Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Silence of the genes — mechanisms of long-term repression

Abstract

A large fraction of genes in the mammalian genome is repressed in every cell throughout development. Here, we propose that this long-term silencing is carried out by distinct molecular mechanisms that operate in a global manner and, once established, can be maintained autonomously through DNA replication. Both individually and in combination these mechanisms bring about repression, mainly by lowering gene accessibility through closed chromatin structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Several repression mechanisms.

Similar content being viewed by others

References

  1. Palmieri, S. L., Peter, W., Hess, H. & Scholer, H. R. Oct-4 transcription factor is differentially expressed in the mouse embryo during establishment of the first two extraembryonic cell lineages involved in implantation. Dev. Biol. 166, 259–267 (1994).

    CAS  PubMed  Google Scholar 

  2. Bird, A. P. Gene number, noise reduction and biological complexity. Trends Genet. 11, 94–100 (1995).

    CAS  PubMed  Google Scholar 

  3. Matzke, M. A. & Birchler, J. A. RNAi-mediated pathways in the nucleus. Nature Rev. Genet. 6, 24–35 (2005).

    CAS  PubMed  Google Scholar 

  4. Schoenherr, C. J., Paquette, A. J. & Anderson, D. J. Identification of potential target genes for the neuron-restrictive silencer factor. Proc. Natl Acad. Sci. USA 93, 9881–9886 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen, Z. F., Paquette, A. J. & Anderson, D. J. NRSF/REST is required in vivo for repression of multiple neuronal target genes during embryogenesis. Nature Genet. 20, 136–142 (1998).

    CAS  PubMed  Google Scholar 

  6. Schoenherr, C. J. & Anderson, D. J. The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science 267, 1360–1363 (1995).

    CAS  PubMed  Google Scholar 

  7. Lund, A. H. & van Lohuizen, M. Polycomb complexes and silencing mechanisms. Curr. Opin. Cell. Biol. 16, 239–246 (2004).

    CAS  PubMed  Google Scholar 

  8. Kafri, T. et al. Developmental pattern of gene-specific DNA methylation in the mouse embryo and germline. Genes Dev. 6, 705–714 (1992).

    CAS  PubMed  Google Scholar 

  9. Monk, M., Boubelik, M. & Lehnert, S. Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development 99, 371–382 (1987).

    CAS  PubMed  Google Scholar 

  10. Jahner, D. & Jaenisch, R. in DNA Methylation: Biochemistry and Biological Significance (eds Razin, A., Cedar, H. & Riggs, A. D.) 189–220 (Springer, New York, 1984).

    Google Scholar 

  11. Frank, D. et al. Demethylation of CpG islands in embryonic cells. Nature 351, 239–241 (1991).

    CAS  PubMed  Google Scholar 

  12. Brandeis, M. et al. Sp1 elements protect a CpG island from de novo methylation. Nature 371, 435–438 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Siegfried, Z. et al. DNA methylation represses transcription in vivo. Nature Genet. 22, 203–206 (1999).

    CAS  PubMed  Google Scholar 

  14. Macleod, D., Charlton, J., Mullins, J. & Bird, A. P. Sp1 sites in the mouse Aprt gene promoter are required to prevent methylation of the CpG island. Genes Dev. 8, 2282–2292 (1994).

    CAS  PubMed  Google Scholar 

  15. Gruenbaum, Y., Cedar, H. & Razin, A. Substrate and sequence specificity of a eukaryotic DNA methylase. Nature 292, 620–622 (1982).

    Google Scholar 

  16. Hand, R. Eucaryotic DNA: Organization of the genome for replication. Cell 15, 317–325 (1978).

    CAS  PubMed  Google Scholar 

  17. Goren, A. & Cedar, H. Replicating by the clock. Nature Rev. Mol. Cell Biol. 4, 25–32 (2003).

    CAS  Google Scholar 

  18. Goldman, M. A., Holmquist, G. P., Caston, L. A. & Nag, A. Replication timing of genes and middle repetitive sequences. Science 224, 686–692 (1984).

    CAS  PubMed  Google Scholar 

  19. Lercher, M. J., Urrutia, A. O. & Hurst, L. D. Clustering of housekeeping genes provides a unified model of gene order in the human genome. Nature Genet. 31, 180–183 (2002).

    CAS  PubMed  Google Scholar 

  20. Ma, C., Leu, T. H. & Hamlin, J. L. Multiple origins of replication in the dihydrofolate reductase amplicons of a methotrexate-resistant chinese hamster cell line. Mol. Cell. Biol. 10, 1338–1346 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Selig, S., Okumura, K., Ward, D. C. & Cedar, H. Delineation of DNA replication time zones by fluorescence in situ hybridization. EMBO J. 11, 1217–1225 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Simon, I. et al. Developmental regulation of DNA replication timing at the human β-globin locus. EMBO J. 20, 6150–6157 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Cimbora, D. M. et al. Long-distance control of origin choice and replication timing in the human β-globin locus are independent of the locus control region. Mol. Cell. Biol. 20, 5581–5591 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Huberman, J. A. & Riggs, A. D. Autoradiography of chromosomal DNA fibers from Chinese hamster cells. Proc. Natl Acad. Sci. USA 55, 599–606 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Gottesfeld, J. & Bloomer, L. S. Assembly of transcriptionally active 5S RNA gene chromatin in vitro. Cell 28, 781–791 (1982).

    CAS  PubMed  Google Scholar 

  26. Weintraub, H. Assembly of an active chromatin structure during replication. Nucleic Acids Res. 7, 781–792 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang, J., Feng, X., Hashimshony, T., Keshet, I. & Cedar, H. The establishment of transcriptional competence in early and late S-phase. Nature 420, 198–202 (2002).

    CAS  PubMed  Google Scholar 

  28. Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).

    CAS  PubMed  Google Scholar 

  29. Moazed, D. Common themes in mechanisms of gene silencing. Mol. Cell 8, 489–498 (2001).

    CAS  PubMed  Google Scholar 

  30. Nan, X. et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393, 386–389 (1998).

    CAS  PubMed  Google Scholar 

  31. Jones, P. L. et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature Genet. 19, 187–191 (1998).

    CAS  PubMed  Google Scholar 

  32. Lande-Diner, L. et al. Gene repression paradigms in animal cells. Cold Spring Harb. Symp. Quant. Biol. 69, 1–8 (2004).

    Google Scholar 

  33. Peters, A. H. et al. Histone H3 lysine 9 methylation is an epigenetic imprint of facultative heterochromatin. Nature Genet. 30, 77–80 (2002).

    CAS  PubMed  Google Scholar 

  34. Rice, J. C. et al. Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol. Cell 12, 1591–1598 (2003).

    CAS  PubMed  Google Scholar 

  35. Rea, S. et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593–599 (2000).

    CAS  PubMed  Google Scholar 

  36. Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–120 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Bannister, A. J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124 (2001).

    CAS  PubMed  Google Scholar 

  38. Sarraf, S. A. & Stancheva, I. Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly. Mol. Cell 15, 595–605 (2004).

    CAS  PubMed  Google Scholar 

  39. Roopra, A., Qazi, R., Schoenike, B., Daley, T. J. & Morrison, J. F. Localized domains of g9a-mediated histone methylation are required for silencing of neuronal genes. Mol. Cell 14, 727–738 (2004).

    CAS  PubMed  Google Scholar 

  40. Gribnau, J., Hochedlinger, K., Hata, K., Li, E. & Jaenisch, R. Asynchronous replication timing of imprinted loci is independent of DNA methylation, but consistent with differential subnuclear localization. Genes Dev. 17, 759–773 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Bird, A. P. CpG-rich islands and the function of DNA methylation. Nature 321, 209–213 (1986).

    CAS  PubMed  Google Scholar 

  42. Bird, A. P., Taggart, M., Frommer, M., Miller, O. J. & Macleod, D. A fraction of the mouse genome that is derived from islands of nonmethylated CpG-rich DNA. Cell 40, 91–99 (1985).

    CAS  PubMed  Google Scholar 

  43. Jackson-Grusby, L. et al. Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation. Nature Genet. 27, 31–39 (2001).

    CAS  PubMed  Google Scholar 

  44. Gidekel, S. & Bergman, Y. A unique developmental pattern of Oct-3/4 DNA methylation is controlled by a cis-demodification element. J. Biol. Chem. 277, 34521–34530 (2002).

    CAS  PubMed  Google Scholar 

  45. Heard, E. Recent advances in X-chromosome inactivation. Curr. Opin. Cell Biol. 16, 247–255 (2004).

    CAS  PubMed  Google Scholar 

  46. Lehnertz, B. et al. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr. Biol. 13, 1192–1200 (2003).

    CAS  PubMed  Google Scholar 

  47. Gilbert, D. M. Replication timing and transcriptional control: beyond cause and effect. Curr. Opin. Cell Biol. 14, 377–383 (2002).

    CAS  PubMed  Google Scholar 

  48. Mather, E. L. & Perry, R. P. Transcriptional regulation of immunoglobulin V genes. Nucleic Acids Res. 9, 6855–6867 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Cobb, B. S. et al. Targeting of Ikaros to pericentromeric heterochromatin by direct DNA binding. Genes Dev. 14, 2146–2160 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Huang, Y., Myers, S. J. & Dingledine, R. Transcriptional repression by REST: recruitment of Sin3A and histone deacetylase to neuronal genes. Nature Neurosci. 2, 867–872 (1999).

    CAS  PubMed  Google Scholar 

  51. Fazzio, T. G. et al. Widespread collaboration of Isw2 and Sin3–Rpd3 chromatin remodeling complexes in transcriptional repression. Mol. Cell. Biol. 21, 6450–6460 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Coisy, M. et al. Cyclin A repression in quiescent cells is associated with chromatin remodeling of its promoter and requires Brahma/SNF2α. Mol. Cell 15, 43–56 (2004).

    CAS  PubMed  Google Scholar 

  53. Crighton, D. et al. p53 represses RNA polymerase III transcription by targeting TBP and inhibiting promoter occupancy by TFIIIB. EMBO J. 22, 2810–2820 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Tate, P. H. & Bird, A. P. Effects of DNA methylation on DNA-binding proteins and gene expression. Curr. Opin. Genet. Dev. 3, 226–231 (1993).

    CAS  PubMed  Google Scholar 

  55. Hashimshony, T., Zhang, J., Keshet, I., Bustin, M. & Cedar, H. The role of DNA methylation in setting up chromatin structure during development. Nature Genet. 34, 187–192 (2003).

    CAS  PubMed  Google Scholar 

  56. Keshet, I., Lieman-Hurwitz, J. & Cedar, H. DNA methylation affects the formation of active chromatin. Cell 44, 535–543 (1986).

    CAS  PubMed  Google Scholar 

  57. Axel, R., Cedar, H. & Felsenfeld, G. The synthesis of globin RNA from duck reticulocyte chromatin in vitro. Proc. Natl Acad. Sci. USA 70, 2029–2032 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Cedar, H. & Felsenfeld, G. Transcription of chromatin in vitro. J. Mol. Biol. 77, 237–254 (1973).

    CAS  PubMed  Google Scholar 

  59. Weintraub, H. & Groudine, M. Chromosomal subunits in active genes have an altered conformation. Science 193, 848–856 (1976).

    CAS  PubMed  Google Scholar 

  60. Gazit, B. & Cedar, H. Nuclease sensitivity of active chromatin. Nucleic Acids Res. 8, 5143–5155 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Oettinger, M. A., Schatz, D. G., Gorka, C. & Baltimore, D. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 248, 1517–1523 (1990).

    CAS  PubMed  Google Scholar 

  62. Mohandas, T., Sparker, R. S. & Shapiro, L. J. Reactivation of an inactive human X chromosome: Evidence for X inactivation by DNA methylation. Science 211, 393–396 (1981).

    CAS  PubMed  Google Scholar 

  63. Wareham, K. A., Lyon, M. F., Glenister, P. H. & Williams, E. D. Age related reactivation of an X-linked gene. Nature 327, 725–727 (1987).

    CAS  PubMed  Google Scholar 

  64. Kaslow, D. C. & Migeon, B. R. DNA methylation stabilizes X chromosome inactivation in eutherians but not in marsupials: evidence for multistep maintenance of mammalian X dosage compensation. Proc. Natl Acad. Sci. USA. 84, 6210–6214 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Berger, S. L. & Felsenfeld, G. Chromatin goes global. Mol. Cell 8, 263–268 (2001).

    CAS  PubMed  Google Scholar 

  66. Rajewsky, K. Clonal selection and learning in the antibody system. Nature 381, 751–758 (1996).

    CAS  PubMed  Google Scholar 

  67. Bergman, Y. & Cedar, H. A step-wise epigenetic process controls immunoglobulin allelic exclusion. Nature Rev. Immunol. 4, 753–61 (2004).

    CAS  Google Scholar 

  68. Goldmit, M. & Bergman, Y. Monoallelic gene expression: A repertoire of recurrent themes. Immunol. Rev. 200, 197–214 (2004).

    CAS  PubMed  Google Scholar 

  69. Kosak, S. T. et al. Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science 296, 158–162 (2002).

    CAS  PubMed  Google Scholar 

  70. Singh, N., Bergman, Y., Cedar, H. & Chess, A. Biallelic germline transcription at the κ-immunoglobulin locus. J. Exp. Med. 197, 743–750 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Mostoslavsky, R. et al. Asynchronous replication and allelic exclusion in the immune system. Nature 414, 221–225 (2001).

    CAS  PubMed  Google Scholar 

  72. Mostoslavsky, R. et al. κ-chain monoallelic demethylation and the establishment of allelic exclusion. Genes Dev. 12, 1801–1811 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kwon, J., Morshead, K. B., Guyon, J. R., Kingston, R. E. & Oettinger, M. A. Histone acetylation and hSWI/SNF remodeling act in concert to stimulate V(D)J cleavage of nucleosomal DNA. Mol. Cell 6, 1037–1048 (2000).

    CAS  PubMed  Google Scholar 

  74. Engler, P. et al. A strain-specific modifier on mouse chromosome 4 controls the methylation of independent transgene loci. Cell 65, 1–20 (1991).

    Google Scholar 

  75. Hsieh, C. L. & Lieber, M. R. CpG methylated minichromosomes become inaccessible for V(D)J recombination after undergoing replication. EMBO J. 11, 315–325 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Cherry, S. R., Beard, C., Jaenisch, R. & Baltimore, D. V(D)J recombination is not activated by demethylation of the κ-locus. Proc. Natl Acad. Sci. USA 97, 8467–8472 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Ji, Y., Zhang, J., Lee, A. I., Cedar, H. & Bergman, Y. A multistep mechanism for the activation of rearrangement in the immune system. Proc. Natl Acad. Sci. USA 100, 7557–7562 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Gilbert, D. M. Nuclear position leaves its mark on replication timing. J. Cell Biol. 152, F11–F15 (2001).

    CAS  PubMed  Google Scholar 

  79. Li, F. et al. The replication timing program of the Chinese hamster β-globin locus is established coincident with its repositioning near peripheral heterochromatin in early G1 phase. J. Cell Biol. 154, 283–292 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Dhar, V., Skoultchi, A. I. & Schildkraut, C. L. Activation and repression of a β-globin gene in cell hybrids is accompanied by a shift in its temporal regulation. Mol. Cell. Biol. 9, 3524–3532 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Forrester, W. C., Thompson, C., Elder, J. T. & Groudine, M. A developmentally stable chromatin structure in the human β-globin gene cluster. Proc. Natl Acad. Sci. USA 83, 1359–1363 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Groudine, M., Kohwi-Shigematsu, T., Gelinas, R., Stamatoyannopoulos, G. & Papayannopoulou, T. Human fetal to adult hemoglobin switching: changes in chromatin structure of the β-globin gene locus. Proc. Natl Acad. Sci. USA 80, 7551–7555 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Busslinger, M., Hurst, J. & Flavell, R. A. DNA methylation and the regulation of the globin gene expression. Cell 34, 197–206 (1983).

    CAS  PubMed  Google Scholar 

  84. Thiel, G., Lietz, M. & Hohl, M. How mammalian transcriptional repressors work. Eur. J. Biochem. 271, 2855–2862 (2004).

    CAS  PubMed  Google Scholar 

  85. Brown, K. E. et al. Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell 91, 845–854 (1997).

    CAS  PubMed  Google Scholar 

  86. Hahm, K. et al. Helios, a T cell-restricted Ikaros family member that quantitatively associates with Ikaros at centromeric heterochromatin. Genes Dev. 12, 782–796 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Lunyak, V. V. et al. Corepressor-dependent silencing of chromosomal regions encoding neuronal genes. Science 298, 1747–1752 (2002).

    CAS  PubMed  Google Scholar 

  88. Francis, N. J., Kingston, R. E. & Woodcock, C. L. Chromatin compaction by a polycomb group protein complex. Science 306, 1574–1577 (2004).

    CAS  PubMed  Google Scholar 

  89. Baumann, M., Mamais, A., McBlane, F., Xiao, H. & Boyes, J. Regulation of V(D)J recombination by nucleosome positioning at recombination signal sequences. EMBO J. 22, 5197–5207 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Smith, K. T., Coffee, B. & Reines, D. Occupancy and synergistic activation of the FMR1 promoter by Nrf-1 and Sp1 in vivo. Hum. Mol. Genet. 13, 1611–1621 (2004).

    CAS  PubMed  Google Scholar 

  91. de Vries, B. B. et al. Variable FMR1 gene methylation of large expansions leads to variable phenotype in three males from one fragile X family. J. Med. Genet. 33, 1007–1010 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Rousseau, F., Robb, L. J., Rouillard, P. & Der Kaloustian, V. M. No mental retardation in a man with 40% abnormal methylation at the FMR-1 locus and transmission of sperm cell mutations as premutations. Hum. Mol. Genet. 3, 927–930 (2000).

    Google Scholar 

  93. Smeets, H. J. et al. Normal phenotype in two brothers with a full FMR1 mutation. Hum. Mol. Genet. 4, 2103–2108 (2000).

    Google Scholar 

  94. Bardoni, B. & Mandel, J. L. Advances in understanding of fragile X pathogenesis and FMRP function, and in identification of X linked mental retardation genes. Curr. Opin. Genet. Dev. 12, 284–293 (2002).

    CAS  PubMed  Google Scholar 

  95. Bird, A. P. & Wolffe, A. P. Methylation-induced repression — belts, braces, and chromatin. Cell 99, 451–454 (1999).

    CAS  PubMed  Google Scholar 

  96. Eden, S., Hashimshony, T., Keshet, I., Thorne, A. W. & Cedar, H. DNA methylation models histone acetylation. Nature 394, 842–843 (1998).

    CAS  PubMed  Google Scholar 

  97. Razin, A. & Cedar, H. Distribution of 5-methylcytosine in chromatin. Proc. Natl Acad. Sci. USA 74, 2725–2728 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Gruenbaum, Y., Naveh-Many, T., Cedar, H. & Razin, A. Sequence specificity of methylation in higher plant DNA. Nature 292, 860–862 (1981).

    CAS  PubMed  Google Scholar 

  99. Gruenbaum, Y., Stein, R., Cedar, H. & Razin, A. Methylation of CpG sequences in eukaryotic DNA. FEBS Lett. 123, 67–71 (1981).

    Google Scholar 

  100. Rountree, M. R., Bachman, K. E. & Baylin, S. B. DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nature Genet. 25, 269–277 (2000).

    CAS  PubMed  Google Scholar 

  101. Kerem, B. S., Goitein, R., Diamond, G., Cedar, H. & Marcus, M. Mapping of DNase I sensitive regions on mitotic chromosomes. Cell 38, 493–499 (1984).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the support of the US National Institutes of Health, the Israel Science Foundation, the Israel Cancer Research Fund, the Belfer Foundation and the Rosetrees Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard Cedar.

Related links

Related links

DATABASES

Entrez

DNMT1

FMR1

NRF1

Pou5f1

RAG1

RAG2

TBP

Xist

ZFPN1A1

OMIM

fragile X syndrome

FURTHER INFORMATION

The Cedar laboratory web site

Glossary

CpG ISLAND

A DNA region of >500 bp that has a high CpG density and is usually unmethylated. CpG islands are found upstream of many mammalian genes.

GASTRULATION

A morphogenetic process in vertebrate embryogenesis during which the endoderm, mesoderm and ectoderm germ layers are formed.

MORULA

A pre-implantation embryo that consists of a solid cluster of cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lande-Diner, L., Cedar, H. Silence of the genes — mechanisms of long-term repression. Nat Rev Genet 6, 648–654 (2005). https://doi.org/10.1038/nrg1639

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1639

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing