Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Innovation
  • Published:

TILLING — a high-throughput harvest for functional genomics

Abstract

The availability of the whole genome sequence of many model organisms, combined with well-established chemical mutagenesis methods and cost-effective high-throughput DNA genotyping, allows mutations to be identified for virtually any gene. Recently dubbed TILLING (for targeting induced local lesions in genomes), this general method is gaining popularity. In this article, I discuss some of the TILLING methods that are available, the successes that have been reported for several organisms and the future outlook for such methods.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The TILLING process.
Figure 2: The Cel1 endonuclease.
Figure 3: CODDLE analysis of the mouse Pax6 gene.
Figure 4: Generation of zebrafish germline chimaeras.

Similar content being viewed by others

References

  1. Nusslein-Volhard, C. & Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801 (1980).

    Article  CAS  PubMed  Google Scholar 

  2. Brown, S. D. & Hardisty, R. E. Mutagenesis strategies for identifying novel loci associated with disease phenotypes. Semin. Cell Dev. Biol. 14, 19–24 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Anderson, K. V. Finding the genes that direct mammalian development: ENU mutagenesis in the mouse. Trends Genet. 16, 99–102 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Bradley, A., Zheng, B. & Liu, P. Thirteen years of manipulating the mouse genome: a personal history. Int. J. Dev. Biol. 42, 943–950 (1998).

    CAS  PubMed  Google Scholar 

  5. Korswagen, H. C., Durbin, R. M., Smits, M. T. & Plasterk, R. H. Transposon Tc1-derived, sequence-tagged sites in Caenorhabditis elegans as markers for gene mapping. Proc. Natl Acad. Sci. USA 93, 14680–14685 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Plasterk, R. H. Reverse genetics of Caenorhabditis elegans. Bioessays 14, 629–633 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Cooley, L., Kelley, R. & Spradling, A. Insertional mutagenesis of the Drosophila genome with single P elements. Science 239, 1121–1128 (1988).

    Article  CAS  PubMed  Google Scholar 

  8. Rong, Y. S. & Golic, K. G. Gene targeting by homologous recombination in Drosophila. Science 288, 2013–2018 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Heasman, J. Morpholino oligos: making sense of antisense? Dev. Biol. 243, 209–214 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. McCallum, C. M., Comai, L., Greene, E. A. & Henikoff, S. Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol. 123, 439–442 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Colbert, T. et al. High-throughput screening for induced point mutations. Plant Physiol. 126, 480–484 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McCallum, C. M., Comai, L., Greene, E. A. & Henikoff, S. Targeted screening for induced mutations. Nature Biotechnol. 18, 455–457 (2000).

    Article  CAS  Google Scholar 

  13. Oleykowski, C. A., Bronson Mullins, C. R., Godwin, A. K. & Yeung, A. T. Mutation detection using a novel plant endonuclease. Nucleic Acids Res. 26, 4597–4602 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Oleykowski, C. A., Bronson Mullins, C. R., Chang, D. W. & Yeung, A. T. Incision at nucleotide insertions/deletions and base pair mismatches by the SP nuclease of spinach. Biochemistry 38, 2200–2205 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Yang, B. et al. Purification, cloning, and characterization of the CEL I nuclease. Biochemistry 39, 3533–3541 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Solnica-Krezel, L., Schier, A. F. & Driever, W. Efficient recovery of ENU-induced mutations from the zebrafish germline. Genetics 136, 1401–1420 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Riley, B. B. & Grunwald, D. J. Efficient induction of point mutations allowing recovery of specific locus mutations in zebrafish. Proc. Natl Acad. Sci. USA 92, 5997–6001 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Grunwald, D. J. & Streisinger, G. Induction of recessive lethal and specific locus mutations in the zebrafish with ethyl nitrosourea. Genet. Res. 59, 103–116 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Imai, Y., Feldman, B., Schier, A. F. & Talbot, W. S. Analysis of chromosomal rearrangements induced by postmeiotic mutagenesis with ethylnitrosourea in zebrafish. Genetics 155, 261–272 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Haffter, P. et al. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123, 1–36 (1996).

    CAS  PubMed  Google Scholar 

  21. Russell, L. B. & Montgomery, C. S. Supermutagenicity of ethylnitrosourea in the mouse spot test: comparisons with methylnitrosourea and ethylnitrosourethane. Mutat. Res. 92, 193–204 (1982).

    Article  CAS  PubMed  Google Scholar 

  22. Russell, L. B., Bangham, J. W., Stelzner, K. F. & Hunsicker, P. R. High frequency of mosaic mutants produced by N-ethyl-N-nitrosourea exposure of mouse zygotes. Proc. Natl Acad. Sci. USA 85, 9167–9170 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Perry, J. A. et al. A TILLING reverse genetics tool and a web-accessible collection of mutants of the legume Lotus japonicus. Plant Physiol. 131, 866–871 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Till, B. J. et al. Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res. 13, 524–530 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ransom, D. G. & Zon, L. I. Collection, storage, and use of zebrafish sperm. Methods Cell Biol. 60, 365–672 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Rozen, S. & Skaletsky, H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132, 365–386 (2000).

    CAS  PubMed  Google Scholar 

  27. Taylor, N. E. & Greene, E. A. PARSESNP: a tool for the analysis of nucleotide polymorphisms. Nucleic Acids Res. 31, 3808–3811 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Neff, M. M., Neff, J. D., Chory, J. & Pepper, A. E. dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J. 14, 387–392 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Neff, M. M., Turk, E. & Kalishman, M. Web-based primer design for single nucleotide polymorphism analysis. Trends Genet. 18, 613–615 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Wienholds, E., Schulte-Merker, S., Walderich, B. & Plasterk, R. H. Target-selected inactivation of the zebrafish rag1 gene. Science 297, 99–102 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Zan, Y. et al. Production of knockout rats using ENU mutagenesis and a yeast-based screening assay. Nature Biotechnol. 21, 645–651 (2003).

    Article  CAS  Google Scholar 

  32. Nasevicius, A. & Ekker, S. C. Effective targeted gene 'knockdown' in zebrafish. Nature Genet. 26, 216–220 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Urtishak, K. A. et al. Targeted gene knockdown in zebrafish using negatively charged peptide nucleic acid mimics. Dev. Dyn. 228, 405–413 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Efimov, V., Choob, M., Buryakova, A., Phelan, D. & Chakhmakhcheva, O. PNA-related oligonucleotide mimics and their evaluation for nucleic acid hybridization studies and analysis. Nucleosides Nucleotides Nucleic Acids 20, 419–428 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Feldman, B. et al. Lefty antagonism of Squint is essential for normal gastrulation. Curr. Biol. 12, 2129–2135 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Ciruna, B. et al. Production of maternal-zygotic mutant zebrafish by germ-line replacement. Proc. Natl Acad. Sci. USA 99, 14919–14924 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jacob, J. & Briscoe, J. Gli proteins and the control of spinal-cord patterning. EMBO Rep. 4, 761–765 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Karlstrom, R. O. et al. Genetic analysis of zebrafish gli1 and gli2 reveals divergent requirements for gli genes in vertebrate development. Development 130, 1549–1564 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Wienholds, E., Koudijs, M. J., Van Eeden, F. J., Cuppen, E. & Plasterk, R. H. The microRNA-producing enzyme Dicer1 is essential for zebrafish development. Nature Genet. 35, 217–218 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Hurlstone, A. F. et al. The Wnt/β-catenin pathway regulates cardiac valve formation. Nature 425, 633–637 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Greene, E. A. et al. Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics 164, 731–740 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Jansen, J. G. et al. Marked differences in the role of O6-alkylguanine in hprt mutagenesis in T-lymphocytes of rats exposed in vivo to ethylmethanesulfonate, N-(2-hydroxyethyl)-N-nitrosourea, or N-ethyl-N-nitrosourea. Cancer Res. 55, 1875–1882 (1995).

    CAS  PubMed  Google Scholar 

  43. Skopek, T. R., Walker, V. E., Cochrane, J. E., Craft, T. R. & Cariello, N. F. Mutational spectrum at the Hprt locus in splenic T cells of B6C3F1 mice exposed to N-ethyl-N-nitrosourea. Proc. Natl Acad. Sci. USA 89, 7866–7870 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Singer, B. All oxygens in nucleic acids react with carcinogenic ethylating agents. Nature 264, 333–339 (1976).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank M. Clark, R. Kettleborough, G. Wright and H.-Y. Hwang for their helpful comments on this manuscript, and acknowledge support from the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez

ADE2

ADH1

LocusLink

rag1

FURTHER INFORMATION

Arabidopsis TILLING project

CODDLE

dCAPs

PARSESNP

proWeb project

Wellcome Trust Sanger Institute Vertebrate Development and Genetics team

Glossary

ALLELIC SERIES

A series of different genotypes, or alleles, of a specific gene, that are often associated with different phenotypes.

BLASTOMERES

Cells of the early cleavage-stage embryo.

DENATURING HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY

(dHPLC). A rapid chromatography method that can be used to distinguish heteroduplex from homoduplex DNA. It can detect single base differences between alleles.

HEDGEHOG

The Hedgehog proteins are a class of secreted cell–cell signalling molecule. The name derives from the appearance of embryonic Drosophila melanogaster mutants that lack hedgehog gene function. There are many vertebrate genes that encode Hedgehog homologues.

M2

Second generation mating of a specific mutagenized individual.

MATERNAL CONTRIBUTION

In many organisms, mRNA and proteins are stored in the egg before fertilization.

microRNAs

Short (22 bp), non-coding RNAs that are probably involved in gene regulation.

MORPHOLINO OLIGONUCLEOTIDE

A DNA analogue in which the bases are linked to a six-membered morpholine ring.

P-ELEMENTS

Transposable elements that are widely used for mutating and manipulating the Drosophila genome.

PHENOCOPY

The production of a phenotype, which closely resembles a phenotype that normally results from a specific gene mutation.

PHOSPHONOPEPTIDE NUCLEIC ACID

As with morpholino oligonucleotides, these have a modified backbone that is resistant to nuclease digestion, yet allows hybridization with complementary DNA or RNA molecules and can be used to interfere with protein synthesis of specific target mRNAs.

PRIMORDIAL GERM CELLS

Germline cells at all stages of development from the time when this lineage is formed until they arrive at the gonad and start differentiating into gametes.

SPERMATOGONIA

The mitotically dividing stem cells of the male germline, the descendants of which ultimately become mature sperm.

TRANSVERSION

A point mutation in which a purine base is substituted for a pyrimidine base and vice versa; for example, an A:T → C:G transversion.

WNT

The Wnt proteins are a class of secreted cell–cell signalling molecule. The name derives from a fusion of two original names. In Drosophila melanogaster, Wingless (like Hedgehog) is involved in patterning the early embryo. In vertebrates, Int-1 was the first member of this class of protein to be discovered, and was identified in a screen for viral cancer-causing insertions in mice.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stemple, D. TILLING — a high-throughput harvest for functional genomics. Nat Rev Genet 5, 145–150 (2004). https://doi.org/10.1038/nrg1273

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1273

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing