sinilnikova, O. M., Lenoir, G. M. & Thomas, G. PTEN germline mutations in juvenile polyposis coli. Nature Genet. 18, 12–14 (1998).

    CAS  PubMed  Google Scholar 

  69. Eng, C. & Ji, H. Molecular classification of the inherited hamartoma polyposis syndromes: clearing the muddied waters. Am. J. Hum. Genet. 62, 1020–1022 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Kurose, K., Araki, T., Matsunaka, T., Takada, Y. & Emi, M. Variant manifestation of Cowden disease in Japan: hamartomatous polyposis of the digestive tract with mutation of the PTEN gene. Am. J. Hum. Genet. 64, 308–310 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Eng, C. Will the real Cowden syndrome please stand up: revised diagnostic criteria. J. Med. Genet. 37, 828–830 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Waite, K. A. & Eng, C. BMP2 exposure results in decreased PTEN protein degradation leading to increased PTEN levels. Hum. Mol. Genet. 12, 679–684 (2003). This study shows that BMP decreases PTEN protein degradation, which results in increased PTEN levels. Therefore, by implication, BMP signalling can result in apoptosis that is mediated by PTEN.

    CAS  PubMed  Google Scholar 

  73. Trembath, R. C. et al. Clinical and molecular genetic features of pulmonary hypertension in patients with hereditary hemorrhagic telangiectasia. N. Engl. J. Med. 345, 325–334 (2001).

    CAS  PubMed  Google Scholar 

  74. Blanquet, V., Créau-Goldberg, N., de Grouchy, J. & Turleau, C. Molecular detection of constitutional deletions in patients with retinoblastoma. Am. J. Med. Genet. 39, 355–361 (1991).

    CAS  PubMed  Google Scholar 

  75. Blanquet, V. et al. Spectrum of germline mutations in the RB1 gene: a study of 232 patients with hereditary and non hereditary retinoblastoma. Hum. Mol. Genet. 4, 383–388 (1995).

    CAS  PubMed  Google Scholar 

  76. Stolle, C. et al. Improved detection of germline mutations in the von Hippel-Lindau disease tumor suppressor gene. Hum. Mutat. 12, 417–423 (1998).

    CAS  PubMed  Google Scholar 

  77. Zhou, X. P. et al. Germline PTEN promoter mutations and deletions in Cowden/Bannayan–Riley–Ruvalcaba syndrome result in aberrant PTEN protein and dysregulation of the phosphoinositol-3-kinase/Akt pathway. Am. J. Hum. Genet. (in the press).

  78. Abraham, W. T. et al. Angiotensin-converting enzyme DD genotype in patients with primary pulmonary hypertension: increased frequency and association with preserved haemodynamics. J. Renin Angiotens. Aldoster. Sys. 4, 27–30 (2003).

    CAS  Google Scholar 

  79. Weber, H. C., Marsh, D., Lubensky, I., Lin, A. & Eng, C. Germline PTEN/MMAC1/TEP1 mutations and association with gastrointestinal manifestations in Cowden disease. Gastroenterology 114, 2902 (1998).

    Google Scholar 

  80. Hemminki, A. et al. Localisation of a susceptibility locus for Peutz–Jeghers syndrome to 19p using comparative genomic hybridization and targeted linkage analysis. Nature Genet. 15, 87–90 (1997).

    CAS  PubMed  Google Scholar 

  81. Hemminki, A. et al. A serine/threonine kinase gene defective in Peutz–Jeghers syndrome. Nature 391, 184–187 (1998).

    CAS  PubMed  Google Scholar 

  82. Jenne, D. E. et al. Peutz–Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nature Genet. 18, 38–44 (1998).

    CAS  PubMed  Google Scholar 

  83. Mehenni, H. et al. Peutz–Jeghers syndrome: confirmation of linkage to chromosome 19p13.3 and identification of a potential second locus on 19q13.4. Am. J. Hum. Genet. 61, 1327–1334 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Liaw, D. et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nature Genet. 16, 64–67 (1997).

    CAS  PubMed  Google Scholar 

  85. Marsh, D. J. et al. Mutation spectrum and genotype–phenotype analyses in Cowden disease and Bannayan–Zonana syndrome, two hamartoma syndromes with germline PTEN mutation. Hum. Mol. Genet. 7, 507–515 (1998).

    CAS  PubMed  Google Scholar 

  86. Marsh, D. J. et al. Germline mutations in PTEN are present in Bannayan–Zonana syndrome. Nature Genet. 16, 333–334 (1997).

    CAS  PubMed  Google Scholar 

  87. Marsh, D. J. et al. PTEN mutation spectrum and genotype–phenotype correlations in Bannayan–Riley–Ruvalcaba syndrome suggest a single entity with Cowden syndrome. Hum. Mol. Genet. 8, 1461–1472 (1999).

    CAS  PubMed  Google Scholar 

  88. Jaeger, E. E. M. et al. An ancestral Ashkenazi haplotype at the HMPS/CRAC1 locus on 15q13-q14 is associated with hereditary mixed polyposis syndrome. Am. J. Hum. Genet. 72, 1261–1267 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. van den Driesche, S., Mummery, C. L. & Westermann, C. J. Hereditary hemorrhagic telangiectasia: an update on transforming growth factor-β signaling in vasculogenesis and angiogenesis. Cardiovasc. Res. 58, 20–31 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to J. Howe for sharing pre-publication data, and to L. Aaltonen, W. Friedl and R. Trembath for helpful discussions. C.E. is the recipient of a Doris Duke Distinguished Clinical Scientist Award and is partially funded by the American Cancer Society, the Department of Defense United States Army Breast and Prostate Cancer Research Programs, the Susan G. Komen Breast Cancer Research Foundation, the National Cancer Institute, the National Institutes of Health, the State of Ohio Biomedical Research and Technology Transfer Fund and the V Foundation Jimmy V Golf Classic Translational Cancer Research Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charis Eng.

Related links

Related links

DATABASES

Entrez

BMP2

BMP7

SMAD1

SMAD2

SMAD3

SMAD4

SMAD5

TGF-β1

TGF-β3

LocusLink

ACVRL1

BMPR1A

BMPR2

ENG

MADH4

PTEN

RET

STK11

OMIM

Bannayan–Riley–Ruvalcaba syndrome

Cowden syndrome

hereditary haemorrhagic telangiectasia

hereditary mixed polyposis syndrome

juvenile polyposis syndrome

Lynch syndrome

multiple endocrine neoplasia type 2

Peutz–Jeghers syndrome

primary pulmonary hypertension

PTEN hamartoma tumour syndrome

FURTHER INFORMATION

Genomic Disorders Research Centre

Human Genome Variation Society Nomenclature for the Description of Sequence Variations

Medical Genetics Information Resource

Mutation Nomenclature Committee

Glossary

HAEMATOPOIESIS

The development of blood cells.

ARTERIOLES

Small arteries. Blood flows from arteries to arterioles to capillaries, and returns to the heart through venules (small veins) and then veins.

RIGHT HEART FAILURE

Heart failure that is limited to the right-sided chambers of the heart, which is usually caused by lung problems.

LOCUS HETEROGENEITY

Refers to an inherited disorder with more than one susceptibility gene.

HAPLOINSUFFICIENCY

The half dosage of a gene product, which leads to an adverse phenotype.

SDS-PAGE

Sodium dodecyl sulphate-polyacrimide gel electrophoresis. A rapid and inexpensive method for resolving a protein into its subunits and determining their relative molecular masses.

MULTI-SYSTEM VASCULAR DYSPLASIA

The atypical growth of vessels in many organs.

TELANGIECTASIAS

Dilated capillaries and arterioles.

FOUNDER EFFECT

A mutation that originated in a single individual, which has been passed on through the generations and spread through the population.

MESENCHYMAL

(Stromal). Cells that do not form gap junctions with one another.

MODIFIER GENES

Variants in these genes themselves do not produce a phenotype, but when they are present with other variants of germline mutations they produce a phenotypic effect.

INTERSUSSCEPTION

The telescoping of the bowel on itself.

HAMARTOMATOUS POLYPS

Hamartomas are benign developmentally incorrect overgrowths of any tissue that comprise at least two elements of the tissue. Hamartomatous polyps are outgrowths in the gastrointestinal tract, which comprise at least two components of the normal intestine but in developmentally incorrect apposition. They are not considered to be pre-neoplastic.

PROBANDS

The first known affected individual in any given family.

ENDOMETRIAL CARCINOMAS

Cancer of the inner-lining of the uterus.

LIPOMATOSIS

Multiple fatty tumours.

POLYPECTOMIES

The removal of polyps.

PATHOGNOMONIC

Absolutely diagnostic.

HAEMODYNAMICS

The physics of all aspects of blood flow in large and small arteries.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waite, K., Eng, C. From developmental disorder to heritable cancer: it's all in the BMP/TGF-β family. Nat Rev Genet 4, 763–773 (2003). https://doi.org/10.1038/nrg1178

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1178

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing