Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bridging the regeneration gap: genetic insights from diverse animal models

Key Points

  • Regeneration is widely distributed among the various phyla that compose the animal kingdom, including vertebrates.

  • Limitations in the ability to interrogate this attribute at the molecular level have hampered efforts to delineate the mechanistic underpinnings of regeneration.

  • Loss-of-function screens (using RNAi) and gain-of-function assays (transgenesis) have recently been introduced to study molecular pathways in traditional model systems of regeneration, overcoming past limitations to probe their biology at the molecular level.

  • Studies in simple animals such as hydra and planarians are beginning to contribute to our understanding of tissue remodelling and adult somatic stem-cell regulation in animals.

  • Studies in mammals and other vertebrates have highlighted central roles for the activation of specific signalling pathways in the processes of organ and limb regeneration.

  • Comparative studies of regenerative processes among the various animals that are currently under investigation could provide important insights into the permissive and non-permissive mechanisms that underlie regenerative competence.

  • Such information is likely to yield fundamental insights for our understanding of metazoan biology, and to expand the repertoire of therapeutic possibilities in the fields of regenerative medicine.

Abstract

Significant progress has recently been made in our understanding of animal regenerative biology, spurred on by the use of a wider range of model organisms and an increasing ability to use genetic tools in traditional models of regeneration. This progress has begun to delineate differences and similarities in the regenerative capabilities and mechanisms among diverse animal species, and to address some of the key questions about the molecular and cell biology of regeneration. Our expanding knowledge in these areas not only provides insights into animal biology in general, but also has important implications for regenerative medicine and stem-cell biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regeneration in multicellular organisms — phylogenetic distribution and model species.
Figure 2: Basic mechanisms of regeneration.
Figure 3: Basic steps in the formation of regeneration blastemas in vertebrates and invertebrates.
Figure 4: An RNAi screen for genes with functions in planarian regeneration.
Figure 5: Common signalling pathways in the induction of regeneration in diverse species.

Similar content being viewed by others

References

  1. Sánchez Alvarado, A. in Keywords and Concepts in Evolutionary Developmental Biology (eds Hall, B. K. & Olson, W. M.) (Harvard University Press, Cambridge, 2003).

    Google Scholar 

  2. Sánchez Alvarado, A. Regeneration in the metazoans: why does it happen? Bioessays 22, 578–590 (2000).

    PubMed  Google Scholar 

  3. Lenhoff, S. G. & Lenhoff, H. M. Hydra and the Birth of Experimental Biology, 1744: Abraham Trembley's Memoirs Concerning the Natural History of a Type of Freshwater Polyp with Arms Shaped Like Horns (Boxwood Press, Pacific Grove, 1986).

    Google Scholar 

  4. Brusca, R. C. & Brusca, G. J. Invertebrates (Sinauer Associates, Sunderland, 1990).

    Google Scholar 

  5. Galliot, B. Signaling molecules in regenerating hydra. Bioessays 19, 37–46 (1997).

    CAS  PubMed  Google Scholar 

  6. Martinez, D. E. Mortality patterns suggest lack of senescence in hydra. Exp. Gerontol. 33, 217–225 (1998).

    CAS  PubMed  Google Scholar 

  7. Holstein, T. W., Hobmayer, E. & David, C. N. Pattern of epithelial cell cycling in hydra. Dev. Biol. 148, 602–611 (1991).

    CAS  PubMed  Google Scholar 

  8. Wolpert, L., Hicklin, J. & Hornbruch, A. Positional information and pattern regulation in regeneration of hydra. Symp. Soc. Exp. Biol. 25, 391–415 (1971).

    CAS  PubMed  Google Scholar 

  9. Adler, G., Hupp, T. & Kern, H. F. Course and spontaneous regression of acute pancreatitis in the rat. Virchows Archiv. 382, 31–47 (1979).

    CAS  PubMed  Google Scholar 

  10. Hao, E. et al. β-cell differentiation from nonendocrine epithelial cells of the adult human pancreas. Nature Med. 12, 310–316 (2006).

    CAS  PubMed  Google Scholar 

  11. Hobmayer, B. et al. WNT signalling molecules act in axis formation in the diploblastic metazoan Hydra. Nature 407, 186–189 (2000). Demonstrates the ancient conservation of the signalling pathways that are involved in axial specification in simple multicellular organisms.

    CAS  PubMed  Google Scholar 

  12. Meinhardt, H. The radial-symmetric hydra and the evolution of the bilateral body plan: an old body became a young brain. Bioessays 24, 185–191 (2002).

    PubMed  Google Scholar 

  13. Gauchat, D. et al. The orphan COUP-TF nuclear receptors are markers for neurogenesis from cnidarians to vertebrates. Dev. Biol. 275, 104–123 (2004).

    CAS  PubMed  Google Scholar 

  14. Gauchat, D., Kreger, S., Holstein, T. & Galliot, B. prdl-a, a gene marker for hydra apical differentiation related to triploblastic paired-like head-specific genes. Development 125, 1637–1645 (1998).

    CAS  PubMed  Google Scholar 

  15. Schummer, M., Scheurlen, I., Schaller, C. & Galliot, B. HOM/HOX homeobox genes are present in hydra (Chlorohydra viridissima) and are differentially expressed during regeneration. EMBO J. 11, 1815–1823 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Technau, U. & Bode, H. R. HyBra1, a Brachyury homologue, acts during head formation in Hydra. Development 126, 999–1010 (1999).

    CAS  PubMed  Google Scholar 

  17. Broun, M., Sokol, S. & Bode, H. R. Cngsc, a homologue of goosecoid, participates in the patterning of the head, and is expressed in the organizer region of Hydra. Development 126, 5245–5254 (1999).

    CAS  PubMed  Google Scholar 

  18. Guder, C. et al. An ancient Wnt-Dickkopf antagonism in Hydra. Development 133, 901–911 (2006).

    CAS  PubMed  Google Scholar 

  19. Sudhop, S. et al. Signalling by the FGFR-like tyrosine kinase, Kringelchen, is essential for bud detachment in Hydra vulgaris. Development 131, 4001–4011 (2004).

    CAS  PubMed  Google Scholar 

  20. Leontovich, A. A., Zhang, J., Shimokawa, K., Nagase, H. & Sarras, M. P. Jr. A novel hydra matrix metalloproteinase (HMMP) functions in extracellular matrix degradation, morphogenesis and the maintenance of differentiated cells in the foot process. Development 127, 907–920 (2000).

    CAS  PubMed  Google Scholar 

  21. Miljkovic, M., Mazet, F. & Galliot, B. Cnidarian and bilaterian promoters can direct GFP expression in transfected hydra. Dev. Biol. 246, 377–390 (2002).

    CAS  PubMed  Google Scholar 

  22. Wittlieb, J., Khalturin, K., Lohmann, J. U., Anton-Erxleben, F. & Bosch, T. C. Transgenic Hydra allow in vivo tracking of individual stem cells during morphogenesis. Proc. Natl Acad. Sci. USA 103, 6208–6211 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Chera, S. et al. Silencing of the hydra serine protease inhibitor Kazal1 gene mimics the human SPINK1 pancreatic phenotype. J. Cell Sci. 119, 846–857 (2006). The first report of a phenotype that was produced by RNAi feeding in hydra and mimics a human condition.

    CAS  PubMed  Google Scholar 

  24. Reddien, P. W. & Sánchez Alvarado, A. Fundamentals of Planarian Regeneration. Annu. Rev. Cell Dev. Biol. 20, 725–757 (2004).

    CAS  PubMed  Google Scholar 

  25. Newmark, P. A. & Sanchez Alvarado, A. Not your father's planarian: a classic model enters the era of functional genomics. Nature Rev. Genet. 3, 210–219 (2002).

    CAS  PubMed  Google Scholar 

  26. Umesono, Y., Watanabe, K. & Agata, K. A planarian orthopedic homolog is specifically expressed in the branch region of both the mature and regenerating brain. Dev. Growth Differ. 39, 723–727 (1997).

    CAS  PubMed  Google Scholar 

  27. Mineta, K. et al. Origin and evolutionary process of the CNS elucidated by comparative genomics analysis of planarian ESTs. Proc. Natl Acad. Sci. USA 100, 7666–7671 (2003).

    PubMed  PubMed Central  Google Scholar 

  28. Nakazawa, M. et al. Search for the evolutionary origin of a brain: planarian brain characterized by microarray. Mol. Biol. Evol. 20, 784–791 (2003).

    CAS  PubMed  Google Scholar 

  29. Orii, H. et al. The planarian HOM/HOX homeobox genes (Plox) expressed along the anteroposterior axis. Dev. Biol. 210, 456–468 (1999).

    CAS  PubMed  Google Scholar 

  30. Sánchez Alvarado, A., Newmark, P. A., Robb, S. M. & Juste, R. The Schmidtea mediterranea database as a molecular resource for studying platyhelminthes, stem cells and regeneration. Development 129, 5659–5665 (2002).

    PubMed  Google Scholar 

  31. Zayas, R. M. et al. The planarian Schmidtea mediterranea as a model for epigenetic germ cell specification: analysis of ESTs from the hermaphroditic strain. Proc. Natl Acad. Sci. USA 102, 18491–18496 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Sánchez Alvarado, A. & Newmark, P. A. Double-stranded RNA specifically disrupts gene expression during planarian regeneration. Proc. Natl Acad. Sci. USA 96, 5049–5054 (1999).

    PubMed  PubMed Central  Google Scholar 

  33. Cebria, F. et al. FGFR-related gene nou-darake restricts brain tissues to the head region of planarians. Nature 419, 620–624 (2002).

    CAS  PubMed  Google Scholar 

  34. Reddien, P. W., Bermange, A. L., Murfitt, K. J., Jennings, J. R. & Sánchez Alvarado, A. Identification of genes needed for regeneration, stem cell function, and tissue homeostasis by systematic gene perturbation in planaria. Dev. Cell 8, 635–649 (2005). The first systematic RNAi screen for regeneration-specific genes in animals.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Reddien, P. W., Oviedo, N. J., Jennings, J. R., Jenkin, J. C. & Sánchez Alvarado, A. SMEDWI-2 is a PIWI-like protein that regulates planarian stem cells. Science 310, 1327–1330 (2005). The first demonstration that an argonaute/PIWI molecule that is expressed in stem cells can regulate the differentiation of their division progeny.

    CAS  PubMed  Google Scholar 

  36. Deng, W. & Lin, H. miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev. Cell 2, 819–830 (2002).

    CAS  PubMed  Google Scholar 

  37. Kuramochi-Miyagawa, S. et al. Mili, a mammalian member of piwi family gene, is essential for spermatogenesis. Development 131, 839–849 (2004).

    CAS  PubMed  Google Scholar 

  38. French, V. Leg regeneration in the cockroach, Blatella germanica. II. Regeneration from a non-congruent tibial graft/host junction. J. Embryol. Exp. Morphol. 35, 267–301 (1976).

    CAS  PubMed  Google Scholar 

  39. Uetz, G. W., McClintock, W. J., Miller, D., Smith, E. I. & Cook, K. K. Limb regeneration and subsequent asymmetry in a male secondary sexual character influences sexual selection in wolf spiders. Behav. Ecol. Sociobiol. 38, 253–257 (1996).

    Google Scholar 

  40. Haupt, J. & Coineau, Y. Moulting and morphogenesis of sensilla in a prostigmate mite (Acari, Actinotrichida, Actinedida: Caeculidae). Cell Tissue Res. 186, 63–79 (1978).

    CAS  PubMed  Google Scholar 

  41. Sustar, A. & Schubiger, G. A transient cell cycle shift in Drosophila imaginal disc cells precedes multipotency. Cell 120, 383–393 (2005).

    CAS  PubMed  Google Scholar 

  42. Bryant, P. J. Regeneration and duplication following operations in situ on the imaginal discs of Drosophila melanogaster. Dev. Biol. 26, 637–651 (1971).

    CAS  PubMed  Google Scholar 

  43. Monika, C. M. & Müller, L. H. Ground plan of the polychaete brain — I. Patterns of nerve development during regeneration in Dorvillea bermudensis (Dorvilleidae). J. Comp. Neurol. 471, 49–58 (2004).

    Google Scholar 

  44. Paulus, T. & Müller, M. C. Cell proliferation dynamics and morphological differentiation during regeneration in Dorvillea bermudensis (Polychaeta, Dorvilleidae). J. Morphol. 267, 393–403 (2006).

    PubMed  Google Scholar 

  45. Myohara, M., Yoshida-Noro, C., Kobari, F. & Tochinai, S. Fragmenting oligochaete Enchytraeus japonensis: a new material for regeneration study. Dev. Growth Differ. 41, 549–555 (1999).

    CAS  PubMed  Google Scholar 

  46. Bely, A. E. & Wray, G. A. Evolution of regeneration and fission in annelids: insights from engrailed- and orthodenticle-class gene expression. Development 128, 2781–2791 (2001).

    CAS  PubMed  Google Scholar 

  47. Garcia-Arraras, J. E. et al. Cellular mechanisms of intestine regeneration in the sea cucumber, Holothuria glaberrima Selenka (Holothuroidea:Echinodermata). J. Exp. Zool. 281, 288–304 (1998).

    CAS  PubMed  Google Scholar 

  48. Whittaker, J. R. Siphon regeneration in Ciona. Nature 255, 224–225 (1975).

    CAS  PubMed  Google Scholar 

  49. Lauzon, R. J., Ishizuka, K. J. & Weissman, I. L. Cyclical generation and degeneration of organs in a colonial urochordate involves crosstalk between old and new: a model for development and regeneration. Dev. Biol. 249, 333–348 (2002).

    CAS  PubMed  Google Scholar 

  50. Cox, D. N. et al. A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev. 12, 3715–3727 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Harrisingh, M. C. et al. The Ras/Raf/ERK signalling pathway drives Schwann cell dedifferentiation. EMBO J. 23, 3061–3071 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Morrison, J. I., Loof, S., He, P. & Simon, A. Salamander limb regeneration involves the activation of a multipotent skeletal muscle satellite cell population. J. Cell Biol. 172, 433–440 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Tsonis, P. A. Regeneration in vertebrates. Dev. Biol. 221, 273–284 (2000).

    CAS  PubMed  Google Scholar 

  54. Habermann, B. et al. An Ambystoma mexicanum EST sequencing project: analysis of 17, 352 expressed sequence tags from embryonic and regenerating blastema cDNA libraries. Genome Biol. 5, R67 (2004).

    PubMed  PubMed Central  Google Scholar 

  55. Putta, S. et al. From biomedicine to natural history research: EST resources for ambystomatid salamanders. BMC Genom. 5, 54 (2004).

    Google Scholar 

  56. Sobkow, L., Epperlein, H. H., Herklotz, S., Straube, W. L. & Tanaka, E. M. A germline GFP transgenic axolotl and its use to track cell fate: dual origin of the fin mesenchyme during development and the fate of blood cells during regeneration. Dev. Biol. 290, 386–397 (2006). Describes an important experimental tool for understanding cellular contributions during regeneration.

    CAS  PubMed  Google Scholar 

  57. Amaya, E. Xenomics. Genome Res. 15, 1683–1691 (2005).

    CAS  PubMed  Google Scholar 

  58. Imokawa, Y. & Brockes, J. P. Selective activation of thrombin is a critical determinant for vertebrate lens regeneration. Curr. Biol. 13, 877–881 (2003).

    CAS  PubMed  Google Scholar 

  59. Tanaka, E. M., Drechsel, D. N. & Brockes, J. P. Thrombin regulates S-phase re-entry by cultured newt myotubes. Curr. Biol. 9, 792–799 (1999).

    CAS  PubMed  Google Scholar 

  60. Kumar, A., Velloso, C. P., Imokawa, Y. & Brockes, J. P. The regenerative plasticity of isolated urodele myofibers and its dependence on MSX1. PLoS Biol. 2, e218 (2004). Demonstrates that the requisite cellularization that is observed after the dedifferentiation of myofibres involves msx1.

    PubMed  PubMed Central  Google Scholar 

  61. Cannata, S. M., Bagni, C., Bernardini, S., Christen, B. & Filoni, S. Nerve-independence of limb regeneration in larval Xenopus laevis is correlated to the level of fgf2 mRNA expression in limb tissues. Dev. Biol. 231, 436–446 (2001).

    CAS  PubMed  Google Scholar 

  62. Brockes, J. P. & Kintner, C. R. Glial growth factor and nerve-dependent proliferation in the regeneration blastema of Urodele amphibians. Cell 45, 301–306 (1986).

    CAS  PubMed  Google Scholar 

  63. Kiffmeyer, W. R., Tomusk, E. V. & Mescher, A. L. Axonal transport and release of transferrin in nerves of regenerating amphibian limbs. Dev. Biol. 147, 392–402 (1991).

    CAS  PubMed  Google Scholar 

  64. Yntema, C. L. Regeneration in sparsely innervated and aneurogenic forelimbs of Amblystoma larvae. J. Exp. Zool. 140, 101–123 (1959).

    CAS  PubMed  Google Scholar 

  65. Irvin, B. C. & Tassava, R. A. Effects of peripheral nerve implants on the regeneration of partially and fully innervated urodele forelimbs. Wound Repair Regen. 6, 382–387 (1998).

    CAS  PubMed  Google Scholar 

  66. Tsonis, P. A. Limb Regeneration (Cambridge Univ. Press, Cambridge, 1996).

    Google Scholar 

  67. Poulin, M. L., Patrie, K. M., Botelho, M. J., Tassava, R. A. & Chiu, I. M. Heterogeneity in the expression of fibroblast growth factor receptors during limb regeneration in newts (Notophthalmus viridescens). Development 119, 353–361 (1993).

    CAS  PubMed  Google Scholar 

  68. Yokoyama, H. et al. Mesenchyme with fgf-10 expression is responsible for regenerative capacity in Xenopus limb buds. Dev. Biol. 219, 18–29 (2000).

    CAS  PubMed  Google Scholar 

  69. Yokoyama, H., Ide, H. & Tamura, K. FGF-10 stimulates limb regeneration ability in Xenopus laevis. Dev. Biol. 233, 72–79 (2001).

    CAS  PubMed  Google Scholar 

  70. Mullen, L. M., Bryant, S. V., Torok, M. A., Blumberg, B. & Gardiner, D. M. Nerve dependency of regeneration: the role of Distal-less and FGF signaling in amphibian limb regeneration. Development 122, 3487–3497 (1996).

    CAS  PubMed  Google Scholar 

  71. Goss, R. J. Principles of Regeneration (Academic, New York, 1969).

    Google Scholar 

  72. Echeverri, K. & Tanaka, E. M. Ectoderm to mesoderm lineage switching during axolotl tail regeneration. Science 298, 1993–1996 (2002).

    CAS  PubMed  Google Scholar 

  73. Beck, C. W., Christen, B. & Slack, J. M. Molecular pathways needed for regeneration of spinal cord and muscle in a vertebrate. Dev. Cell 5, 429–439 (2003). Describes the role of BMP, Msx1 and Notch in the induction of tail regeneration in frogs.

    CAS  PubMed  Google Scholar 

  74. Del Rio-Tsonis, K. & Tsonis, P. A. Eye regeneration at the molecular age. Dev. Dyn. 226, 211–224 (2003).

    PubMed  Google Scholar 

  75. Grogg, M. W. et al. BMP inhibition-driven regulation of six-3 underlies induction of newt lens regeneration. Nature 438, 858–862 (2005). The first report to pinpoint possible regulators (BMP and Six3) of lens regeneration in the newt.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Stierwald, M., Yanze, N., Bamert, R. P., Kammermeier, L. & Schmid, V. The Sine oculis/Six class family of homeobox genes in jellyfish with and without eyes: development and eye regeneration. Dev. Biol. 274, 70–81 (2004).

    CAS  PubMed  Google Scholar 

  77. Zuber, M. E., Gestri, G., Viczian, A. S., Barsacchi, G. & Harris, W. A. Specification of the vertebrate eye by a network of eye field transcription factors. Development 130, 5155–5167 (2003). An important paper that delineates the molecular pathways that are involved in eye development.

    CAS  PubMed  Google Scholar 

  78. Bader, D. & Oberpriller, J. O. Repair and reorganization of minced cardiac muscle in the adult newt (Notophthalmus viridescens). J. Morphol. 155, 349–357 (1978).

    CAS  PubMed  Google Scholar 

  79. Taylor, R. R. & Forge, A. Hair cell regeneration in sensory epithelia from the inner ear of a urodele amphibian. J. Comp. Neurol. 484, 105–120 (2005).

    PubMed  Google Scholar 

  80. Schnapp, E. & Tanaka, E. M. Quantitative evaluation of morpholino-mediated protein knockdown of GFP, MSX1, and PAX7 during tail regeneration in Ambystoma mexicanum. Dev. Dyn. 232, 162–170 (2005).

    CAS  PubMed  Google Scholar 

  81. Woods, I. G. et al. The zebrafish gene map defines ancestral vertebrate chromosomes. Genome Res. 15, 1307–1314 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Peterson, R. T., Link, B. A., Dowling, J. E. & Schreiber, S. L. Small molecule developmental screens reveal the logic and timing of vertebrate development. Proc. Natl Acad. Sci. USA 97, 12965–12969 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. White, J. A., Boffa, M. B., Jones, B. & Petkovich, M. A zebrafish retinoic acid receptor expressed in the regenerating caudal fin. Development 120, 1861–1872 (1994).

    CAS  PubMed  Google Scholar 

  84. Nechiporuk, A. & Keating, M. T. A proliferation gradient between proximal and msxb-expressing distal blastema directs zebrafish fin regeneration. Development 129, 2607–2617 (2002).

    CAS  PubMed  Google Scholar 

  85. Poss, K. D. et al. Roles for Fgf signaling during zebrafish fin regeneration. Dev. Biol. 222, 347–358 (2000).

    CAS  PubMed  Google Scholar 

  86. Thummel, R. et al. Inhibition of zebrafish fin regeneration using in vivo electroporation of morpholinos against fgfr1 and msxb. Dev. Dyn. 235, 336–346 (2006).

    CAS  PubMed  Google Scholar 

  87. Whitehead, G. G., Makino, S., Lien, C. L. & Keating, M. T. fgf20 is essential for initiating zebrafish fin regeneration. Science 310, 1957–1960 (2005). The first paper to identify a mutation in fgf20 that is linked to the inhibition of fin regeneration.

    CAS  PubMed  Google Scholar 

  88. Del Rio-Tsonis, K., Washabaugh, C. H. & Tsonis, P. A. The mutant axolotl Short toes exhibits impaired limb regeneration and abnormal basement membrane formation. Proc. Natl Acad. Sci. USA 89, 5502–5506 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Makino, S. et al. Heat-shock protein 60 is required for blastema formation and maintenance during regeneration. Proc. Natl Acad. Sci. USA 102, 14599–14604 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Haynes, T. & Del Rio-Tsonis, K. Retina repair, stem cells and beyond. Curr. Neurovasc. Res. 1, 231–239 (2004).

    PubMed  Google Scholar 

  91. Oliver, G., Loosli, F., Koster, R., Wittbrodt, J. & Gruss, P. Ectopic lens induction in fish in response to the murine homeobox gene Six3. Mech. Dev. 60, 233–239 (1996).

    CAS  PubMed  Google Scholar 

  92. Poss, K. D., Wilson, L. G. & Keating, M. T. Heart regeneration in zebrafish. Science 298, 2188–2190 (2002).

    CAS  PubMed  Google Scholar 

  93. Raya, A. et al. Activation of Notch signaling pathway precedes heart regeneration in zebrafish. Proc. Natl Acad. Sci. USA 100, 11889–11895 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Han, M., Yang, X., Farrington, J. E. & Muneoka, K. Digit regeneration is regulated by Msx1 and BMP4 in fetal mice. Development 130, 5123–5132 (2003).

    CAS  PubMed  Google Scholar 

  95. Odelberg, S. J., Kollhoff, A. & Keating, M. T. Dedifferentiation of mammalian myotubes induced by msx1. Cell 103, 1099–1109 (2000).

    CAS  PubMed  Google Scholar 

  96. Lesurtel, M. et al. Platelet-derived serotonin mediates liver regeneration. Science 312, 104–107 (2006).

    CAS  PubMed  Google Scholar 

  97. Mastellos, D., Papadimitriou, J. C., Franchini, S., Tsonis, P. A. & Lambris, J. D. A novel role of complement: mice deficient in the fifth component of complement (C5) exhibit impaired liver regeneration. J. Immunol. 166, 2479–2486 (2001). Describes an unsuspected new role of complement during liver regeneration in mice that lack C5.

    CAS  PubMed  Google Scholar 

  98. Michalopoulos, G. K. & DeFrances, M. Liver regeneration. Adv. Biochem. Eng. Biotechnol. 93, 101–134 (2005).

    CAS  PubMed  Google Scholar 

  99. Susick, R. et al. Hepatic progenitors and strategies for liver cell therapies. Ann. NY Acad. Sci. 944, 398–419 (2001).

    CAS  PubMed  Google Scholar 

  100. Vessey, C. J. & de la Hall, P. M. Hepatic stem cells: a review. Pathology 33, 130–141 (2001).

    CAS  PubMed  Google Scholar 

  101. Gritti, A. et al. Multipotent neural stem cells reside into the rostral extension and olfactory bulb of adult rodents. J. Neurosci. 22, 437–445 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Buchli, A. D. & Schwab, M. E. Inhibition of Nogo: a key strategy to increase regeneration, plasticity and functional recovery of the lesioned central nervous system. Ann. Med. 37, 556–567 (2005).

    CAS  PubMed  Google Scholar 

  103. Klimaschewski, L., Nindl, W., Feurle, J., Kavakebi, P. & Kostron, H. Basic fibroblast growth factor isoforms promote axonal elongation and branching of adult sensory neurons in vitro. Neuroscience 126, 347–353 (2004).

    CAS  PubMed  Google Scholar 

  104. Condic, M. L. Adult neuronal regeneration induced by transgenic integrin expression. J. Neurosci. 21, 4782–4788 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Murry, C. E. et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428, 664–668 (2004).

    CAS  PubMed  Google Scholar 

  106. Carroll, S. B., Grenier, J. K. & Weatherbee, S. D. From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design (Blackwell Science, Malden, 2001).

    Google Scholar 

  107. Adoutte, A. et al. The new animal phylogeny: reliability and implications. Proc. Natl Acad. Sci. USA 97, 4453–4456 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Miller, D. J. & Ball, E. E. Animal evolution: the enigmatic phylum placozoa revisited. Curr. Biol. 15, R26–R28 (2005).

    CAS  PubMed  Google Scholar 

  109. Delsuc, F., Brinkmann, H., Chourrout, D. & Philippe, H. Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439, 965–968 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.S.A. thanks the National Institutes of Health and the National Institute of General Medical Sciences for supporting work on planarian regeneration, and the National Human Genome Research Institute for supporting the sequencing of the S. mediterranea genome. P.A.T. would like to thank the National Institutes of Health and the National Eye Institute for supporting eye regeneration research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Sánchez Alvarado.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Genbank

Panagiotis A. Tsonis homepage

The Sánchez Laboratory web site

Washington University Genome Sequencing Center

Glossary

Dedifferentiation

The process by which a terminally differentiated cell loses its tissue-specific characteristics and becomes undifferentiated. Dedifferentiated cells can either re-differentiate into cells of their original type or to a cell of different lineage.

Transdifferentiation

The process by which a terminally differentiated cell dedifferentiates and then re-differentiates to a cell of a different lineage, for example, the transdifferentiation of iris pigment epithelial cells to lens during newt lens regeneration.

Diploblast

An organism that is derived from two primary germ layers: the ectoderm and the endoderm.

Triploblast

An organism that is derived from three primary germ layers: the ectoderm, the mesoderm and the endoderm.

Organizer

The regions within an embryo that control development and differentiation.

Autophagy

A nutritionally and developmentally regulated process that is involved in the intracellular destruction of endogenous proteins and the removal of damaged organelles.

Mixoploid

An organism that contains cells which are of different ploidy, for example, diploid and polyploid.

Argonaute/PIWI family

Members of this protein family contain PAZ and PIWI domains, which are involved, respectively, in binding small RNAs and mediating silencing, either by cleavage of mRNAs or through inhibition of translation.

Schwann cells

Non-neuronal cells that mainly provide myelin insulation to axons in the peripheral nervous system of jawed vertebrates.

Neotenous animals

Animals that, as adults, retain traits that are usually seen only in juveniles.

Morpholino

A chemically modified oligonucleotide that behaves as an antisense RNA analogue and can therefore be used to interfere with gene function.

Forebrain

The rostral-most portion of the brain.

Complement system

A biochemical cascade that is involved in innate immunity: the first line of defence that helps to clear pathogens from an organism.

Hippocampus

A part of the brain that is located inside the temporal lobe. It forms part of the limbic system and has a role in memory and spatial navigation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarado, A., Tsonis, P. Bridging the regeneration gap: genetic insights from diverse animal models. Nat Rev Genet 7, 873–884 (2006). https://doi.org/10.1038/nrg1923

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1923

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing