Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in Duchenne muscular dystrophy gene therapy

Key Points

  • Duchenne muscular dystrophy (DMD) is characterized by a severe and progressive loss of muscle fibres, which is provoked by the dystrophin deficiency that results from frame-shifting mutations in the large dystrophin gene.

  • Conventional gene-therapy strategies (viral vectors, naked plasmids and cell transplantation) have been moderately efficient, but still have to overcome problems associated with low delivery efficiencies, immune responses, limited transgene persistence, poor cell survival and the physical barriers in muscle tissue itself.

  • Recently, relatively new and alternative strategies that are emerging from our increasing knowledge of the organization of the dystrophin gene and its role in muscle function are gaining credibility as therapeutic prospects.

  • Treatment of the mdx mouse model with DNA–RNA chimeric oligonucleotides to correct the nonsense mutation in exon 23, or with gentamicin to read through the resulting stop codon, has shown positive results. However, the efficiencies have been low and follow-up studies are required to further evaluate these methods.

  • The minimal requirements for the function of the dystrophin protein have been defined in more detail, which has allowed the construction of functional mini- and micro-dystrophins of only 6.2 kb and 3.6 kb, respectively. Now, using recombinant adeno-associated virus (rAAV) vectors, these small constructs have been efficiently delivered into the muscle of mdx mice and converted the dystrophic muscle morphology for more than six months post-injection.

  • Antisense oligonucleotides have been successfully used to modify the splicing of the dystrophin pre-mRNA so that specific exons are skipped. Despite introducing a (larger) deletion, this frame-restoring treatment induced the synthesis of BMD-like dystrophins to therapeutic levels in cultured muscle cells from a series of DMD patients with different mutations, and from the mdx mouse both in vitro and in vivo.

  • Utrophin can compensate for dystrophin deficiency and its artificial upregulation in mdx mice has reduced dystrophic pathology and improved muscle performance. Several growth and transcription factors have been identified to enhance expression from the utrophin promoter A, but the challenge remains to find an effective small-molecule drug that will be sufficiently utrophin-specific to circumvent putative adverse effects.

  • In terms of safety and efficiency, non-pathogenic rAAV and synthetic small-molecule drugs for targeted exon skipping and utrophin upregulation are the most promising techniques, and they are progressing towards clinical applications in the near future.

Abstract

Since the initial characterization of the genetic defect for Duchenne muscular dystrophy, much effort has been expended in attempts to develop a therapy for this devastating childhood disease. Gene therapy was the obvious answer but, initially, the dystrophin gene and its product seemed too large and complex for this approach. However, our increasing knowledge of the organization of the gene and the role of dystrophin in muscle function has indicated ways to manipulate them both. Gene therapy for Duchenne muscular dystrophy now seems to be in reach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural domains of the human full-length dystrophin, Becker mini- and micro-dystrophins, and utrophin.
Figure 2: Schematic representation of the exon-skipping strategy.
Figure 3: Therapeutic exon skipping in cultured myotubes from a DMD-patient (DL363.2) with a deletion of exons 45–54.
Figure 4: Schematic representation of the human utrophin A and B promoter regions and the factors that affect expression.

Similar content being viewed by others

References

  1. White, S. et al. Comprehensive detection of genomic duplications and deletions in the DMD gene, by use of multiplex amplifiable probe hybridization. Am. J. Hum. Genet. 71, 365–374 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. van Essen, A. J., Busch, H. F., te Meerman, G. J. & ten Kate, L. P. Birth and population prevalence of Duchenne muscular dystrophy in The Netherlands. Hum. Genet. 88, 258–266 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Franco, A. & Lansman, J. B. Calcium entry through stretch-inactivated ion channels in mdx myotubes. Nature 344, 670–673 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Straub, V., Rafael, J. A., Chamberlain, J. S. & Campbell, K. P. Animal models for muscular dystrophy show different patterns of sarcolemmal disruption. J. Cell Biol. 139, 375–385 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hardiman, O. Dystrophin deficiency, altered cell signalling and fibre hypertrophy. Neuromuscul. Disord. 4, 305–315 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Nakamura, A., Harrod, G. V. & Davies, K. E. Activation of calcineurin and stress activated protein kinase/p38-mitogen activated protein kinase in hearts of utrophin–dystrophin knockout mice. Neuromuscul. Disord. 11, 251–259 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Kochanek, S. et al. A new adenoviral vector: replacement of all viral coding sequences with 28 kb of DNA independently expressing both full-length dystrophin and β-galactosidase. Proc. Natl Acad. Sci. USA 93, 5731–5736 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen, H. H. et al. Persistence in muscle of an adenoviral vector that lacks all viral genes. Proc. Natl Acad. Sci. USA 94, 1645–1650 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Havenga, M. J. et al. Exploiting the natural diversity in adenovirus tropism for therapy and prevention of disease. J. Virol. 76, 4612–4620 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Thirion, C. et al. Strategies for muscle-specific targeting of adenoviral gene transfer vectors. Neuromuscul. Disord. 12 (Suppl.), 30–39 (2002).

    Article  Google Scholar 

  11. Akkaraju, G. R. et al. Herpes simplex virus vector-mediated dystrophin gene transfer and expression in mdx mouse skeletal muscle. J. Gene Med. 1, 280–289 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Huard, J. et al. Gene transfer to muscle using herpes simplex virus-based vectors. Neuromuscul. Disord. 7, 299–313 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Romero, N. B. et al. Current protocol of a research phase I clinical trial of full-length dystrophin plasmid DNA in Duchenne/Becker muscular dystrophies. Part II: clinical protocol. Neuromuscul. Disord. 12 (Suppl.), 45–48 (2002).

    Article  Google Scholar 

  14. Murakami, T. et al. Full-length dystrophin cDNA transfer into skeletal muscle of adult mdx mice by electroporation. Muscle Nerve 27, 237–241 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Lu, Q. L., Liang, H. D., Partridge, T. & Blomley, M. J. Microbubble ultrasound improves the efficiency of gene transduction in skeletal muscle in vivo with reduced tissue damage. Gene Ther. 10, 396–405 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Gollins, H., McMahon, J., Wells, K. E. & Wells, D. J. High-efficiency plasmid gene transfer into dystrophic muscle. Gene Ther. 10, 504–512 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Tremblay, J. P. et al. Results of a triple blind clinical study of myoblast transplantations without immunosuppressive treatment in young boys with Duchenne muscular dystrophy. Cell Transplant. 2, 99–112 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Gussoni, E., Blau, H. M. & Kunkel, L. M. The fate of individual myoblasts after transplantation into muscles of DMD patients. Nature Med. 3, 970–977 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Hodgetts, S. I., Spencer, M. J. & Grounds, M. D. A role for natural killer cells in the rapid death of cultured donor myoblasts after transplantation. Transplantation 75, 863–871 (2003).

    Article  PubMed  Google Scholar 

  20. Moisset, P. A., Gagnon, Y., Karpati, G. & Tremblay, J. P. Expression of human dystrophin following the transplantation of genetically modified mdx myoblasts. Gene Ther. 5, 1340–1346 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Qu, Z. et al. Development of approaches to improve cell survival in myoblast transfer therapy. J. Cell Biol. 142, 1257–1267 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Smythe, G. M., Fan, Y. & Grounds, M. D. Enhanced migration and fusion of donor myoblasts in dystrophic and normal host muscle. Muscle Nerve 23, 560–574 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Camirand, G., Caron, N. J., Asselin, I. & Tremblay, J. P. Combined immunosuppression of mycophenolate mofetil and FK506 for myoblast transplantation in mdx mice. Transplantation 72, 38–44 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Gussoni, E. et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401, 390–394 (1999).

    CAS  PubMed  Google Scholar 

  25. Sampaolesi, M. et al. Cell therapy of α-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science 301, 487–492 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Liu, L., Parekh-Olmedo, H. & Kmiec, E. B. The development and regulation of gene repair. Nature Rev. Genet. 4, 679–689 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Bartlett, R. J. et al. In vivo targeted repair of a point mutation in the canine dystrophin gene by a chimeric RNA/DNA oligonucleotide. Nature Biotechnol. 18, 615–622 (2000).

    Article  CAS  Google Scholar 

  28. Rando, T. A., Disatnik, M. H. & Zhou, L. Z. Rescue of dystrophin expression in mdx mouse muscle by RNA/DNA oligonucleotides. Proc. Natl Acad. Sci. USA 97, 5363–5368 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bertoni, C., Lau, C. & Rando, T. A. Restoration of dystrophin expression in mdx muscle cells by chimeraplast-mediated exon skipping. Hum. Mol. Genet. 12, 1087–1099 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Barton-Davis, E. R., Cordier, L., Shoturma, D. I., Leland, S. E. & Sweeney, H. L. Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice. J. Clin. Invest. 104, 375–381 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dunant, P., Walter, M. C., Karpati, G. & Lochmuller, H. Gentamicin fails to increase dystrophin expression in dystrophin-deficient muscle. Muscle Nerve 27, 624–627 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. England, S. B. et al. Very mild muscular dystrophy associated with the deletion of 46% of dystrophin. Nature 343, 180–182 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. Corrado, K. et al. Transgenic mdx mice expressing dystrophin with a deletion in the actin-binding domain display a “mild Becker” phenotype. J. Cell Biol. 134, 873–884 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Warner, L. E. et al. Expression of Dp260 in muscle tethers the actin cytoskeleton to the dystrophin–glycoprotein complex and partially prevents dystrophy. Hum. Mol. Genet. 11, 1095–1105 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Rafael, J. A. et al. Forced expression of dystrophin deletion constructs reveals structure–function correlations. J. Cell Biol. 134, 93–102 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Crawford, G. E. et al. Assembly of the dystrophin-associated protein complex does not require the dystrophin COOH-terminal domain. J. Cell Biol. 150, 1399–1410 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yuasa, K. et al. Effective restoration of dystrophin-associated proteins in vivo by adenovirus-mediated transfer of truncated dystrophin cDNAs. FEBS Lett. 425, 329–336 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Wang, B., Li, J. & Xiao, X. Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model. Proc. Natl Acad. Sci. USA 97, 13714–13719 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Harper, S. Q. et al. Modular flexibility of dystrophin: implications for gene therapy of Duchenne muscular dystrophy. Nature Med. 8, 253–261 (2002). This study shows the functionality of mini- and micro-dystrophins and compares their therapeutic effect in mdx mice, following transgenic expression or rAAV-mediated transduction.

    Article  CAS  PubMed  Google Scholar 

  40. Sakamoto, M. et al. Micro-dystrophin cDNA ameliorates dystrophic phenotypes when introduced into mdx mice as a transgene. Biochem. Biophys. Res. Commun. 293, 1265–1272 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Fabb, S. A., Wells, D. J., Serpente, P. & Dickson, G. Adeno-associated virus vector gene transfer and sarcolemmal expression of a 144 kDa micro-dystrophin effectively restores the dystrophin-associated protein complex and inhibits myofibre degeneration in nude/mdx mice. Hum. Mol. Genet. 11, 733–741 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Watchko, J. et al. Adeno-associated virus vector-mediated minidystrophin gene therapy improves dystrophic muscle contractile function in mdx mice. Hum. Gene Ther. 13, 1451–1460 (2002). This paper further shows the functionality of a mini-dystrophin gene that, besides ameliorating the dystrophic histopathology of mdx muscle, also increases its force and resistance to mechanical stress.

    Article  CAS  PubMed  Google Scholar 

  43. Cordier, L. et al. Muscle-specific promoters may be necessary for adeno-associated virus-mediated gene transfer in the treatment of muscular dystrophies. Hum. Gene Ther. 12, 205–215 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Yuasa, K. et al. Adeno-associated virus vector-mediated gene transfer into dystrophin-deficient skeletal muscles evokes enhanced immune response against the transgene product. Gene Ther. 9, 1576–1588 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Chao, H. et al. Several log increase in therapeutic transgene delivery by distinct adeno-associated viral serotype vectors. Mol. Ther. 2, 619–623 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Hauck, B. & Xiao, W. Characterization of tissue tropism determinants of adeno-associated virus type 1. J. Virol. 77, 2768–2774 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sherratt, T. G., Vulliamy, T., Dubowitz, V., Sewry, C. A. & Strong, P. N. Exon skipping and translation in patients with frameshift deletions in the dystrophin gene. Am J. Hum. Genet. 53, 1007–1015 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Nicholson, L. V. The “rescue” of dystrophin synthesis in boys with Duchenne muscular dystrophy. Neuromuscul. Disord. 3, 525–531 (1993).

    Article  CAS  PubMed  Google Scholar 

  49. Shiga, N. et al. Disruption of the splicing enhancer sequence within exon 27 of the dystrophin gene by a nonsense mutation induces partial skipping of the exon and is responsible for Becker muscular dystrophy. J. Clin. Invest. 100, 2204–2210 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ginjaar, I. B. et al. Dystrophin nonsense mutation induces different levels of exon 29 skipping and leads to variable phenotypes within one BMD family. Eur J. Hum. Genet. 8, 793–796 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Fanin, M. et al. Dystrophin-positive fibers in Duchenne dystrophy: origin and correlation to clinical course. Muscle Nerve 18, 1115–1120 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Lu, Q. L. et al. Massive idiosyncratic exon skipping corrects the nonsense mutation in dystrophic mouse muscle and produces functional revertant fibers by clonal expansion. J. Cell Biol. 148, 985–996 (2000). An extensive study that shows that multiple exon skipping, rather than secondary deletion, is the most likely mechanism behind the presence of dystrophin-positive revertant fibres in mdx muscle.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Matsuo, M. et al. Exon skipping during splicing of dystrophin mRNA precursor due to an intraexon deletion in the dystrophin gene of Duchenne muscular dystrophy kobe. J. Clin. Invest. 87, 2127–2131 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tanaka, K., Watakabe, A. & Shimura, Y. Polypurine sequences within a downstream exon function as a splicing enhancer. Mol. Cell Biol. 14, 1347–1354 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Cartegni, L., Chew, S. L. & Krainer, A. R. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nature Rev. Genet. 3, 285–298 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Pramono, Z. A. et al. Induction of exon skipping of the dystrophin transcript in lymphoblastoid cells by transfecting an antisense oligodeoxynucleotide complementary to an exon recognition sequence. Biochem. Biophys. Res. Commun. 226, 445–449 (1996). This is the first report of antisense-induced exon skipping from the dystrophin transcript.

    Article  CAS  PubMed  Google Scholar 

  57. Dunckley, M. G., Manoharan, M., Villiet, P., Eperon, I. C. & Dickson, G. Modification of splicing in the dystrophin gene in cultured Mdx muscle cells by antisense oligoribonucleotides. Hum. Mol. Genet. 7, 1083–1090 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Sicinski, P. et al. The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. Science 244, 1578–1580 (1989).

    Article  CAS  PubMed  Google Scholar 

  59. Wilton, S. D. et al. Specific removal of the nonsense mutation from the mdx dystrophin mRNA using antisense oligonucleotides. Neuromuscul. Disord. 9, 330–338 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Mann, C. J. et al. Antisense-induced exon skipping and synthesis of dystrophin in the mdx mouse. Proc. Natl Acad. Sci. USA 98, 42–47 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Mann, C. J., Honeyman, K., McClorey, G., Fletcher, S. & Wilton, S. D. Improved antisense oligonucleotide induced exon skipping in the mdx mouse model of muscular dystrophy. J. Gene Med. 4, 644–654 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Wilton, S. D., Dye, D. E. & Laing, N. G. Dystrophin gene transcripts skipping the mdx mutation. Muscle Nerve 20, 728–734 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Aartsma-Rus, A. et al. Targeted exon skipping as a potential gene correction therapy for Duchenne muscular dystrophy. Neuromuscul. Disord. 12 (Suppl.), 71 (2002).

    Article  Google Scholar 

  64. Lu, Q. L. et al. Functional amounts of dystrophin produced by skipping the mutated exon in the mdx dystrophic mouse. Nature Med. 9, 1009–1014 (2003). This study shows the in vivo applicability of therapeutic exon-23 skipping in mdx mice, which restores dystrophin synthesis to normal levels in large numbers of fibres and improves the functionality of the treated muscle.

    Article  CAS  PubMed  Google Scholar 

  65. van Deutekom, J. C. et al. Antisense-induced exon skipping restores dystrophin expression in DMD patient derived muscle cells. Hum. Mol. Genet. 10, 1547–1554 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Aartsma-Rus, A. et al. Therapeutic antisense-induced exon skipping in cultured muscle cells from six different DMD patients. Hum. Mol. Genet. 12, 907–914 (2003). In this study, BMD-like dystrophins were introduced into cultured muscle cells from DMD patients that were affected by different mutations, through the AON-induced skipping of different exons; the therapeutic potential and wide clinical applicability of this approach is discussed.

    Article  CAS  PubMed  Google Scholar 

  67. De Angelis, F. G. et al. Chimeric snRNA molecules carrying antisense sequences against the splice junctions of exon 51 of the dystrophin pre-mRNA induce exon skipping and restoration of a dystrophin synthesis in δ48–50 DMD cells. Proc. Natl Acad. Sci. USA 99, 9456–9461 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Errington, S. J., Mann, C. J., Fletcher, S. & Wilton, S. D. Target selection for antisense oligonucleotide induced exon skipping in the dystrophin gene. J. Gene Med. 5, 518–527 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Agrawal, S. et al. Toxicologic effects of an oligodeoxynucleotide phosphorothioate and its analogs following intravenous administration in rats. Antisense Nucleic Acid Drug Dev. 7, 575–584 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Agrawal, S. Importance of nucleotide sequence and chemical modifications of antisense oligonucleotides. Biochim Biophys. Acta 1489, 53–68 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Wahlestedt, C. et al. Potent and nontoxic antisense oligonucleotides containing locked nucleic acids. Proc. Natl Acad. Sci. USA 97, 5633–5638 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Larsen, H. J., Bentin, T. & Nielsen, P. E. Antisense properties of peptide nucleic acid. Biochim Biophys. Acta 1489, 159–166 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Summerton, J. & Weller, D. Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev. 7, 187–195 (1997).

    Article  CAS  PubMed  Google Scholar 

  74. Gebski, B. L., Mann, C. J., Fletcher, S. & Wilton, S. D. Morpholino antisense oligonucleotide induced dystrophin exon 23 skipping in mdx mouse muscle. Hum. Mol. Genet. 12, 1801–1811 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Fluiter, K. et al. Tumor genotype-specific growth inhibition in vivo by antisense oligonucleotides against a polymorphic site of the large subunit of human RNA polymerase II. Cancer Res. 62, 2024–2028 (2002).

    CAS  PubMed  Google Scholar 

  76. Bijsterbosch, M. K. et al. In vivo fate of phosphorothioate antisense oligodeoxynucleotides: predominant uptake by scavenger receptors on endothelial liver cells. Nucleic Acids Res. 25, 3290–3296 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tinsley, J. M. et al. Primary structure of dystrophin-related protein. Nature 360, 591–593 (1992).

    Article  CAS  PubMed  Google Scholar 

  78. Pozzoli, U. et al. Comparative analysis of the human dystrophin and utrophin gene structures. Genetics 160, 793–798 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pearce, M. et al. The utrophin and dystrophin genes share similarities in genomic structure. Hum. Mol. Genet. 2, 1765–1772 (1993).

    Article  CAS  PubMed  Google Scholar 

  80. Matsumura, K., Ervasti, J. M., Ohlendieck, K., Kahl, S. D. & Campbell, K. P. Association of dystrophin-related protein with dystrophin-associated proteins in mdx mouse muscle. Nature 360, 588–591 (1992).

    Article  CAS  PubMed  Google Scholar 

  81. Winder, S. J., Gibson, T. J. & Kendrick-Jones, J. Dystrophin and utrophin: the missing links! FEBS Lett. 369, 27–33 (1995).

    Article  CAS  PubMed  Google Scholar 

  82. Takemitsu, M. et al. Dystrophin-related protein in the fetal and denervated skeletal muscles of normal and mdx mice. Biochem. Biophys. Res. Commun. 180, 1179–1186 (1991).

    Article  CAS  PubMed  Google Scholar 

  83. Nguyen, T. M. et al. Localization of the DMDL gene-encoded dystrophin-related protein using a panel of nineteen monoclonal antibodies: presence at neuromuscular junctions, in the sarcolemma of dystrophic skeletal muscle, in vascular and other smooth muscles, and in proliferating brain cell lines. J. Cell Biol. 115, 1695–1700 (1991).

    Article  CAS  PubMed  Google Scholar 

  84. Campanelli, J. T., Roberds, S. L., Campbell, K. P. & Scheller, R. H. A role for dystrophin-associated glycoproteins and utrophin in agrin-induced AChR clustering. Cell 77, 663–674 (1994).

    Article  CAS  PubMed  Google Scholar 

  85. Grady, R. M., Merlie, J. P. & Sanes, J. R. Subtle neuromuscular defects in utrophin-deficient mice. J. Cell Biol. 136, 871–882 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Karpati, G. et al. Localization and quantitation of the chromosome 6-encoded dystrophin-related protein in normal and pathological human muscle. J. Neuropathol. Exp. Neurol. 52, 119–128 (1993).

    Article  CAS  PubMed  Google Scholar 

  87. Mizuno, Y., Nonaka, I., Hirai, S. & Ozawa, E. Reciprocal expression of dystrophin and utrophin in muscles of Duchenne muscular dystrophy patients, female DMD-carriers and control subjects. J. Neurol. Sci. 119, 43–52 (1993). This analysis of muscle biopsies shows that utrophin compensates, to some extent, for the dystrophin efficiency in muscles from DMD patients, which hinted at its therapeutic potential in dystrophic muscle.

    Article  CAS  PubMed  Google Scholar 

  88. Galvagni, F., Cantini, M. & Oliviero, S. The utrophin gene is transcriptionally up-regulated in regenerating muscle. J. Biol. Chem. 277, 19106–19113 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Deconinck, A. E. et al. Utrophin-dystrophin-deficient mice as a model for Duchenne muscular dystrophy. Cell 90, 717–727 (1997).

    Article  CAS  PubMed  Google Scholar 

  90. Grady, R. M. et al. Skeletal and cardiac myopathies in mice lacking utrophin and dystrophin: a model for Duchenne muscular dystrophy. Cell 90, 729–738 (1997).

    Article  CAS  PubMed  Google Scholar 

  91. Tinsley, J. M. et al. Amelioration of the dystrophic phenotype of mdx mice using a truncated utrophin transgene. Nature 384, 349–353 (1996).

    Article  CAS  PubMed  Google Scholar 

  92. Deconinck, N. et al. Expression of truncated utrophin leads to major functional improvements in dystrophin-deficient muscles of mice. Nature Med. 3, 1216–1221 (1997).

    Article  CAS  PubMed  Google Scholar 

  93. Gilbert, R. et al. Efficient utrophin expression following adenovirus gene transfer in dystrophic muscle. Biochem. Biophys. Res. Commun. 242, 244–247 (1998).

    Article  CAS  PubMed  Google Scholar 

  94. Gilbert, R. et al. Adenovirus-mediated utrophin gene transfer mitigates the dystrophic phenotype of mdx mouse muscles. Hum. Gene Ther. 10, 1299–1310 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Rafael, J. A., Tinsley, J. M., Potter, A. C., Deconinck, A. E. & Davies, K. E. Skeletal muscle-specific expression of a utrophin transgene rescues utrophin-dystrophin deficient mice. Nature Genet. 19, 79–82 (1998).

    Article  CAS  PubMed  Google Scholar 

  96. Wakefield, P. M. et al. Prevention of the dystrophic phenotype in dystrophin/utrophin-deficient muscle following adenovirus-mediated transfer of a utrophin minigene. Gene Ther. 7, 201–204 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Cerletti, M. et al. Dystrophic phenotype of canine X-linked muscular dystrophy is mitigated by adenovirus-mediated utrophin gene transfer. Gene Ther. 10, 750–757 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Tinsley, J. et al. Expression of full-length utrophin prevents muscular dystrophy in mdx mice. Nature Med. 4, 1441–1444 (1998). This study shows that relatively low levels of expression of a full-length utrophin are sufficient to prevent the development of muscular dystrophy in transgenic mdx mice.

    Article  CAS  PubMed  Google Scholar 

  99. Gillis, J. M. Multivariate evaluation of the functional recovery obtained by the overexpression of utrophin in skeletal muscles of the mdx mouse. Neuromuscul. Disord. 12 (Suppl.), 90–94 (2002).

    Article  Google Scholar 

  100. Fisher, R. et al. Non-toxic ubiquitous over-expression of utrophin in the mdx mouse. Neuromuscul. Disord. 11, 713–721 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Dennis, C. L., Tinsley, J. M., Deconinck, A. E. & Davies, K. E. Molecular and functional analysis of the utrophin promoter. Nucleic Acids Res. 24, 1646–1652 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Perkins, K. J., Burton, E. A. & Davies, K. E. The role of basal and myogenic factors in the transcriptional activation of utrophin promoter A: implications for therapeutic up-regulation in Duchenne muscular dystrophy. Nucleic Acids Res. 29, 4843–4850 (2001). This is one of a series of basic studies on the regulatory mechanisms that control utrophin expression, which aims to identify regulatory elements that might provide targets for reagents to effect the therapeutic upregulation of utrophin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Burton, E. A. et al. A second promoter provides an alternative target for therapeutic up-regulation of utrophin in Duchenne muscular dystrophy. Proc. Natl Acad. Sci. USA 96, 14025–14030 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Funk, W. D., Ouellette, M. & Wright, W. E. Molecular biology of myogenic regulatory factors. Mol. Biol. Med. 8, 185–195 (1991).

    CAS  PubMed  Google Scholar 

  105. Santoro, I. M., Yi, T. M. & Walsh, K. Identification of single-stranded-DNA-binding proteins that interact with muscle gene elements. Mol. Cell Biol. 11, 1944–1953 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Koike, S., Schaeffer, L. & Changeux, J. P. Identification of a DNA element determining synaptic expression of the mouse acetylcholine receptor δ-subunit gene. Proc. Natl Acad. Sci. USA 92, 10624–10628 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gramolini, A. O. et al. Local transcriptional control of utrophin expression at the neuromuscular synapse. J. Biol. Chem. 272, 8117–8120 (1997).

    Article  CAS  PubMed  Google Scholar 

  108. Gramolini, A. O. et al. Muscle and neural isoforms of agrin increase utrophin expression in cultured myotubes via a transcriptional regulatory mechanism. J. Biol. Chem. 273, 736–743 (1998). Following an earlier study that showed that nerve-derived trophic factors activate utrophin transcription, this paper reports that agrin doubled the amount of utrophin mRNAs and increased utrophin levels through interaction with the N-box in promoter A.

    Article  CAS  PubMed  Google Scholar 

  109. Gramolini, A. O. et al. Induction of utrophin gene expression by heregulin in skeletal muscle cells: role of the N-box motif and GA binding protein. Proc. Natl Acad. Sci. USA 96, 3223–3227 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Khurana, T. S. et al. Activation of utrophin promoter by heregulin via the ets-related transcription factor complex GA-binding protein α/β. Mol. Biol. Cell 10, 2075–2086 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Galvagni, F., Capo, S. & Oliviero, S. Sp1 and Sp3 physically interact and co-operate with GABP for the activation of the utrophin promoter. J. Mol. Biol. 306, 985–996 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Chaubourt, E. et al. Nitric oxide and l-arginine cause an accumulation of utrophin at the sarcolemma: a possible compensation for dystrophin loss in Duchenne muscular dystrophy. Neurobiol. Dis. 6, 499–507 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Courdier-Fruh, I., Barman, L., Briguet, A. & Meier, T. Glucocorticoid-mediated regulation of utrophin levels in human muscle fibers. Neuromuscul. Disord. 12 (Suppl.), 95–104 (2002).

    Article  Google Scholar 

  114. Vater, R. et al. Utrophin mRNA expression in muscle is not restricted to the neuromuscular junction. Mol. Cell Neurosci. 10, 229–242 (1998).

    Article  CAS  PubMed  Google Scholar 

  115. Weir, A. P., Burton, E. A., Harrod, G. & Davies, K. E. A- and B-utrophin have different expression patterns and are differentially up-regulated in mdx muscle. J. Biol. Chem. 277, 45285–45290 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Briguet, A., Bleckmann, D., Bettan, M., Mermod, N. & Meier, T. Transcriptional activation of the utrophin promoter B by a constitutively active Ets-transcription factor. Neuromuscul. Disord. 13, 143–150 (2003).

    Article  PubMed  Google Scholar 

  117. Perkins, K. J. & Davies, K. E. Ets, Ap-1 and GATA factor families regulate the utrophin B promoter: potential regulatory mechanisms for endothelial-specific expression. FEBS Lett. 538, 168–172 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Galvagni, F. & Oliviero, S. Utrophin transcription is activated by an intronic enhancer. J. Biol. Chem. 275, 3168–3172 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Yang, J. et al. Concatamerization of adeno-associated virus circular genomes occurs through intermolecular recombination. J. Virol. 73, 9468–9477 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Schnepp, B. C., Clark, K. R., Klemanski, D. L., Pacak, C. A. & Johnson, P. R. Genetic fate of recombinant adeno-associated virus vector genomes in muscle. J. Virol. 77, 3495–3504 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Xiao, X., Li, J. & Samulski, R. J. Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J. Virol. 70, 8098–8108 (1996). This is the first report of efficient rAAV-mediated lacZ gene transduction in muscle, which persisted for more than 1.5 years without evidence of a cellular immune response.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Greelish, J. P. et al. Stable restoration of the sarcoglycan complex in dystrophic muscle perfused with histamine and a recombinant adeno-associated viral vector. Nature Med. 5, 439–443 (1999).

    Article  CAS  PubMed  Google Scholar 

  123. Herzog, R. W. et al. Stable gene transfer and expression of human blood coagulation factor IX after intramuscular injection of recombinant adeno-associated virus. Proc. Natl Acad. Sci. USA 94, 5804–5809 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Chao, H. et al. Persistent expression of canine factor IX in hemophilia B canines. Gene Ther. 6, 1695–1704 (1999).

    Article  CAS  PubMed  Google Scholar 

  125. Manno, C. S. et al. AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B. Blood 101, 2963–2972 (2003).

    Article  CAS  PubMed  Google Scholar 

  126. Fraites, T. J. et al. Correction of the enzymatic and functional deficits in a model of Pompe disease using adeno-associated virus vectors. Mol. Ther. 5, 571–578 (2002).

    Article  CAS  PubMed  Google Scholar 

  127. Goudy, K. et al. Adeno-associated virus vector-mediated IL-10 gene delivery prevents type 1 diabetes in NOD mice. Proc. Natl Acad. Sci. USA 98, 13913–13918 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Koenig, M., Monaco, A. P. & Kunkel, L. M. The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell 53, 219–226 (1988).

    Article  CAS  PubMed  Google Scholar 

  129. Hoffman, E. P., Brown, R. H. & Kunkel, L. M. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51, 919–928 (1987).

    Article  CAS  PubMed  Google Scholar 

  130. Ervasti, J. M. & Campbell, K. P. A role for the dystrophin–glycoprotein complex as a transmembrane linker between laminin and actin. J. Cell Biol. 122, 809–823 (1993).

    Article  CAS  PubMed  Google Scholar 

  131. Chapman, V. M., Miller, D. R., Armstrong, D. & Caskey, C. T. Recovery of induced mutations for X chromosome-linked muscular dystrophy in mice. Proc. Natl Acad. Sci. USA 86, 1292–1296 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the authors' laboratories is supported by grants from the Dutch Duchenne Parent Project, the Princess Beatrix Fund (The Netherlands), the European Union, the Muscular Dystrophy Campaign (United Kingdom) and the Muscular Dystrophy Association (United States).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith C. T. van Deutekom.

Related links

Related links

DATABASES

LocusLink

DMD

UTRN

OMIM

Becker muscular dystrophy

diabetes type 1

Duchenne muscular dystrophy

haemophilia IX

Pompe disease

FURTHER INFORMATION

Leiden muscular dystrophy pages

Glossary

EXTRACELLULAR MATRIX

In muscle, this is a thin layer (basal lamina) that contains collagen, elastin and fibronectin, which surrounds each muscle fibre. This might act as a semipermeable filter or a selective cellular barrier and is important in regeneration after damage.

TRANSDUCTION

The transfer of genetic material into a cell using a viral vector.

IMMUNOGENICITY

The properties of a virus, transgene, vector, compound or molecule that provoke an immune response.

CYTOTOXICITY

The properties of a virus, transgene, vector, compound or molecule that are toxic for cells.

ELECTROPORATION

The application of an electric current to the plasma membrane of a cell, to temporarily open pores or channels through which DNA might pass.

PRESSURIZED ISOLATED-LIMB PERFUSION

The introduction of therapeutic agents under pressure in a limb after isolation of the blood circulation by clamping.

MICROBUBBLES

Encapsulated gas microbubbles that can be used as drug or gene carriers, which are able to penetrate into the smallest membranes. When exposed to sufficiently high-amplitude ultrasound, the microbubbles rupture and release the drugs and genes that are contained in their encapsulating layer.

TRANSFECTION

The transfer of exogenous DNA into a cell.

MYOBLAST TRANSPLANTATION

The implantation of exogenous muscle-progenitor cells into muscle to generate new myofibres or to support existing myofibres.

AMINOGLYCOSIDES

A group of antibiotics (such as gentamicin) that inhibit bacterial protein synthesis and are particularly active against Gram-negative bacteria.

F-ACTIN

A protein that is involved in the contractile apparatus and the maintenance of the cytoskeleton of myofibres.

β-DYSTROGLYCAN

The α- and β-dystroglycans are the laminin-binding components of the dystrophin–glycoprotein complex, which provides a linkage between the subsarcolemmal cytoskeleton and the extracellular matrix.

DYSTROBREVINS

The components of the dystrophin–glycoprotein complex that bind to syntrophin and (indirectly) to the C-terminal of dystrophin. Dystrobrevin-α recruits signalling proteins, such as neuronal nitric oxide synthase.

SYNTROPHINS

Peripheral membrane proteins that bind to the C-terminal of dystrophin, which might have a role in the process of synaptogenesis.

SPECTRIN

A large contractile submembrane protein that, similar to dystrophin, contains an actin-binding domain and a long repeat domain.

DEPENDOVIRUS

A single-stranded DNA virus from the family parvoviridae (subfamily parvovirinae), which is dependent on a co-infection with helper adenoviruses or herpes viruses for efficient replication.

EPISOMES

DNA that can replicate autonomously in the cytoplasm of host cells.

HEK-293 CELLS

Host cells that generate viral particles following transfection with the rAAV plasmid and the helper plasmid.

NEO-ANTIGEN

A foreign (transgene) product that is able to stimulate an immune response.

PRE-mRNA SPLICING

The removal of introns from the precursor mRNA molecule; the remaining exons are spliced together.

PRIMARY MUSCLE-CELL CULTURES

Cells that are taken into culture directly from a tissue biopsy. In contrast to cell lines that only contain immortalized cells, these cultures contain heterogeneous cell populations.

SPLICEOSOMAL COMPLEX

A large dynamic complex that consists of small nuclear RNA molecules and protein components. It mediates the two catalytic steps of the splicing reaction: the excision of introns from the pre-mRNA and the ligation of the two exon termini.

RNaseH

Ribonuclease H. An enzyme that cleaves RNA/DNA complexes.

PHARMACOKINETIC PROFILE

The characteristics of a drug that determine its absorption, distribution and elimination in the body.

SARCOLEMMA

The membrane that encloses a striated muscle fibre.

ACETYLCHOLINE

A neurotransmitter (C7H17NO3) that is released at autonomic synapses and neuromuscular junctions. It is active in the transmission of nerve impulses and is formed enzymatically in tissues from choline.

CpG ISLAND

Genomic regions that are rich in the CpG pattern, are resistant to methylation and are often associated with promoter activity.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Deutekom, J., van Ommen, GJ. Advances in Duchenne muscular dystrophy gene therapy. Nat Rev Genet 4, 774–783 (2003). https://doi.org/10.1038/nrg1180

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1180

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing