Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Co-evolution of X-chromosome inactivation and imprinting in mammals

Abstract

Recent studies have revealed mechanistic parallels between imprinted X-chromosome inactivation and autosomal imprinting. We suggest that neither mechanism was present in ancestral egg-laying mammals, and that both arose when the evolution of the placenta exerted selective pressure to imprint growth-related genes. We also propose that non-coding RNAs and histone modifications were adopted for the imprinting of growth suppressors on the X chromosome and on autosomes. This provides a unified hypothesis for the evolution of X-chromosome inactivation and imprinting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dosage compensation versus X-chromosome inactivation in animal species.
Figure 2: Life cycle of X-chromosome inactivation in the mouse.
Figure 3: A mechanistic comparison of X-chromosome inactivation and imprinting.

Similar content being viewed by others

References

  1. Lyon, M. F. Imprinting and X-chromosome inactivation. Results Probl. Cell Differ. 25, 73–90 (1999).

    Article  CAS  Google Scholar 

  2. Heard, E. Recent advances in X-chromosome inactivation. Curr. Opin. Cell Biol. 16, 247–255 (2004).

    Article  CAS  Google Scholar 

  3. Brockdorff, N. X-chromosome inactivation: closing in on proteins that bind Xist RNA. Trends Genet. 18, 352–358 (2002).

    Article  CAS  Google Scholar 

  4. Lee, J. T. Molecular links between X-inactivation and autosomal imprinting: X-inactivation as a driving force for the evolution of imprinting? Curr. Biol. 13, R242–R254 (2003).

    Article  CAS  Google Scholar 

  5. Avner, P. & Heard, E. X-chromosome inactivation: counting, choice and initiation. Nature Rev. Genet. 2, 59–67 (2001).

    Article  CAS  Google Scholar 

  6. Andersen, A. A. & Panning, B. Epigenetic gene regulation by noncoding RNAs. Curr. Opin. Cell Biol. 15, 281–289 (2003).

    Article  CAS  Google Scholar 

  7. Marin, I., Siegal, M. L. & Baker, B. S. The evolution of dosage-compensation mechanisms. Bioessays 22, 1106–1114 (2000).

    Article  CAS  Google Scholar 

  8. Meyer, B. J. Sex in the wormcounting and compensating X-chromosome dose. Trends Genet. 16, 247–253 (2000).

    Article  CAS  Google Scholar 

  9. Akhtar, A. Dosage compensation: an intertwined world of RNA and chromatin remodelling. Curr. Opin. Genet. Dev. 13, 161–169 (2003).

    Article  CAS  Google Scholar 

  10. Huynh, K. D. & Lee, J. T. Inheritance of a pre-inactivated paternal X chromosome in early mouse embryos. Nature 426, 857–862 (2003).

    Article  CAS  Google Scholar 

  11. Okamoto, I., Otte, A. P., Allis, C. D., Reinberg, D. & Heard, E. Epigenetic dynamics of imprinted X inactivation during early mouse development. Science 303, 644–649 (2004).

    Article  CAS  Google Scholar 

  12. Mak, W. et al. Reactivation of the paternal X chromosome in early mouse embryos. Science 303, 666–669 (2004).

    Article  CAS  Google Scholar 

  13. Lewis, A. et al. Imprinting on distal chromosome 7 in the placenta involves repressive histone methylation independent of DNA methylation. Nature Genet. 36, 1291–1295 (2004).

    Article  CAS  Google Scholar 

  14. Umlauf, D. et al. Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes. Nature Genet. 36, 1296–1300 (2004).

    Article  CAS  Google Scholar 

  15. Delaval, K. & Feil, R. Epigenetic regulation of mammalian genomic imprinting. Curr. Opin. Genet. Dev. 14, 188–195 (2004).

    Article  CAS  Google Scholar 

  16. Graves, J. A. Mammals that break the rules: genetics of marsupials and monotremes. Annu. Rev. Genet. 30, 233–260 (1996).

    Article  CAS  Google Scholar 

  17. Ogawa, Y. & Lee, J. T. Antisense regulation in X inactivation and autosomal imprinting. Cytogenet. Genome Res. 99, 59–65 (2002).

    Article  CAS  Google Scholar 

  18. Lyon, M. F. Gene action in the X-chromosome of the mouse (Mus musculus L.). Naturwissenschaften 190, 372–373 (1961).

    CAS  Google Scholar 

  19. Lyon, M. F. X-chromosome inactivation. Curr. Biol. 9, R235–R237 (1999).

    Article  CAS  Google Scholar 

  20. Cooper, D. W., VandeBerg, J. L., Sharman, G. B. & Poole, W. E. Phosphoglycerate kinase polymorphism in kangaroos provides further evidence for paternal X inactivation. Nature New Biol. 230, 155–157 (1971).

    Article  CAS  Google Scholar 

  21. Vandeberg, J. L. Developmental aspects of X chromosome inactivation in eutherian and metatherian mammals. J. Exp. Zool. 228, 271–286 (1983).

    Article  CAS  Google Scholar 

  22. Wake, N., Takagi, N. & Sasaki, M. Non-random inactivation of X chromosome in the rat yolk sac. Nature 262, 580–581 (1976).

    Article  CAS  Google Scholar 

  23. Xue, F. et al. Aberrant patterns of X chromosome inactivation in bovine clones. Nature Genet. 31, 216–220 (2002).

    Article  CAS  Google Scholar 

  24. Takagi, N. & Sasaki, M. Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse. Nature 256, 640–642 (1975).

    Article  CAS  Google Scholar 

  25. Frels, W. I. & Chapman, V. M. Expression of the maternally derived X chromosome in the mural trophoblast of the mouse. J. Embryol. Exp. Morphol. 56, 179–190 (1980).

    CAS  PubMed  Google Scholar 

  26. McGrath, J. & Solter, D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37, 179–183 (1984).

    Article  CAS  Google Scholar 

  27. Surani, M. A., Barton, S. C. & Norris, M. L. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308, 548–550 (1984).

    Article  CAS  Google Scholar 

  28. Cattanach, B. M. & Kirk, M. Differential activity of maternally and paternally derived chromosome regions in mice. Nature 315, 496–498 (1985).

    Article  CAS  Google Scholar 

  29. Constancia, M., Kelsey, G. & Reik, W. Resourceful imprinting. Nature 432, 53–57 (2004).

    Article  CAS  Google Scholar 

  30. Wilkins, J. F. & Haig, D. What good is genomic imprinting: the function of parent-specific gene expression. Nature Rev. Genet. 4, 359–368 (2003).

    Article  CAS  Google Scholar 

  31. Killian, J. K. et al. M6P/IGF2R imprinting evolution in mammals. Mol. Cell 5, 707–716 (2000).

    Article  CAS  Google Scholar 

  32. Killian, J. K. et al. Monotreme IGF2 expression and ancestral origin of genomic imprinting. J. Exp. Zool. 291, 205–212 (2001).

    Article  CAS  Google Scholar 

  33. Reik, W. & Walter, J. Genomic imprinting: parental influence on the genome. Nature Rev. Genet. 2, 21–32 (2001).

    Article  CAS  Google Scholar 

  34. Ferguson-Smith, A. C. & Surani, M. A. Imprinting and the epigenetic asymmetry between parental genomes. Science 293, 1086–1089 (2001).

    Article  CAS  Google Scholar 

  35. Sleutels, F. & Barlow, D. P. The origins of genomic imprinting in mammals. Adv. Genet. 46, 119–163 (2002).

    Article  CAS  Google Scholar 

  36. Bartolomei, M. S. & Tilghman, S. M. Genomic imprinting in mammals. Annu. Rev. Genet. 31, 493–525 (1997).

    Article  CAS  Google Scholar 

  37. Frank, D. et al. Placental overgrowth in mice lacking the imprinted gene Ipl. Proc. Natl Acad. Sci. USA 99, 7490–7495 (2002).

    Article  CAS  Google Scholar 

  38. Takahashi, K., Kobayashi, T. & Kanayama, N. p57Kip2 regulates the proper development of labyrinthine and spongiotrophoblasts. Mol. Hum. Reprod. 6, 1019–1025 (2000).

    Article  CAS  Google Scholar 

  39. Takahashi, K. & Nakayama, K. Mice lacking a CDK inhibitor, p57Kip2, exhibit skeletal abnormalities and growth retardation. J. Biochem. (Tokyo) 127, 73–83 (2000).

    Article  CAS  Google Scholar 

  40. Wutz, A. et al. Non-imprinted Igf2r expression decreases growth and rescues the Tme mutation in mice. Development 128, 1881–1887 (2001).

    CAS  PubMed  Google Scholar 

  41. Engemann, S. et al. Sequence and functional comparison in the Beckwith–Wiedemann region: implications for a novel imprinting centre and extended imprinting. Hum. Mol. Genet. 9, 2691–2706 (2000).

    Article  CAS  Google Scholar 

  42. Stoger, R. et al. Maternal-specific methylation of the imprinted mouse Igf2r locus identifies the expressed locus as carrying the imprinting signal. Cell 73, 61–71 (1993).

    Article  CAS  Google Scholar 

  43. de Napoles, M. et al. Polycomb group proteins ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev. Cell 7, 663–676 (2004).

    Article  CAS  Google Scholar 

  44. Wang, J. et al. Imprinted X inactivation maintained by a mouse Polycomb group gene. Nature Genet. 28, 371–375 (2001).

    Article  CAS  Google Scholar 

  45. Braidotti, G. et al. The Air non-coding RNA — an imprinted cis-silencing transcript. Cold Spring Harb. Symp. Quant. Biol. 69 (in the press).

  46. Mager, J., Montgomery, N. D., de Villena, F. P. & Magnuson, T. Genome imprinting regulated by the mouse Polycomb group protein Eed. Nature Genet. 33, 502–507 (2003).

    Article  CAS  Google Scholar 

  47. Sleutels, F., Zwart, R. & Barlow, D. P. The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 415, 810–813 (2002).

    Article  CAS  Google Scholar 

  48. Sado, T. et al. X inactivation in the mouse embryo deficient for Dnmt1: distinct effect of hypomethylation on imprinted and random X inactivation. Dev. Biol. 225, 294–303 (2000).

    Article  CAS  Google Scholar 

  49. Li, Y. & Behringer, R. R. Esx1 is an X-chromosome-imprinted regulator of placental development and fetal growth. Nature Genet. 20, 309–311 (1998).

    Article  CAS  Google Scholar 

  50. Shi, W. et al. Choroideremia gene product affects trophoblast development and vascularization in mouse extra-embryonic tissues. Dev. Biol. 272, 53–65 (2004).

    Article  CAS  Google Scholar 

  51. Chiao, E. et al. Overgrowth of a mouse model of the Simpson–Golabi–Behmel syndrome is independent of IGF signaling. Dev. Biol. 243, 185–206 (2002).

    Article  CAS  Google Scholar 

  52. Tada, T., Takagi, N. & Adler, I. D. Parental imprinting on the mouse X chromosome: effects on the early development of X0, XXY and XXX embryos. Genet. Res. 62, 139–148 (1993).

    Article  CAS  Google Scholar 

  53. Reik, W. et al. Chromosome loops, insulators and histone methylation: new insights into regulation of imprinting in clusters. Cold Spring Harb. Symp. Quant. Biol. 69 (in the press).

  54. Wilkins, J. F. & Haig, D. Genomic imprinting of two antagonistic loci. Proc. R. Soc. Lond. B 268, 1861–1867 (2001).

    Article  CAS  Google Scholar 

  55. McQueen, H. A., McBride, D., Miele, G., Bird, A. P. & Clinton, M. Dosage compensation in birds. Curr. Biol. 11, 253–257 (2001).

    Article  CAS  Google Scholar 

  56. Grutzner, F. & Graves, J. A. A platypus' eye view of the mammalian genome. Curr. Opin. Genet. Dev. 14, 642–649 (2004).

    Article  Google Scholar 

  57. Grutzner, F., Deakin, J., Rens, W., El-Mogharbel, N. & Marshall Graves, J. A. The monotreme genome: a patchwork of reptile, mammal and unique features? Comp. Biochem. Physiol. A 136, 867–881 (2003).

    Article  Google Scholar 

  58. Rens, W. et al. Resolution and evolution of the duck-billed platypus karyotype with an X1Y1X2Y2X3Y3X4Y4X5Y5 male sex chromosome constitution. Proc. Natl Acad. Sci. USA 101, 16257–16261 (2004).

    Article  CAS  Google Scholar 

  59. Grutzner, F. et al. In the platypus a meiotic chain of ten sex chromosomes shares genes with the bird Z and mammal X chromosomes. Nature 432, 913–917 (2004).

    Article  Google Scholar 

  60. Ohlsson, R., Paldi, A. & Graves, J. A. Did genomic imprinting and X chromosome inactivation arise from stochastic expression? Trends Genet. 17, 136–141 (2001).

    Article  CAS  Google Scholar 

  61. Plagge, A. et al. The imprinted signaling protein XLαs is required for postnatal adaptation to feeding. Nature Genet. 36, 818–826 (2004).

    Article  CAS  Google Scholar 

  62. Kaslow, D. C. & Migeon, B. R. DNA methylation stabilizes X chromosome inactivation in eutherians but not in marsupials: evidence for multistep maintenance of mammalian X dosage compensation. Proc. Natl Acad. Sci. USA 84, 6210–6214 (1987).

    Article  CAS  Google Scholar 

  63. Suzuki, S. et al. Genomic imprinting of IGF2, p57KIP2 and PEG1/MEST in a marsupial, the tammar wallaby. Mech. Dev. 122, 213–222 (2005).

    Article  CAS  Google Scholar 

  64. Zeng, S. M. & Yankowitz, J. X-inactivation patterns in human embryonic and extra-embryonic tissues. Placenta 24, 270–275 (2003).

    Article  Google Scholar 

  65. Grati, F. R. et al. Biparental expression of ESX1L gene in placentas from normal and intrauterine growth-restricted pregnancies. Eur. J. Hum. Genet. 12, 272–278 (2004).

    Article  CAS  Google Scholar 

  66. Ray, P. F., Winston, R. M. & Handyside, A. H. XIST expression from the maternal X chromosome in human male preimplantation embryos at the blastocyst stage. Hum. Mol. Genet. 6, 1323–1327 (1997).

    Article  CAS  Google Scholar 

  67. Daniels, R., Zuccotti, M., Kinis, T., Serhal, P. & Monk, M. XIST expression in human oocytes and preimplantation embryos. Am. J. Hum. Genet. 61, 33–39 (1997).

    Article  CAS  Google Scholar 

  68. Fitzpatrick, G. V., Soloway, P. D. & Higgins, M. J. Regional loss of imprinting and growth deficiency in mice with a targeted deleltion of KvDMR1. Nature Genet. 32, 426–431 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank G. Kelsey, M. Constancia, M. Hemberger, W. Dean, G. Smits and D. Haig for advice and discussion. This work was supported by grants from the UK Biotechnology and Biological Sciences Research Council, the UK Medical Research Council and the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolf Reik.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

Air

Cdkn1c

Igf2

Kcnq1ot1

Phlda2

Sry

Xist

FURTHER INFORMATION

Epigenome Network of Excellence web site

Geneimprint.com

Harwell Mouse Imprinting web site

University of Otago Imprinted Gene Catalogue

Wolf Reik's laboratory

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reik, W., Lewis, A. Co-evolution of X-chromosome inactivation and imprinting in mammals. Nat Rev Genet 6, 403–410 (2005). https://doi.org/10.1038/nrg1602

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1602

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing