Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetic insights into the morphogenesis of inner ear hair cells

Key Points

Hair cells are the specialized mechanoreceptors of the inner ear.

  • Many of the genes that underlie the morphogenesis of hair cells have been identified through positional cloning of hereditary hearing loss disorders.

  • Rearrangement of actin filaments is a hallmark of the developmental transition of a microvillus into a stereocilium, the hair cell's mechanosensitive organelle.

  • Hair cells use actin-binding proteins and unconventional myosins to form and maintain the characteristic shape of a stereocilium, which is required for mechanosensitivity.

  • The precise arrangement of stereocilia into a cohesive 'hair' bundle is also required for mechanosensitivity.

  • Hair-bundle cohesion is mediated by ultrastructural links between adjacent stereocilia.

  • Hair cells have adapted molecular mechanisms of intercellular adhesion to mediate hair-bundle cohesion.

  • Programmed differential elongation of stereocilia produces the staircase-like configuration of the hair bundle.

  • Mechanoreceptor current might be required for morphogenesis of the hair bundle.

Abstract

The mammalian inner ear is a sensory organ that has specialized hair cells that detect sound, as well as orientation and movement of the head. The 'hair' bundle on the apical surface of these cells is a mechanosensitive organelle that consists of precisely organized actin-filled projections known as stereocilia. Alterations in hair-bundle morphogenesis can result in hearing loss, balance defects or both. Positional cloning of genes that underlie hereditary hearing loss, coupled with the characterization of corresponding mouse models, is revealing how hair cells have adapted the molecular mechanisms of intracellular motility and intercellular adhesion for the morphogenesis of their apical surfaces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and function of the mammalian ear.
Figure 2: The hair bundle of mammalian auditory sensory cells.
Figure 3: Maturation of hair cell stereocilia.
Figure 4: Stages of bundle formation in auditory hair cells.
Figure 5: Adhesion in the hair bundle.

Similar content being viewed by others

References

  1. Fay, R. R. & Popper, A. N. Evolution of hearing in vertebrates: the inner ears and processing. Hear. Res. 149, 1–10 (2000).

    CAS  PubMed  Google Scholar 

  2. Manley, G. A. Cochlear mechanisms from a phylogenetic viewpoint. Proc. Natl Acad. Sci. USA 97, 11736–11743 (2000).

    CAS  PubMed  Google Scholar 

  3. Dallos, P. & Fakler, B. Prestin, a new type of motor protein. Nature Rev. Mol. Cell Biol. 3, 104–111 (2002).

    CAS  Google Scholar 

  4. Popper, A. N. & Fay, R. R. Evolution of the ear and hearing: issues and questions. Brain Behav. Evol. 50, 213–221 (1997).

    CAS  PubMed  Google Scholar 

  5. Friedman, T. B. & Griffith, A. J. Human nonsyndromic sensorineural deafness. Annu. Rev. Genomics Hum. Genet. 4, 341–402 (2003). A comprehensive and critical review of the genes that are implicated in non-syndromic sensorineural deafness in humans.

    CAS  PubMed  Google Scholar 

  6. Fekete, D. M. & Wu, D. K. Revisiting cell fate specification in the inner ear. Curr. Opin. Neurobiol. 12, 35–42 (2002).

    CAS  PubMed  Google Scholar 

  7. Kelley, M. W. Cell adhesion molecules during inner ear and hair cell development, including notch and its ligands. Curr. Top. Dev. Biol. 57, 321–356 (2003).

    CAS  PubMed  Google Scholar 

  8. Ehret, G. Postnatal development in the acoustic system of the house mouse in the light of developing masked thresholds. J. Acoust. Soc. Am. 62, 143–148 (1977).

    CAS  PubMed  Google Scholar 

  9. Chen, P., Johnson, J. E., Zoghbi, H. Y. & Segil, N. The role of Math1 in inner ear development: uncoupling the establishment of the sensory primordium from hair cell fate determination. Development 129, 2495–2505 (2002).

    CAS  PubMed  Google Scholar 

  10. Corey, D. P. & Hudspeth, A. J. Ionic basis of the receptor potential in a vertebrate hair cell. Nature 281, 675–677 (1979).

    CAS  PubMed  Google Scholar 

  11. Ohmori, H. Mechano-electrical transduction currents in isolated vestibular hair cells of the chick. J. Physiol. 359, 189–217 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Russell, I. J., Richardson, G. P. & Kossl, M. The responses of cochlear hair cells to tonic displacements of the sensory hair bundle. Hear. Res. 43, 55–69 (1989).

    CAS  PubMed  Google Scholar 

  13. Hudspeth, A. J. Hair-bundle mechanics and a model for mechanoelectrical transduction by hair cells. Soc. Gen. Physiol. Ser. 47, 357–370 (1992).

    CAS  PubMed  Google Scholar 

  14. Warchol, M. E., Lambert, P. R., Goldstein, B. J., Forge, A. & Corwin, J. T. Regenerative proliferation in inner ear sensory epithelia from adult guinea pigs and humans. Science 259, 1619–1622 (1993).

    CAS  PubMed  Google Scholar 

  15. Forge, A., Li, L., Corwin, J. T. & Nevill, G. Ultrastructural evidence for hair cell regeneration in the mammalian inner ear. Science 259, 1616–1619 (1993).

    CAS  PubMed  Google Scholar 

  16. Rubel, E. W., Dew, L. A. & Roberson, D. W. Mammalian vestibular hair cell regeneration. Science 267, 701–707 (1995).

    CAS  PubMed  Google Scholar 

  17. Zheng, J. L., Keller, G. & Gao, W. Q. Immunocytochemical and morphological evidence for intracellular self-repair as an important contributor to mammalian hair cell recovery. J. Neurosci. 19, 2161–2170 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. DeRosier, D. J. & Tilney, L. G. F-actin bundles are derivatives of microvilli: what does this tell us about how bundles might form? J. Cell Biol. 148, 1–6 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bartles, J. R. Parallel actin bundles and their multiple actin-bundling proteins. Curr. Opin. Cell Biol. 12, 72–78 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Tilney, L. G., Derosier, D. J. & Mulroy, M. J. The organization of actin filaments in the stereocilia of cochlear hair cells. J. Cell Biol. 86, 244–259 (1980).

    CAS  PubMed  Google Scholar 

  21. Tyska, M. J. & Mooseker, M. S. MYO1A (brush border myosin I) dynamics in the brush border of LLC-PK1-CL4 cells. Biophys. J. 82, 1869–1883 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Schneider, M. E., Belyantseva, I. A., Azevedo, R. B. & Kachar, B. Rapid renewal of auditory hair bundles. Nature 418, 837–838 (2002). Demonstration of actin renewal in auditory hair bundles.

    CAS  PubMed  Google Scholar 

  23. Loomis, P. A. et al. Espin crosslinks cause the elongation of microvillus-type parallel actin bundles in vivo. J. Cell Biol. 163, 1045–1055 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Tilney, L. G. & DeRosier, D. J. Actin filaments, stereocilia, and hair cells of the bird cochlea. IV. How the actin filaments become organized in developing stereocilia and in the cuticular plate. Dev. Biol. 116, 119–129 (1986). Description of maturational changes in actin packing during hair cell stereocilia development.

    CAS  PubMed  Google Scholar 

  25. DeRosier, D. J., Tilney, L. G. & Egelman, E. Actin in the inner ear: the remarkable structure of the stereocilium. Nature 287, 291–26 (1980). First description of paracrystalline organization of actin filaments in hair cell stereocilia.

    CAS  PubMed  Google Scholar 

  26. Neuhaus, J. M., Wanger, M., Keiser, T. & Wegner, A. Treadmilling of actin. J. Muscle Res. Cell. Motil. 4, 507–527 (1983).

    CAS  PubMed  Google Scholar 

  27. Li, H. et al. Correlation of expression of the actin filament-bundling protein espin with stereociliary bundle formation in the developing inner ear. J. Comp. Neurol. 468, 125–134 (2004).

    CAS  PubMed  Google Scholar 

  28. Tilney, L. G., Connelly, P. S., Vranich, K. A., Shaw, M. K. & Guild, G. M. Why are two different crosslinkers necessary for actin bundle formation in vivo and what does each crosslink contribute? J. Cell Biol. 143, 121–133 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Daudet, N. & Lebart, M. C. Transient expression of the t-isoform of plastins/fimbrin in the stereocilia of developing auditory hair cells. Cell Motil. Cytoskeleton 53, 326–336 (2002).

    CAS  PubMed  Google Scholar 

  30. Zheng, L. et al. The deaf jerker mouse has a mutation in the gene encoding the espin actin-bundling proteins of hair cell stereocilia and lacks espins. Cell 102, 377–385 (2000). Positional cloning of the mouse jerker mutation revealed that espin is required for hair cell stereocilia development.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Naz, S. et al. Mutations of ESPN cause autosomal recessive deafness and vestibular dysfunction. J. Med. Genet. (in the press).

  32. Gorelik, J. et al. Dynamic assembly of surface structures in living cells. Proc. Natl Acad. Sci. USA 100, 5819–5822 (2003).

    CAS  PubMed  Google Scholar 

  33. Mallavarapu, A. & Mitchison, T. Regulated actin cytoskeleton assembly at filopodium tips controls their extension and retraction. J. Cell Biol. 146, 1097–1106 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Volkmann, N., DeRosier, D., Matsudaira, P. & Hanein, D. An atomic model of actin filaments crosslinked by fimbrin and its implications for bundle assembly and function. J. Cell Biol. 153, 947–956 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hofer, D., Ness, W. & Drenckhahn, D. Sorting of actin isoforms in chicken auditory hair cells. J. Cell. Sci. 110, 765–770 (1997).

    PubMed  Google Scholar 

  36. Zhu, M. et al. Mutations in the γ-actin gene (ACTG1) are associated with dominant progressive deafness (DFNA20/26). Am. J. Hum. Genet. 73, 1082–1091 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Morell, R. J. et al. A new locus for late-onset, progressive, hereditary hearing loss DFNA20 maps to 17q25. Genomics 63, 1–6 (2000).

    CAS  PubMed  Google Scholar 

  38. van Wijk, E. et al. A mutation in the γ-actin 1 (ACTG1) gene causes autosomal dominant hearing loss (DFNA20/26). J. Med. Genet. 40, 879–884 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kaltenbach, J. A., Falzarano, P. R. & Simpson, T. H. Postnatal development of the hamster cochlea. II. Growth and differentiation of stereocilia bundles. J. Comp. Neurol. 350, 187–198 (1994).

    CAS  PubMed  Google Scholar 

  40. Tilney, L. G., Egelman, E. H., DeRosier, D. J. & Saunder, J. C. Actin filaments, stereocilia, and hair cells of the bird cochlea. II. Packing of actin filaments in the stereocilia and in the cuticular plate and what happens to the organization when the stereocilia are bent. J. Cell Biol. 96, 822–834 (1983).

    CAS  PubMed  Google Scholar 

  41. Lynch, E. D. et al. Nonsyndromic deafness DFNA1 associated with mutation of a human homolog of the Drosophila gene diaphanous. Science 278, 1315–1318 (1997).

    CAS  PubMed  Google Scholar 

  42. Higashida, C. et al. Actin polymerization-driven molecular movement of mDia1 in living cells. Science 303, 2007–2010 (2004).

    CAS  PubMed  Google Scholar 

  43. Bearer, E. L. & Abraham, M. T. 2E4 (kaptin): a novel actin-associated protein from human blood platelets found in lamellipodia and the tips of the stereocilia of the inner ear. Eur. J. Cell Biol. 78, 117–126 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Pataky, F., Pironkova, R. & Hudspeth, A. J. Radixin is a constituent of stereocilia in hair cells. Proc. Natl Acad. Sci. USA 101, 2601–2606 (2004).

    CAS  PubMed  Google Scholar 

  45. Tsukita, S. & Yonemura, S. Cortical actin organization: lessons from ERM (ezrin/radixin/moesin) proteins. J. Biol. Chem. 274, 34507–34510 (1999).

    CAS  PubMed  Google Scholar 

  46. Oliver, T. N., Berg, J. S. & Cheney, R. E. Tails of unconventional myosins. Cell. Mol. Life Sci. 56, 243–2457 (1999).

    CAS  PubMed  Google Scholar 

  47. Hasson, T. et al. Unconventional myosins in inner-ear sensory epithelia. J. Cell Biol. 137, 1287–1307 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Belyantseva, I. A., Boger, E. T. & Friedman, T. B. Myosin XVa localizes to the tips of inner ear sensory cell stereocilia and is essential for staircase formation of the hair bundle. Proc. Natl Acad. Sci. USA 100, 13958–13963 (2003). Demonstration that myosin XVa is located at the tips of stereocilia and is required for staircase formation of the hair bundle.

    CAS  PubMed  Google Scholar 

  49. Self, T. et al. Shaker-1 mutations reveal roles for myosin VIIA in both development and function of cochlear hair cells. Development 125, 557–566 (1998).

    CAS  PubMed  Google Scholar 

  50. Probst, F. J. et al. Correction of deafness in shaker-2 mice by an unconventional myosin in a BAC transgene. Science 280, 1444–14447 (1998).

    CAS  PubMed  Google Scholar 

  51. Wells, A. L. et al. Myosin VI is an actin-based motor that moves backwards. Nature 401, 505–508 (1999).

    CAS  PubMed  Google Scholar 

  52. Melchionda, S. et al. MYO6, the human homologue of the gene responsible for deafness in Snell's waltzer mice, is mutated in autosomal dominant nonsyndromic hearing loss. Am. J. Hum. Genet. 69, 635–640 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ahmed, Z. M. et al. Mutations of MYO6 are associated with recessive deafness, DFNB37. Am. J. Hum. Genet. 72, 1315–1322 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Mohiddin, S. A. et al. Novel association of hypertrophic cardiomyopathy, sensorineural deafness, and a mutation in unconventional myosin VI (MYO6). J. Med. Genet. 41, 309–314 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Avraham, K. B. et al. The mouse Snell's waltzer deafness gene encodes an unconventional myosin required for structural integrity of inner ear hair cells. Nature Genet. 11, 369–375 (1995).

    CAS  PubMed  Google Scholar 

  56. Self, T. et al. Role of myosin VI in the differentiation of cochlear hair cells. Dev. Biol. 214, 331–341 (1999).

    CAS  PubMed  Google Scholar 

  57. Altman, D., Sweeney, H. L. & Spudich, J. A. The mechanism of myosin VI translocation and its load-induced anchoring. Cell 116, 737–749 (2004).

    CAS  PubMed  Google Scholar 

  58. Hirokawa, N. & Tilney, L. G. Interactions between actin filaments and between actin filaments and membranes in quick-frozen and deeply etched hair cells of the chick ear. J. Cell Biol. 95, 249–261 (1982).

    CAS  PubMed  Google Scholar 

  59. DeRosier, D. J. & Tilney, L. G. The structure of the cuticular plate, an in vivo actin gel. J. Cell Biol. 109, 2853–2867 (1989).

    CAS  PubMed  Google Scholar 

  60. Slepecky, N. B. & Ulfendahl, M. Actin-binding and microtubule-associated proteins in the organ of Corti. Hear. Res. 57, 201–215 (1992).

    CAS  PubMed  Google Scholar 

  61. Zine, A., Hafidi, A. & Romand, R. Fimbrin expression in the developing rat cochlea. Hear. Res. 87, 165–169 (1995).

    CAS  PubMed  Google Scholar 

  62. Drenckhahn, D. et al. Three different actin filament assemblies occur in every hair cell: each contains a specific actin crosslinking protein. J. Cell Biol. 112, 641–651 (1991).

    CAS  PubMed  Google Scholar 

  63. Anniko, M., Sobin, A. & Wersall, J. Vestibular hair cell pathology in the Shaker-2 mouse. Arch. Otorhinolaryngol. 226, 45–50 (1980).

    CAS  PubMed  Google Scholar 

  64. Beyer, L. A. et al. Hair cells in the inner ear of the pirouette and shaker 2 mutant mice. J. Neurocytol. 29, 227–240 (2000).

    CAS  PubMed  Google Scholar 

  65. Kussel-Andermann, P. et al. Vezatin, a novel transmembrane protein, bridges myosin VIIA to the cadherin–catenins complex. EMBO J. 19, 6020–6029 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Di Palma, F. et al. Mutations in Cdh23, encoding a new type of cadherin, cause stereocilia disorganization in waltzer, the mouse model for Usher syndrome type 1D. Nature Genet. 27, 103–107 (2001).

    CAS  PubMed  Google Scholar 

  67. Shotwell, S. L., Jacobs, R. & Hudspeth, A. J. Directional sensitivity of individual vertebrate hair cells to controlled deflection of their hair bundles. Ann. N. Y. Acad. Sci. 374, 1–10 (1981).

    CAS  PubMed  Google Scholar 

  68. Yoshida, N. & Liberman, M. C. Stereociliary anomaly in the guinea pig: effects of hair bundle rotation on cochlear sensitivity. Hear. Res. 131, 29–38 (1999).

    CAS  PubMed  Google Scholar 

  69. Cotanche, D. A. & Corwin, J. T. Stereociliary bundles reorient during hair cell development and regeneration in the chick cochlea. Hear. Res. 52, 379–402 (1991).

    CAS  PubMed  Google Scholar 

  70. Coleman, G. B., Kaltenbach, J. A. & Falzarano, P. R. Postnatal development of the mammalian tectorial membrane. Am. J. Otol. 16, 620–627 (1995).

    CAS  PubMed  Google Scholar 

  71. Verhoeven, K. et al. Mutations in the human α-tectorin gene cause autosomal dominant non-syndromic hearing impairment. Nature Genet. 19, 60–62 (1998).

    CAS  PubMed  Google Scholar 

  72. Legan, P. K. et al. A targeted deletion in α-tectorin reveals that the tectorial membrane is required for the gain and timing of cochlear feedback. Neuron 28, 273–285 (2000).

    CAS  PubMed  Google Scholar 

  73. Das, G., Reynolds-Kenneally, J. & Mlodzik, M. The atypical cadherin Flamingo links Frizzled and Notch signaling in planar polarity establishment in the Drosophila. Dev. Cell 2, 655–666 (2002).

    CAS  PubMed  Google Scholar 

  74. Mlodzik, M. Planar cell polarization: do the same mechanisms regulate Drosophila tissue polarity and vertebrate gastrulation? Trends Genet. 18, 564–571 (2002).

    CAS  PubMed  Google Scholar 

  75. Curtin, J. A. et al. Mutation of Celsr1 disrupts planar polarity of inner ear hair cells and causes severe neural tube defects in the mouse. Curr. Biol. 13, 1129–1133 (2003).

    CAS  PubMed  Google Scholar 

  76. Montcouquiol, M. et al. Identification of Vangl2 and Scrb1 as planar polarity genes in mammals. Nature 423, 173–177 (2003).

    CAS  PubMed  Google Scholar 

  77. Dabdoub, A. et al. Wnt signaling mediates reorientation of outer hair cell stereociliary bundles in the mammalian cochlea. Development 130, 2375–2384 (2003).

    CAS  PubMed  Google Scholar 

  78. Tilney, L. G. & Tilney, M. S. Functional organization of the cytoskeleton. Hear. Res. 22, 55–77 (1986).

    CAS  PubMed  Google Scholar 

  79. Zine, A. & Romand, R. Development of the auditory receptors of the rat: a SEM study. Brain Res. 721, 49–58 (1996).

    CAS  PubMed  Google Scholar 

  80. Friedman, T. B. et al. A gene for congenital, recessive deafness DFNB3 maps to the pericentromeric region of chromosome 17. Nature Genet. 9, 86–91 (1995).

    CAS  PubMed  Google Scholar 

  81. Wang, A. et al. Association of unconventional myosin MYO15 mutations with human nonsyndromic deafness DFNB3. Science 280, 1447–1451 (1998).

    CAS  PubMed  Google Scholar 

  82. Rzadzinska, A. K., Schneider, M. E., Davies, C., Riordan, G. P. & Kachar, B. An actin molecular treadmill and myosins maintain stereocilia functional architecture and self-renewal. J. Cell Biol. 164, 887–897 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Belyantseva, I. A., Labay, V., Boger, E. T., Griffith, A. J. & Friedman, T. B. Stereocilia: the long and the short of it. Trends Mol. Med. 9, 458–461 (2003).

    CAS  PubMed  Google Scholar 

  84. Harris, B. Z. & Lim, W. A. Mechanism and role of PDZ domains in signaling complex assembly. J. Cell. Sci. 114, 3219–3231 (2001).

    CAS  PubMed  Google Scholar 

  85. Mburu, P. et al. Defects in whirlin, a PDZ domain molecule involved in stereocilia elongation, cause deafness in the whirler mouse and families with DFNB31. Nature Genet. 34, 421–428 (2003). Positional cloning of the mouse whirler mutation revealed that a novel PDZ domain protein, whirlin, is required for stereocilia elongation.

    CAS  PubMed  Google Scholar 

  86. Goodyear, R. & Richardson, G. Distribution of the 275 kD hair cell antigen and cell surface specialisations on auditory and vestibular hair bundles in the chicken inner ear. J. Comp. Neurol. 325, 243–256 (1992).

    CAS  PubMed  Google Scholar 

  87. Ernstson, S. & Smith, C. A. Stereo-kinociliar bonds in mammalian vestibular organs. Acta Otolaryngol. 101, 395–402 (1986).

    CAS  PubMed  Google Scholar 

  88. Goodyear, R. & Richardson, G. The ankle-link antigen: an epitope sensitive to calcium chelation associated with the hair-cell surface and the calycal processes of photoreceptors. J. Neurosci. 19, 3761–3772 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhao, Y., Yamoah, E. N. & Gillespie, P. G. Regeneration of broken tip links and restoration of mechanical transduction in hair cells. Proc. Natl Acad. Sci. USA 93, 15469–15474 (1996).

    CAS  PubMed  Google Scholar 

  90. Pickles, J. O., von Perger, M., Rouse, G. W. & Brix, J. The development of links between stereocilia in hair cells of the chick basilar papilla. Hear. Res. 54, 153–163 (1991).

    CAS  PubMed  Google Scholar 

  91. Assad, J. A., Shepherd, G. M. & Corey, D. P. Tip-link integrity and mechanical transduction in vertebrate hair cells. Neuron 7, 985–994 (1991).

    CAS  PubMed  Google Scholar 

  92. Pickles, J. O., Comis, S. D. & Osborne, M. P. Crosslinks between stereocilia in the guinea pig organ of Corti, and their possible relation to sensory transduction. Hear. Res. 15, 103–112 (1984).

    CAS  PubMed  Google Scholar 

  93. Furness, D. N. & Hackney, C. M. Crosslinks between stereocilia in the guinea pig cochlea. Hear. Res. 18, 177–188 (1985).

    CAS  PubMed  Google Scholar 

  94. Goodyear, R. J. et al. A receptor-like inositol lipid phosphatase is required for the maturation of developing cochlear hair bundles. J. Neurosci. 23, 9208–9219 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. McNeill, H. Sticking together and sorting things out: adhesion as a force in development. Nature Rev. Genet. 1, 100–108 (2000).

    CAS  PubMed  Google Scholar 

  96. Jamora, C. & Fuchs, E. Intercellular adhesion, signalling and the cytoskeleton. Nature Cell Biol. 4, E101–E108 (2002).

    CAS  PubMed  Google Scholar 

  97. Weil, D. et al. Defective myosin VIIA gene responsible for Usher syndrome type 1B. Nature 374, 60–61 (1995).

    CAS  PubMed  Google Scholar 

  98. Verpy, E. et al. A defect in harmonin, a PDZ domain-containing protein expressed in the inner ear sensory hair cells, underlies Usher syndrome type 1C. Nature Genet. 26, 51–55 (2000).

    CAS  PubMed  Google Scholar 

  99. Bitner-Glindzicz, M. et al. A recessive contiguous gene deletion causing infantile hyperinsulinism, enteropathy and deafness identifies the Usher type 1C gene. Nature Genet. 26, 56–60 (2000).

    CAS  PubMed  Google Scholar 

  100. Bork, J. M. et al. Usher syndrome 1D and nonsyndromic autosomal recessive deafness DFNB12 are caused by allelic mutations of the novel cadherin-like gene CDH23. Am. J. Hum. Genet. 68, 26–37 (2001).

    CAS  PubMed  Google Scholar 

  101. Bolz, H. et al. Mutation of CDH23, encoding a new member of the cadherin gene family, causes Usher syndrome type 1D. Nature Genet. 27, 108–112 (2001).

    CAS  PubMed  Google Scholar 

  102. Alagramam, K. N. et al. Mutations in the novel protocadherin PCDH15 cause Usher syndrome type 1F. Hum. Mol. Genet. 10, 1709–1718 (2001).

    CAS  PubMed  Google Scholar 

  103. Ahmed, Z. M. et al. Mutations of the protocadherin gene PCDH15 cause Usher syndrome type 1F. Am. J. Hum. Genet. 69, 25–34 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Weil, D. et al. Usher syndrome type I G (USH1G) is caused by mutations in the gene encoding SANS, a protein that associates with the USH1C protein, harmonin. Hum. Mol. Genet. 12, 463–471 (2003).

    CAS  PubMed  Google Scholar 

  105. Raphael, Y. et al. Severe vestibular and auditory impairment in three alleles of Ames waltzer (av) mice. Hear. Res. 151, 237–249 (2001).

    CAS  PubMed  Google Scholar 

  106. Alagramam, K. N. et al. Neuroepithelial defects of the inner ear in a new allele of the mouse mutation Ames waltzer. Hear. Res. 148, 181–191 (2000).

    CAS  PubMed  Google Scholar 

  107. Hampton, L. L., Wright, C. G., Alagramam, K. N., Battey, J. F. & Noben-Trauth, K. A new spontaneous mutation in the mouse Ames waltzer gene, Pcdh15. Hear. Res. 180, 67–75 (2003).

    CAS  PubMed  Google Scholar 

  108. Boeda, B. et al. Myosin VIIa, harmonin and cadherin 23, three Usher I gene products that cooperate to shape the sensory hair cell bundle. EMBO J. 21, 6689–6699 (2002). A combination of approaches that indicate that interactions of USH1 gene products are required for morphogenesis of the hair bundle.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Siemens, J. et al. The Usher syndrome proteins cadherin 23 and harmonin form a complex by means of PDZ-domain interactions. Proc. Natl Acad. Sci. USA 99, 14946–14951 (2002). A similar paper to that of reference 108 that demonstrates that USH1 gene products interact to form a complex.

    CAS  PubMed  Google Scholar 

  110. Nelson, W. J. & Nusse, R. Convergence of Wnt, β-catenin, and cadherin pathways. Science 303, 1483–1487 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Ahmed, Z. M. et al. PCDH15 is expressed in the neurosensory epithelium of the eye and ear and mutant alleles are responsible for both USH1F and DFNB23. Hum. Mol. Genet. 12, 3215–3223 (2003). Localization of the USH1F gene product protocadherin 15 in hair cell stereocilia provided evidence that this protein also directly participates in stereocilia adhesion.

    CAS  PubMed  Google Scholar 

  112. Siemens, J. et al. Cadherin 23 is a component of the tip link in hair-cell stereocilia. Nature 428, 950–955 (2004).

    CAS  PubMed  Google Scholar 

  113. Sollner, C. et al. Mutations in cadherin 23 affect tip links in zebrafish sensory hair cells. Nature 428, 955–959 (2004).

    PubMed  Google Scholar 

  114. Tilney, L. G., Cotanche, D. A. & Tilney, M. S. Actin filaments, stereocilia and hair cells of the bird cochlea. VI. How the number and arrangement of stereocilia are determined. Development 116, 213–226 (1992).

    CAS  PubMed  Google Scholar 

  115. Geleoc, G. S. & Holt, J. R. Developmental acquisition of sensory transduction in hair cells of the mouse inner ear. Nature Neurosci. 6, 1019–1020 (2003).

    CAS  PubMed  Google Scholar 

  116. Kennedy, H. J., Evans, M. G., Crawford, A. C. & Fettiplace, R. Fast adaptation of mechanoelectrical transducer channels in mammalian cochlear hair cells. Nature Neurosci. 6, 832–836 (2003).

    CAS  PubMed  Google Scholar 

  117. Si, F., Brodie, H., Gillespie, P. G., Vazquez, A. E. & Yamoah, E. N. Developmental assembly of transduction apparatus in chick basilar papilla. J. Neurosci. 23, 10815–10826 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Deol, M. S. The anatomy and development of the mutants pirouette, shaker-1 and waltzer in the mouse. Proc. R. Soc. Lond. B. Biol. Sci. 145, 206–213 (1956).

    CAS  PubMed  Google Scholar 

  119. Erven, A. et al. A novel stereocilia defect in sensory hair cells of the deaf mouse mutant Tasmanian devil. Eur. J. Neurosci. 16, 1433–1441 (2002).

    PubMed  Google Scholar 

  120. Kiernan, A. E. et al. Tailchaser (Tlc): a new mouse mutation affecting hair bundle differentiation and hair cell survival. J. Neurocytol. 28, 969–985 (1999).

    CAS  PubMed  Google Scholar 

  121. Rhodes, C. R. et al. Headbanger: an ENU induced mouse mutant with stereocilia bundle defects. Abstracts of the Midwinter Meeting of the ARO 525 [online], <http://www.aroorg/archives/2003/2003_525.html> (2003).

  122. Nolan, P. M. et al. A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse. Nature Genet. 25, 440–443 (2000).

    CAS  PubMed  Google Scholar 

  123. Liberman, M. C. et al. Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier. Nature 419, 300–304 (2002).

    CAS  PubMed  Google Scholar 

  124. Zheng, J. et al. Prestin is the motor protein of cochlear outer hair cells. Nature 405, 149–155 (2000).

    CAS  PubMed  Google Scholar 

  125. Belyantseva, I. A., Adler, H. J., Curi, R., Frolenkov, G. I. & Kachar, B. Expression and localization of prestin and the sugar transporter GLUT-5 during development of electromotility in cochlear outer hair cells. J. Neurosci. 20, RC116 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Denk, W., Holt, J. R., Shepherd, G. M. & Corey, D. P. Calcium imaging of single stereocilia in hair cells: localization of transduction channels at both ends of tip links. Neuron 15, 1311–1321 (1995).

    CAS  PubMed  Google Scholar 

  127. Tilney, L. G., Tilney, M. S. & DeRosier, D. J. Actin filaments, stereocilia, and hair cells: how cells count and measure. Annu. Rev. Cell Biol. 8, 257–274 (1992).

    CAS  PubMed  Google Scholar 

  128. Alagramam, K. N. et al. The mouse Ames waltzer hearing-loss mutant is caused by mutation of Pcdh15, a novel protocadherin gene. Nature Genet. 27, 99–102 (2001).

    CAS  PubMed  Google Scholar 

  129. Gibson, F. et al. A type VII myosin encoded by the mouse deafness gene shaker-1. Nature 374, 62–64 (1995).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Belyantsev for the drawings and movies, R. Leapman for providing access to electron microscopy instruments, E. Boger for helpful discussions, and D. Drayna, R. Morell, M. Kelley and D. Wu for critically reading the manuscript. Work in the laboratories of T.B.F. and A.J.G. was supported by intramural research funds from the National Institute on Deafness and Other Communication Disorders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Griffith.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1Please note that this is a very large file and will take time to download. (EXE 20007 kb)

41576_2004_BFnrg1377_MOESM2_ESM.swf

Supplementary Information S2This a small clip from the same movie. Please note that it requires a Shockwave player, which can be downloaded at http://www.macromedia.com/software/shockwaveplayer/ (SWF 1023 kb)

Related links

Related links

DATABASES

Entrez

ACTG1

CDH23

DFNA1

DFNB36

diaphanous

Espn

MYO6

MYO7A

MYO15A

PCDH15

pi

SANS

Tlc

USH1C

Whrn

OMIM

type 1 Usher syndrome

FURTHER INFORMATION

Andrew Griffith's web page

Hereditary hearing loss homepage (human)

Hereditary hearing impairment in mice

Thomas Friedman's web page

Glossary

STEREOCILIUM

(Pl. stereocilia). A large, rigid, actin-filled microvillus on the apical surface of hair cells in the inner ear.

ECTODERM

Embryonic tissue that is the precursor of the epidermis and the nervous system.

MICROVILLUS

(Pl. microvilli). A thin, cylindrical, membrane-covered projection on the surface of an animal cell that contains a core bundle of actin filaments.

ACTIN FILAMENT

A helical protein filament that is formed by the polymerization of globular actin molecules.

VESTIBULAR AREFLEXIA

An abnormal absent response to artificial caloric (hot or cold) stimulation of the neurosensory organs of balance in the inner ear.

FILOPODIUM

(Pl. filopodia). A thin, spike-like protrusion with an actin filament core that is generated on the leading edge of a motile animal cell.

SENSORINEURAL HEARING LOSS

Hearing loss that results from abnormalities of the inner ear or auditory neural pathways.

MECHANOTRANSDUCTION

Conversion of a mechanical stimulus, such as sound, into an electrochemical signal.

PLANAR-CELL POLARITY

The polarized organization of cells in the plane of an epithelium.

CALCIUM CHELATORS

Substances that reversibly bind calcium, usually with high affinity, to remove free calcium ions from a solution.

RETINITIS PIGMENTOSA

An aetiologically heterogeneous disorder that is characterized by progressive loss of vision and retinal photoreceptor degeneration.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frolenkov, G., Belyantseva, I., Friedman, T. et al. Genetic insights into the morphogenesis of inner ear hair cells. Nat Rev Genet 5, 489–498 (2004). https://doi.org/10.1038/nrg1377

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1377

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing