Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Speciation genetics: evolving approaches

Key Points

  • The genetic study of speciation was pioneered by conceptual insights from the 1930s that still hold today.

  • Recent studies have recreated or dissolved species, providing investigators with the means for generating and testing evolutionary hypotheses about species divergence and the nature of barriers to gene flow between them.

  • New analytical approaches provide the means for inferring historical processes that have operated on species, and particularly for the detection of historical interspecies gene flow (introgression).

  • High-throughput molecular approaches allow investigators to quickly generate whole-genome 'snapshots' of sequence or regulatory divergence between divergent populations or species, in order to generate or test hypotheses.

  • Technological advances in direct gene manipulation afford investigators with the means to achieve the final standard of proof for whether particular loci contribute to specific adaptations or reproductive incompatibilities.

  • Although new technologies are facilitating the acquisition of data for understanding speciation, they are not generally by themselves providing new insights; many of them are merely helping researchers to generate hypotheses that need to be confirmed by 'old-school' reductionist bench work.

Abstract

Much progress has been made in the past two decades in understanding Darwin's mystery of the origins of species. Applying genomic techniques to the analysis of laboratory crosses and natural populations has helped to determine the genetic basis of barriers to gene flow which create new species. Although new methodologies have not changed the prevailing hypotheses about how species form, they have accelerated the pace of data collection. By facilitating the compilation of case studies, advances in genetic techniques will help to provide answers to the next generation of questions concerning the relative frequency and importance of different processes that cause speciation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Coyne, J. A. & Orr, H. A. Speciation (Sinauer Associates, Sunderland, Massachusetts, 2004). This book is a rigorous, authoritative and provocative review of the entire field of speciation.

    Google Scholar 

  2. Darwin, C. R. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life (John Murray, London, 1859).

    Book  Google Scholar 

  3. Dobzhansky, T. Genetics and the Origin of Species (Columbia Univ. Press, New York, 1937).

    Google Scholar 

  4. Mayr, E. Systematics and the Origin of Species (Columbia Univ. Press, New York, 1942).

    Google Scholar 

  5. Howard, D. J. et al. The genetics of reproductive isolation: a retrospective and prospective look with comments on ground crickets. Am. Nat. 159, S8–S21 (2002).

    Article  PubMed  Google Scholar 

  6. Archibald, J. K., Mort, M. E., Crawford, D. J. & Kelly, J. K. Life history affects the evolution of reproductive isolation among species of Coreopsis (Asteraceae). Evolution 59, 2362–2369 (2005).

    Article  PubMed  Google Scholar 

  7. Coyne, J. A. & Orr, H. A. Patterns of speciation in Drosophila. Evolution 43, 362–381 (1989).

    Article  PubMed  Google Scholar 

  8. Presgraves, D. C. Patterns of postzygotic isolation in Lepidoptera. Evolution 56, 1168–1183 (2002).

    Article  PubMed  Google Scholar 

  9. Price, T. D. & Bouvier, M. M. The evolution of F1 postzygotic incompatibilities in birds. Evolution 56, 2083–2089 (2002).

    Article  PubMed  Google Scholar 

  10. Sasa, M. M., Chippindale, P. T. & Johnson, N. A. Patterns of postzygotic isolation in frogs. Evolution 52, 1811–1820 (1998).

    Article  PubMed  Google Scholar 

  11. Moyle, L. C., Olson, M. S. & Tiffin, P. Patterns of reproductive isolation in three angiosperm genera. Evolution 58, 1195–1208 (2004).

    Article  PubMed  Google Scholar 

  12. Taylor, E. B. et al. Speciation in reverse: morphological and genetic evidence of the collapse of a three-spined stickleback (Gasterosteus aculeatus) species pair. Mol. Ecol. 15, 343–355 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Dobzhansky, T. Studies on hybrid sterility. I. Spermatogenesis in pure and hybrid Drosophila pseudoobscura. Z. Zellforch. Microsk. Anat. 21, 169–221 (1934).

    Article  Google Scholar 

  14. Borevitz, J. O. et al. Large-scale identification of single-feature polymorphisms in complex genomes. Genome Res. 13, 513–523 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Winzeler, E. A. et al. Direct allelic variation scanning of the yeast genome. Science 281, 1194–1197 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Kao, C.-H., Zeng, Z.-B. & Teasdale, R. D. Multiple interval mapping for quantitative trait loci. Genetics 152, 1203–1216 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zeng, Z. B. Precision mapping of quantitative trait loci. Genetics 136, 1457–1468 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Cockerham, C. C. & Zeng, Z.-B. Design III with marker loci. Genetics 143, 1437–1456 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. True, J. R., Weir, B. S. & Laurie, C. C. A genome-wide survey of hybrid incompatibility factors by the introgression of marked segments of Drosophila mauritiana chromosomes into Drosophila simulans. Genetics 142, 819–837 (1996). The first genome-wide scan for recessive hybrid incompatibility factors, which was well ahead of its time in terms of its scale.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Harrison, R. G. Hybrid zones: windows on evolutionary processes. Oxford Sur. Evol. Biol. 7, 69–128 (1990).

    Google Scholar 

  21. Kocher, T. D. & Sage, R. D. Further genetic anayses of a hybrid zone between leaopard frogs (Rana pipiens complex) in central Texas. Evolution 40, 21–33 (1986).

    Article  PubMed  Google Scholar 

  22. Szymura, J. M. & Barton, N. H. The genetic structure of the hybrid zone between the fire-bellied toads Bombina bombina and B. variegata: comparisons between transects and between loci. Evolution 45, 237–261 (1991).

    PubMed  Google Scholar 

  23. Feder, J. L. et al. Mayr, Dobzhansky, and Bush and the complexities of sympatric speciation in Rhagoletis. Proc. Natl Acad. Sci. USA 102, 6573–6580 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Payseur, B. A. & Nachman, M. W. The genomics of speciation: investigating the molecular correlates of X chromosome introgression across the hybrid zone between Mus domesticus and Mus musculus. Biol. J. Linn. Soc. 84, 523–534 (2005).

    Article  Google Scholar 

  25. Rogers, S. M. & Bernatchez, L. Integrating QTL mapping and genome scans towards the characterization of candidate loci under parallel selection in the lake whitefish (Coregonus clupeaformis). Mol. Ecol. 14, 351–361 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Scotti-Saintagne, C. et al. Genome scanning for interspecific differentiation between two closely related oak species [Quercus robur L. and Q. petraea (Matt.) Liebl.]. Genetics 168, 1615–1626 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stump, A. D. et al. Centromere–proximal differentiation and speciation in Anopheles gambiae. Proc. Natl Acad. Sci. USA 102, 15930–15935 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Turner, T. L., Hahn, M. W. & Nuzhdin, S. V. Genomic islands of speciation in Anopheles gambiae. PLoS Biol. 3, e285 (2005). A novel microarray-based genome-wide scan for DNA sequence differentiation between two mosquito forms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hilbish, T. J., Bayne, B. L. & Day, A. Genetics of physiological differentiation within the marine mussel genus Mytilus. Evolution 48, 267–286 (1994).

    PubMed  Google Scholar 

  30. Rieseberg, L. H., Whitton, J. & Gardner, K. Hybrid zones and the genetic architecture of a barrier to gene flow between two sunflower species. Genetics 152, 713–727 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Rieseberg, L. H. & Buerkle, C. A. Genetic mapping in hybrid zones. Am. Nat. 159, S36–S50 (2002).

    Article  PubMed  Google Scholar 

  32. Avise, J. C. Phylogeography: the History and Formation of Species (Harvard Univ. Press, Cambridge, Massachusetts, 2000).

    Google Scholar 

  33. Hey, J., Won, Y.-J., Sivasundar, A., Nielsen, R. & Markert, J. A. Using nuclear haplotypes with microsatellites to study gene flow between recently separated cichlid species. Mol. Ecol. 13, 909–919 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Luikart, G., England, P. R., Tallmon, D., Jordan, S. & Taberlet, P. The power and promise of population genomics: from genotyping to genome typing. Nature Rev. Genet. 4, 981–994 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Barton, N. H. & Hewitt, G. M. Analysis of hybrid zones. Annu. Rev. Ecol. Syst. 16, 113–148 (1985).

    Article  Google Scholar 

  36. Burke, J. M., Carney, S. E. & Arnold, M. L. Hybrid fitness in Louisiana irises: analysis of parental and F1 performance. Evolution 52, 684–691 (1998).

    Google Scholar 

  37. Campbell, D. R., Waser, N. M. & Wolf, P. G. Pollen transfer by natural hybrids and parental species in an Ipomopsis hybrid zone. Evolution 52, 1602–1611 (1998).

    Article  PubMed  Google Scholar 

  38. Dod, B. et al. Counterselection on sex chormosomes in the Mus musculus European hybrid zones. J. Evol. Biol. 6, 529–546 (1993).

    Article  Google Scholar 

  39. Hatfield, T., Barton, N. H. & Searle, J. B. A model of a hybrid zone between two chromosomal races of shrew (Sorex araneus). Evolution 46, 1129–1145 (1992).

    PubMed  Google Scholar 

  40. Levin, D. A. & Schmidt, K. P. Dynamics of hybrid zone in Phlox: and experimental demographic investigation. Am. J. Bot. 72, 1404–1409 (1985).

    Article  Google Scholar 

  41. Mallet, J. et al. Estimates of selection and gene flow from measures of cline width and linkage disequilibrium in Heliconius hybrid zones. Genetics 124, 921–936 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Nürnberger, B., Barton, N., MacCallum, C., Gilchrist, J. & Appleby, M. Natural selection on quantitative traits in the Bombina hybrid zone. Evolution 49, 1224–1238 (1995).

    Article  PubMed  Google Scholar 

  43. Porter, A. H., Wenger, R., Geiger, H., Scholl, A. & Shapiro, S. M. The Pontia daplidiceedusa hybrid zone in northwestern Italy. Evolution 51, 1561–1573 (1997).

    PubMed  Google Scholar 

  44. Rand, D. M. & Harrison, R. G. Ecological genetics of a mosaic hybrid zone: mitochondrial, nuclear, and reproductive differentiation of crickets by soil type. Evolution 43, 432–449 (1989).

    Article  PubMed  Google Scholar 

  45. Wang, H., McArthur, E. D., Sanderson, S. C., Graham, J. H. & Freeman, D. C. Narrow hybrid zone between two subspecies of big sagebrush (Artemisia tridentata: Asteraceae). IV. Reciprocal transplant experiments. Evolution 51, 95–102 (1997).

    PubMed  Google Scholar 

  46. Kliman, R. M. et al. The population genetics of the origin and divergence of the Drosophila simulans complex species. Genetics 156, 1913–1931 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Rieseberg, L. H., Church, S. & Morjan, C. L. Integration of populations and differentiation of species. New Phytol. 161, 59–69 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang, R. L., Wakeley, J. & Hey, J. Gene flow and natural selection in the origin of Drosophila pseudoobscura and close relatives. Genetics 147, 1091–1106 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Won, Y. J. & Hey, J. Divergence population genetics of chimpanzees. Mol. Biol. Evol. 22, 297–307 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Berlocher, S. H. & Feder, J. L. Sympatric speciation in phytophagous insects: moving beyond controversy? Annu. Rev. Entomol. 47, 773–815 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Dres, M. & Mallet, J. Host races in plant-feeding insects and their importance in sympatric speciation. Philos. Trans. R. Soc. Lond. B 357, 471–492 (2002).

    Article  Google Scholar 

  52. Via, S. Sympatric speciation in animals: the ugly duckling grows up. Trends Ecol. Evol. 16, 381–390 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Dowling, T. E. & Secor, C. L. The role of hybridization and introgression in the diversification of animals. Annu. Rev. Ecol. Syst. 28, 593–619 (1997).

    Article  Google Scholar 

  54. Schwarz, D., Matta, B. M., Shakir-Botteri, N. L. & McPheron, B. A. Host shift to an invasive plant triggers rapid animal hybrid speciation. Nature 436, 546–549 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Seehausen, O. Hybridization and adaptive radiation. Trends Ecol. Evol. 19, 198–207 (2004).

    Article  PubMed  Google Scholar 

  56. Gross, B. L. et al. Reconstructing the origin of Helianthus deserticola: survival and selection on the desert floor. Am. Nat. 164, 145–156 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Rieseberg, L. H. et al. Major ecological transitions in wild sunflowers facilitated by hybridization. Science 301, 1211–1216 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Rosenthal, D. M., Rieseberg, L. H. & Donovan, L. A. Re-creating ancient hybrid species' complex phenotypes from early-generation synthetic hybrids: three examples using wild sunflowers. Am. Nat. 166, 26–41 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bradshaw, H. D. & Schemske, D. W. Allele substitution of a flower color locus produces a pollinator shift in monkeyflowers. Nature 426, 176–178 (2003). This study identifies a single major-effect locus that controls a pigmentation difference causing differential pollination by bees versus hummingbirds.

    Article  CAS  PubMed  Google Scholar 

  60. Schemske, D. W. & Bradshaw, H. D. Jr. Pollinator preference and the evolution of floral traits in monkeyflowers (Mimulus). Proc. Natl Acad. Sci. USA 96, 11910–11915 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Joron, M., Jiggins, C. D., Papanicolaou, A. & McMillan, W. O. Heliconius wing patterns: an evo–devo model for understanding phenotypic diversity. Heredity (in the press).

  62. Paterniani, E. Selection for reproductive isolation between two populations of maize, Zea mays L. Evolution 23, 534–547 (1969).

    CAS  PubMed  Google Scholar 

  63. Kessler, S. Selection for and against ethological isolation between Drosophila pseudoobscura and Drosophila persimilis. Evolution 20, 634–645 (1966).

    Article  PubMed  Google Scholar 

  64. Koopman, K. F. Natural selection for reproductive isolation between Drosophila pseudoobscura and Drosophila persimilis. Evolution 4, 135–148 (1950).

    Article  Google Scholar 

  65. Leu, J.-Y. & Murray, A. W. Experimental evolution of mating discrimination in budding yeast. Curr. Biol. 16, 280–286 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Delneri, D. et al. Engineering evolution to study speciation in yeasts. Nature 422, 68–72 (2003). This elegant study provides the best evidence to date for both genic and chromosomal incompatibilities contributing to hybrid sterility in two yeast species that differ by a translocation.

    Article  CAS  PubMed  Google Scholar 

  67. Lexer, C., Randell, R. A. & Rieseberg, L. H. Experimental hybridization as a tool for studying selection in the wild. Ecology 84, 1688–1699 (2003).

    Article  Google Scholar 

  68. Beltran, M. et al. Phylogenetic discordance at the species boundary: comparative gene genealogies among rapidly radiating Heliconius butterflies. Mol. Biol. Evol. 19, 2176–2190 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Salzburger, W., Baric, S. & Sturmbauer, C. Speciation via introgressive hybridization in East African cichlids? Mol. Ecol. 11, 619–625 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Schliewen, U. K. & Klee, B. Reticulate sympatric speciation in Cameroonian crater lake cichlids. Front. Zool. 1, 5 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Taylor, D. J., Hebert, P. D. N. & Colbourne, J. K. Phylogenetics and evolution of the Daphnia longispina group (Crustacea) based on 12S rDNA sequence and allozyme variation. Mol. Phyl. Evol. 5, 495–510 (1996).

    Article  CAS  Google Scholar 

  72. Posada, D., Crandall, K. A. & Templeton, A. R. GenDis: a program for the cladistic nested analysis of the geographical distribution of genetic haplotypes. Mol. Ecol. 9, 487–488 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Templeton, A. R. Nested clade analysis of phylogeographic data: testing hypotheses about gene flow and population history. Mol. Ecol. 7, 381–397 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Hey, J. & Machado, C. A. The study of structured populations — new hope for a difficult and divided science. Nature Rev. Genet. 4, 535–543 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Wright, S. The genetical structure of populations. Ann. Eugenics 15, 323–354 (1951).

    Article  CAS  Google Scholar 

  76. Wright, S. The interpretation of population structure by F-statistics with special regards to systems of mating. Evolution 19, 395–420 (1965).

    Article  Google Scholar 

  77. Nei, M. Genetic distance between populations. Am. Nat. 106, 283–292 (1972).

    Article  Google Scholar 

  78. Campbell, D. & Bernatchez, L. Generic scan using AFLP markers as a means to assess the role of directional selection in the divergence of sympatric whitefish ecotypes. Mol. Biol. Evol. 21, 945–956 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Beaumont, M. A. & Balding, D. J. Identifying adaptive genetic divergence among populations from genome scans. Mol. Ecol. 13, 969–980 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Hedrick, P. W. A standardized genetic differentiation measure. Evolution 59, 1633–1638 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Wakeley, J. & Hey, J. Estimating ancestral population parameters. Genetics 145, 847–855 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Machado, C. A., Kliman, R. M., Markert, J. A. & Hey, J. Inferring the history of speciation from multilocus sequence data: the case of Drosophila pseudoobscura and its close relatives. Mol. Biol. Evol. 19, 472–488 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Nielsen, R. & Wakeley, J. W. Distinguishing migration from isolation: a Markov chain Monte Carlo approach. Genetics 158, 885–896 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Hey, J. & Nielsen, R. Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of Drosophila pseudoobscura and D. persimilis. Genetics 167, 747–760 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Feder, J. L. et al. Allopatric genetic origins for sympatric host-plant shifts and race formation in Rhagoletis. Proc. Natl Acad. Sci. USA 100, 10314–10319 (2003). This paper presents the unexpected finding that the genetic variation leading to sympatric differentiation between Rhagoletis host races originated in an isolated, allopatric population.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Osada, N. & Wu, C.-I. Inferring the mode of speciation from genomic data: a study of the great apes. Genetics 169, 259–264 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mallet, J. Hybridization as an invasion of the genome. Trends Ecol. Evol. 20, 229–237 (2005).

    Article  PubMed  Google Scholar 

  89. Rieseberg, L. H. & Wendel, J. in Hybrid Zones and the Evolutionary Process (ed. Harrison, R. G.) 70–109 (Oxford Univ. Press, New York, 1993).

    Google Scholar 

  90. Machado, C. A. & Hey, J. The causes of phylogenetic conflict in a classic Drosophila species group. Proc. R. Soc. Lond. B 270, 1193–1202 (2003).

    Article  CAS  Google Scholar 

  91. Noor, M. A. F. et al. The genetics of reproductive isolation and the potential for gene exchange between Drosophila pseudoobscura and D. persimilis via backcross hybrid males. Evolution 55, 512–521 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Noor, M. A. F., Grams, K. L., Bertucci, L. A. & Reiland, J. Chromosomal inversions and the reproductive isolation of species. Proc. Natl Acad. Sci. USA 98, 12084–12088 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Feder, J. L., Roethele, J. B., Filchak, K., Niedbalski, J. & Romero-Severson, J. Evidence of inversion polymorphism related to sympatric host race formation in the apple maggot fly, Rhagoletis pomonella. Genetics 163, 939–953 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Panithanarak, T. et al. Linkage-dependent gene flow in a house mouse chromosomal hybrid zone. Evolution 58, 184–192 (2004).

    Article  PubMed  Google Scholar 

  95. Wolfe, K. H. & Shields, D. C. Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387, 708–713 (1997).

    Article  CAS  PubMed  Google Scholar 

  96. Scannell, D. R., Byrne, K. P., Gordon, J. L., Wong, S. & Wolfe, K. H. Multiple rounds of speciation associated with reciprocal gene loss in polyploid yeasts. Nature 440, 341–345 (2006). These authors used whole-genome sequences and functional data to suggest that differential gene loss following genome duplication could have contributed to speciation in yeast.

    Article  CAS  PubMed  Google Scholar 

  97. Lynch, M. & Force, A. G. The origin of interspecific genomic incompatibility via gene duplication. Am. Nat. 156, 590–605 (2000).

    Article  PubMed  Google Scholar 

  98. Ortiz-Barrientos, D., Counterman, B. A. & Noor, M. A. F. The genetics of speciation by reinforcement. PLoS Biol. 2, e416 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rifkin, S. A., Kim, J. & White, K. P. Evolution of gene expression in the Drosophila melanogaster subgroup. Nature Genet. 33, 138–144 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Gresham, D. et al. Genome-wide detection of polymorphisms at nucleotide resolution with a single DNA microarray. Science 311, 1932–1936 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Jaccoud, D., Peng, K., Feinstein, D. & Kilian, A. Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res. 29, e25 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Richards, S. et al. Comparative genome sequencing of Drosophila pseudoobscura: chromosomal, gene, and cis-element evolution. Genome Res. 15, 1–18 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Llopart, A., Lachaise, D. & Coyne, J. A. Multilocus analysis of introgression between two sympatric sister species of Drosophila: Drosophila yakuba and D. santomea. Genetics 171, 197–210 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Won, Y. J., Sivasundar, A., Wang, Y. & Hey, J. On the origin of Lake Malawi cichlid species: a population genetic analysis of divergence. Proc. Natl Acad. Sci. USA 102 (Suppl. 1), 6581–6586 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Borge, T., Webster, M. T., Andersson, G. & Saetre, G. P. Contrasting patterns of polymorphism and divergence on the Z chromosome and autosomes in two Ficedula flycatcher species. Genetics 171, 1861–1873 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ramos-Onsins, S. E., Stranger, B. E., Mitchell-Olds, T. & Aguade, M. Multilocus analysis of variation and speciation in the closely related species, Arabidopsis halleri and A. lyrata. Genetics 166, 373–388 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Dolman, G. & Moritz, C. A multilocus perspective on refugial isolation and divergence in rainforest skinks (Carlia). Evolution 60, 573–582 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Ranz, J. M. & Machado, C. A. Uncovering evolutionary patterns of gene expression using microarrays. Trends Ecol. Evol. 21, 29–37 (2006).

    Article  PubMed  Google Scholar 

  109. Whitehead, A. & Crawford, D. L. Variation within and among species in gene expression: raw material for evolution. Mol. Ecol. 15, 1197–1211 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Ortiz-Barrientos, D., Counterman, B. & Noor, M. A. F. Gene expression divergence and the origin of hybrid dysfunctions. Genetica (in the press).

  111. Haerty, W. & Singh, R. S. Gene regulation divergence is a major contributor to the evolution of Dobzhansky–Muller incompatibilities between species of Drosophila. Mol. Biol. Evol. (in the press).

  112. Nielsen, M. G., Wilson, K. A., Raff, E. C. & Raff, R. A. Novel gene expression patterns in hybrid embryos between species with different modes of development. Evol. Dev. 2, 133–144 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Ranz, J. M., Namgyal, K., Gibson, G. & Hartl, D. L. Anomalies in the expression profile of interspecific hybrids of Drosophila melanogaster and D. simulans. Genome Res. 14, 373–379 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Braidotti, G. & Barlow, D. P. Identification of a male meiosis-specific gene, Tcte2, which is differentially spliced in species that form sterile hybrids with laboratory mice and deleted in t chromosomes showing meiotic drive. Dev. Biol. 186, 85–99 (1997).

    Article  CAS  PubMed  Google Scholar 

  115. Michalak, P. & Noor, M. A. F. Association of misexpression with sterility in hybrids of Drosophila simulans and D. mauritiana. J. Mol. Evol. 59, 277–282 (2004). The first large-scale test of gene misexpression in species hybrids.

    Article  CAS  PubMed  Google Scholar 

  116. Venken, K. J. T. & Bellen, H. J. Emerging technologies for gene manipulation in Drosophila melanogaster. Nature Rev. Genet. 6, 167–178 (2005).

    Article  PubMed  Google Scholar 

  117. Coyne, J. A. & Charlesworth, B. Genetic analysis of X-linked sterility in hybrids between three sibling species of Drosophila. Heredity 62, 97–106 (1989).

    Article  PubMed  Google Scholar 

  118. Perez, D. E., Wu, C.-I., Johnson, N. A. & Wu, M.-L. Genetics of reproductive isolation in the Drosophila simulans clade: DNA marker-assisted mapping and characterization of a hybrid-male sterility gene, Odysseus (Ods). Genetics 134, 261–275 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Ting, C.-T., Tsaur, S.-C., Wu, M.-L. & Wu, C.-I. A rapidly evolving homeobox at the site of a hybrid sterility gene. Science 282, 1501–1504 (1998).

    Article  CAS  PubMed  Google Scholar 

  120. Sun, S., Ting, C.-T. & Wu, C.-I. The normal function of a speciation gene, Odysseus, and its hybrid sterility effect. Science 305, 81–83 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Greenberg, A. J., Moran, J. R., Coyne, J. A. & Wu, C.-I. Ecological adaptation during incipient speciation revealed by precise gene replacement. Science 302, 1754–1757 (2003).

    Article  CAS  PubMed  Google Scholar 

  122. Rong, Y. S. & Golic, K. G. Gene targeting by homologous recombination in Drosophila. Science 288, 2013–2018 (2000).

    Article  CAS  PubMed  Google Scholar 

  123. Coyne, J. A. & Elwyn, S. Does the desaturase-2 locus in Drosophila melanogaster cause adaptation and sexual isolation? Evolution 60, 279–291 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Presgraves, D. C. A fine-scale genetic analysis of hybrid incompatibilities in Drosophila. Genetics 163, 955–972 (2003). This author thoroughly scanned the D. simulans genome for autosomal hybrid inviability factors when paired with a D. melanogaster X chromosome, identified the locations of at least 20 such factors, and estimated that recessive incompatibility factors were about eightfold more abundant than dominant ones.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Presgraves, D. C., Balagopalan, L., Abmayr, S. M. & Orr, H. A. Adaptive evolution drives divergence of a hybrid inviability gene between two species of Drosophila. Nature 423, 715–719 (2003).

    Article  CAS  PubMed  Google Scholar 

  126. Rawson, P. D. & Burton, R. S. Functional coadaptation between cytochrome c and cytochrome c oxidase within allopatric populations of a marine copepod. Proc. Natl Acad. Sci. USA 99, 12955–12958 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Harrison, J. S. & Burton, R. S. Tracing hybrid incompatibilities to single amino acid substitutions. Mol. Biol. Evol. 23, 559–564 (2006). The first study to identify a particular single amino-acid change that is sufficient to contribute to a likely barrier to gene flow between copepod populations.

    Article  CAS  PubMed  Google Scholar 

  128. Willett, C. S. & Burton, R. S. Viability of cytochrome c genotypes depends on cytoplasmic backgrounds in Tigriopus californicus. Evolution 55, 1592–1599 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. Willett, C. S. & Burton, R. S. Environmental influences on epistatic interactions: viabilities of cytochrome c genotypes in interpopulation crosses. Evolution 57, 2286–2292 (2003).

    Article  PubMed  Google Scholar 

  130. Noor, M. A. F. Evolutionary biology: genes to make new species. Nature 423, 699–700 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Wu, C.-I. & Ting, C.-T. Genes and speciation. Nature Rev. Genet. 5, 114–122 (2004).

    Article  CAS  PubMed  Google Scholar 

  132. Michalak, P. & Noor, M. A. F. Genome-wide patterns of expression in Drosophila pure species and hybrid males. Mol. Biol. Evol. 20, 1070–1076 (2003).

    Article  CAS  PubMed  Google Scholar 

  133. Dobzhansky, T. Studies of hybrid sterility. II. Localization of sterility factors in Drosophila pseudoobscura hybrids. Genetics 21, 113–135 (1936).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Knowles, L. L. & Maddison, W. P. Statistical phylogeography. Mol. Ecol. 11, 2623–2635 (2002).

    Article  PubMed  Google Scholar 

  135. Shimodaira, H. & Hasegawa, M. Multiple comparisons of Log-likelihoods with applications to phylogenetic inference. Mol. Biol. Evol. 16, 1114–1116 (1999).

    Article  CAS  Google Scholar 

  136. Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Patterson, N., Richter, D. J., Gnerre, S., Lander, E. S. & Reich, D. Genetic evidence for complex speciation of humans and chimpanzees. Nature 441, 1103–1108 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. Palumbi, S. R. All males are not created equal: fertility differences depend on gamete recognition polymorphisms in sea urchins. Proc. Natl Acad. Sci. USA 96, 12632–12637 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. McCartney, M. A. & Lessios, H. A. Adaptive evolution of sperm bindin tracks egg incompatibility in neotropical sea urchins of the genus Echinometra. Mol. Biol. Evol. 21, 732–745 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Willett, C. S. Deleterious epistatic interactions between electron transport system protein-coding loci in the copepod Tigriopus californicus. Genetics 173, 1465–1477 (2006). This study presents the unexpected (and unexplained) finding that hybrid incompatibility is more strongly associated with heterozygote/homozygote deleterious interactions than homozygote/homozygote (recessive) deleterious interactions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Dallerac, R. et al. A Δ9 desaturase gene with a different substrate specificity is responsible for the cuticular diene hydrocarbon polymorphism in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 97, 9449–9454 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Fang, S., Takahashi, A. & Wu, C.-I. A mutation in the promoter of desaturase 2 is correlated with sexual isolation between Drosophila behavioral races. Genetics 162, 781–784 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Barbash, D. A., Roote, J. & Ashburner, M. The Drosophila melanogaster Hybrid male rescue gene causes inviability in male and female species hybrids. Genetics 154, 1747–1771 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Barbash, D. A., Siino, D. F., Tarone, A. M. & Roote, J. A rapidly evolving MYB-related protein causes species isolation in Drosophila. Proc. Natl Acad. Sci. USA 100, 5302–5307 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Orr, H. A. & Irving, S. Genetic analysis of the Hybrid male rescue locus of Drosophila. Genetics 155, 225–231 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Swanson, W. J. & Vacquier, D. The abalone egg vitelline envelope receptor for sperm lysin is a giant multivalent molecule. Proc. Natl Acad. Sci. USA 94, 6724–6729 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Shaw, A., McRee, D. E., Vacquier, V. D. & Stout, C. D. The crystal structure of lysin, a fertilization protein. Science 262, 1864–1867 (1993).

    Article  CAS  PubMed  Google Scholar 

  148. Perez, D. E. & Wu, C.-I. Further characterization of the Odysseus locus of hybrid sterility in Drosophila: one gene is not enough. Genetics 140, 201–206 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Ritchie, M. G., Halsey, E. J. & Gleason, J. M. Drosophila song as a species-specific mating signal and the behavioural importance of Kyriacou & Hall cycles in D. melanogaster song. Anim. Behav. 58, 649–657 (1999).

    Article  CAS  PubMed  Google Scholar 

  150. Alt, S., Ringo, J., Talyn, B., Bray, W. & Dowse, H. The period gene controls cycles in courtship song of Drosophila melanogaster. Anim. Behav. 56, 87–97 (1998).

    Article  CAS  PubMed  Google Scholar 

  151. Wheeler, D. A. et al. Molecular transfer of a species-specific behavior from Drosophila simulans to Drosophila melanogaster. Science 251, 1082–1085 (1991).

    Article  CAS  PubMed  Google Scholar 

  152. Ritchie, M. G. & Kyriacou, C. P. Reproductive isolation and the period gene of Drosophila. Mol. Ecol. 3, 595–599 (1994).

    Article  CAS  PubMed  Google Scholar 

  153. Walter, R. B. & Kazianis, S. Xiphophorus interspecies hybrids as genetic models of induced neoplasia. ILAR J. 42, 299–321 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Johnson, J. P. Masly, D. Presgraves, M. Taylor and anonymous reviewers for helpful comments on this manuscript. Our research programmes are funded by grants from the US National Science Foundation.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Noor laboratory homepage

Glossary

Gene flow

The movement of alleles between local populations that is due to the migration of individuals.

Hybrid zone

A location where the hybrid offspring of two divergent, partially geographically overlapping groups are prevalent. Hybrid zones are sometimes stable for many generations and there is often variation in the fitness of hybrids within the zone.

Genomic conflict

Competition within a genome for transmission to or success of gametes.

Introgression

The movement of alleles from one species into the gene pool of another through repeated backcrossing of an interspecies hybrid with one of the parent species.

Backcross

The mating of an individual with its parent, or with an individual of the same genotype as its parent, to follow the inheritance of alleles and phenotypes.

Transplant studies

Studies in which organisms are moved from a native to an introduced setting to examine the effects of the environment or of related species.

Admixture

The mixing of genetically differentiated groups.

Cline

The gradual change of a genotype or phenotype in a species over a geographical area that is often associated with an environmental gradient.

Divergence-with-gene-flow speciation

Speciation that progresses without the complete absence of gene exchange between diverging taxa. This type of speciation includes but is not limited to sympatric speciation.

Sympatric speciation

Speciation through divergence in geographically overlapping taxa.

Hybrid speciation

Hybridization between two species gives rise to a new, pure-breeding taxon.

Pyrosequencing

A method for DNA sequencing, in which the inorganic pyrophosphate that is released from a nucleoside triphosphate on DNA chain elongation is detected by a bioluminometric assay.

Microspheres

(Also known as microparticles or microbeads). Small 1–100 μm diameter particles that are used as solid supports in bioassays. They can carry a probe or primer, and can contain internal magnetic compounds to allow magnetic separation or internal fluorescent compounds for labelling.

Nested clade analysis

A coalescent approach to disentangling the effects of long-term population history from gene flow by reconstructing the sequence of events that have generated the current genetic pattern among populations within a species.

FST

A measure of population subdivision that is based on genetic polymorphism data derived from comparing the genetic variability within and between populations.

GST

An extension of the FST measure for multiple alleles, where GST is equal to the weighted average of FST for all alleles.

DArT

Short for 'diversity arrays technology'; this is a technique for analysing DNA polymorphism, which is based on hybridization to microarrays, that does not require DNA sequence information.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noor, M., Feder, J. Speciation genetics: evolving approaches. Nat Rev Genet 7, 851–861 (2006). https://doi.org/10.1038/nrg1968

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1968

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing