Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

How flies get their size: genetics meets physiology

Key Points

  • Body size affects important fitness variables such as mate selection, predation and tolerance to heat, cold and starvation. It is therefore subject to intense evolutionary selection.

  • Insects have a genetically defined 'critical weight', the attainment of which triggers hormonal signalling that leads to the cessation of feeding and then metamorphosis. Because adult insects do not grow, the critical weight, combined with growth that is accrued afterwards but before metamorphosis, during the 'interval to cessation of growth' (ICG), are thought to determine the final adult size.

  • Growth during the ICG can be substantial, accounting for as much as 80% of adult weight in Drosophila melanogaster. Growth rates are affected by diet, temperature and genotype.

  • Insulin/insulin-like growth factor signalling (IIS) and TOR signalling have been characterized as important, nutrition-dependent, positive regulators of cell growth during the ICG. As such, these signalling systems affect body size.

  • IIS and TOR activity in the prothoracic gland enhance its ability to produce ecdysone. Ecdysone in turn reduces cell growth rates and also promotes metamorphosis, and therefore acts in a negative-feedback loop in controlling body size.

  • How cell numbers and allometric growth are controlled remain poorly understood topics, as does the mechanism that determines critical weight. Progress on these problems will be important in understanding the large variations in cell numbers and body sizes that are seen among related species in the wild.

Abstract

Body size affects important fitness variables such as mate selection, predation and tolerance to heat, cold and starvation. It is therefore subject to intense evolutionary selection. Recent genetic and physiological studies in insects are providing predictions as to which gene systems are likely to be targeted in selecting for changes in body size. These studies highlight genes and pathways that also control size in mammals: insects use insulin-like growth factor (IGF) and Target of rapamycin (TOR) kinase signalling to coordinate nutrition with cell growth, and steroid and neuropeptide hormones to terminate feeding after a genetically encoded target weight is achieved. However, we still understand little about how size is actually sensed, or how organ-intrinsic size controls interface with whole-body physiology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Endocrine communication between the organs involved in growth control.
Figure 2: Control of growth during the final larval instar.

Similar content being viewed by others

References

  1. Stern, D. L. & Emlen, D. J. The developmental basis for allometry in insects. Development 126, 1091–1101 (1999).A creative and authoratative review that summarizes the most important findings that are relevant to allometry in insects.

    CAS  PubMed  Google Scholar 

  2. Nijhout, H. F. The control of body size in insects. Dev. Biol. 261, 1–9 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Day, S. J. & Lawrence, P. A. Measuring dimensions: the regulation of size and shape. Development 127, 2977–2987 (2000).

    CAS  PubMed  Google Scholar 

  4. Beadle, G., Tatum, E. & Clancy, C. Food level in relation to rate of development and eye pigmentation in Drosophila melanogaster. Biol. Bull. 75, 447–462 (1938).The classic paper on critical weight.

    Article  Google Scholar 

  5. Bakker, K. Feeding period, growth, and pupation in larvae of Drosophila melanogaster. Entomol. Epis. Appl. 2, 171–186 (1959).

    Article  Google Scholar 

  6. Robertson, F. W. The ecological genetics of growth in Drosophila. 6. The genetic correlation between the duration of the larval period and body size in relation to larval diet. Genet. Res. 4, 74–92 (1963).

    Article  Google Scholar 

  7. Nijhout, H. F. & Williams, C. M. Control of moulting and metamorphosis in the tobacco hornworm, Manduca sexta (L.): growth of the last-instar larva and the decision to pupate. J. Exp. Biol. 61, 481–491 (1974).

    CAS  PubMed  Google Scholar 

  8. Davidowitz, G., D'Amico, L. J. & Nijhout, H. F. Critical weight in the development of insect body size. Evol. Dev. 5, 188–197 (2003).An important study that defines critical weight in M. sexta , and shows that it is affected by diet.

    Article  PubMed  Google Scholar 

  9. Nijhout, H. F., Davidowitz, G., Roff, D. A. A quantitative analysis of the mechanism that controls body size in Manduca sexta. 5, e16 (2006).A quantitative and theoretical treatise that rigorously evaluates the model that is shown in Figure 2.

  10. De Moed, G. H., Kruitwagen, C. L. J. J., De Jong, G. & Scharloo, W. Critical weight for the induction of pupariation in Drosophila melanogaster: genetic and environmental variation. J. Evol. Biol. 12, 852–858 (1999).This paper discusses how critical weight is measured in D. melanogaster , and shows that it is affected by genotype.

    Article  Google Scholar 

  11. D'Amico, L. J., Davidowitz, G. & Nijhout, H. F. The developmental and physiological basis of body size evolution in an insect. Proc. Biol. Sci. 268, 1589–1593 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ashburner, M. Drosophila, A Laboratory Handbook (Cold Sping Harbor Press, Cold Spring Harbor, 1989).

    Google Scholar 

  13. Britton, J. S. & Edgar, B. A. Environmental control of the cell cycle in Drosophila: nutrition activates mitotic and endoreplicative cells by distinct mechanisms. Development 125, 2149–2158 (1998).

    CAS  PubMed  Google Scholar 

  14. Kim, S. K. & Rulifson, E. J. Conserved mechanisms of glucose sensing and regulation by Drosophila corpora cardiaca cells. Nature 431, 316–320 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Lee, G. & Park, J. H. Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by genetic manipulations of the adipokinetic hormone-encoding gene in Drosophila melanogaster. Genetics 167, 311–323 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Broughton, S. J. et al. Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proc. Natl Acad. Sci. USA 102, 3105–3110 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rulifson, E. J., Kim, S. K. & Nusse, R. Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes. Science 296, 1118–1120 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Shingleton, A. W., Das, J., Vinicius, L. & Stern, D. L. The temporal requirements for insulin signaling during development in Drosophila. PLoS Biol. 3, e289 (2005).A thorough study of the function of the roles of InR in growth control in D. melanogaster , delineating its temporal requirements and identifying its role in allometric growth.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu, Q. & Brown, M. R. Signaling and function of insulin-like peptides in insects. Annu. Rev. Entomol. 51, 1–24 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Efstradiatis, A. Genetics of mouse growth. Int. J. Dev. Biol. 42, 955–976 (1998).

    Google Scholar 

  21. Baserga, R. in Cell Growth (eds Hall, M. N., Raff, M. & Thomas, G.) 235–262 (Cold Spring Harbor Press, Cold Spring Harbor, 2004).

    Google Scholar 

  22. McGuire, S. E., Roman, G. & Davis, R. L. Gene expression systems in Drosophila: a synthesis of time and space. Trends Genet. 20, 384–391 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Oldham, S. & Hafen, E. Insulin/IGF and target of rapamycin signaling: a TOR de force in growth control. Trends Cell Biol. 13, 79–85 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Britton, J. S., Lockwood, W. K., Li, L., Cohen, S. M. & Edgar, B. A. Drosophila's insulin/PI3-kinase pathway coordinates cellular metabolism with nutritional conditions. Dev. Cell 2, 239–249 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Oldham, S. et al. The Drosophila insulin/IGF receptor controls growth and size by modulating PtdInsP(3) levels. Development 129, 4103–4109 (2002).

    CAS  PubMed  Google Scholar 

  26. Bohni, R. et al. Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS1–4. Cell 97, 865–875 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Brogiolo, W. et al. An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr. Biol. 11, 213–221 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Ikeya, T., Galic, M., Belawat, P., Nairz, K. & Hafen, E. Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila. Curr. Biol. 12, 1293 (2002).The most comprehensive of several studies that show that increased ILP expression can increase adult body size in D. melanogaster.

    Article  CAS  PubMed  Google Scholar 

  29. Chen, C., Jack, J. & Garofalo, R. S. The Drosophila insulin receptor is required for normal growth. Endocrinology 137, 846–856 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Shingleton, A. W. Body-size regulation: combining genetics and physiology. Curr. Biol. 15, R825–R827 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, H., Stallock, J. P., Ng, J. C., Reinhard, C. & Neufeld, T. P. Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes & Dev. 14, 2712–2724 (2000).

    Article  CAS  Google Scholar 

  32. Oldham, S., Montagne, J., Radimerski, T., Thomas, G. & Hafen, E. Genetic and biochemical characterization of dTOR, the Drosophila homolog of the target of rapamycin. Genes Dev. 14, 2689–2694 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Junger, M. A. et al. The Drosophila forkhead transcription factor FOXO mediates the reduction in cell number associated with reduced insulin signaling. J. Biol. 2, 20 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kramer, J. M., Davidge, J. T., Lockyer, J. M. & Staveley, B. E. Expression of Drosophila FOXO regulates growth and can phenocopy starvation. BMC Dev. Biol. 3, 5 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wullschleger, S., Loewith, R. & Hall, M. N. TOR signaling in growth and metabolism. Cell 124, 471–484 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Colombani, J. et al. A nutrient sensor mechanism controls Drosophila growth. Cell 114, 739–749 (2003).An interesting and creative study that implicates the fat body as an important regulator of IIS signalling, and non-autonomous growth in D. melanogaster.

    Article  CAS  PubMed  Google Scholar 

  37. Radimerski, T. et al. dS6K regulated cell growth is dPKB/dPI3K independent, but requires dPDK1. Nature Cell Biol. 4, 251–255 (2001).

    Article  CAS  Google Scholar 

  38. Sarbassov, D. D., Guertin, D. A., Ali, S. M. & Sabatini, D. M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307, 1098–1101 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Puig, O. & Tjian, R. Transcriptional feedback control of insulin receptor by dFOXO/FOXO1. Genes Dev. 19, 2435–2446 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Oldham, S., Bohni, R., Stocker, H., Brogiolo, W. & Hafen, E. Genetic control of size in Drosophila. Philos. Trans. R. Soc. Lond. B Biol. Sci. 355, 945–952 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Masumura, M., Satake, S., Saegusa, H. & Mizoguchi, A. Glucose stimulates the release of bombyxin, an insulin-related peptide of the silkworm Bombyx mori. Gen. Comp. Endocrinol. 118, 393–399 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Saucedo, L. J. et al. Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nature Cell Biol. 5, 566–571 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Rusten, T. E. et al. Programmed autophagy in the Drosophila fat body is induced by ecdysone through regulation of the PI3K pathway. Dev. Cell 7, 179–192 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Scott, R. C., Schuldiner, O. & Neufeld, T. P. Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev. Cell 7, 167–178 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Truman, J. W. et al. Juvenile hormone is required to couple imaginal disc formation with nutrition in insects. Science 312, 1385–1388 (2006).A provocative and sometimes perplexing study that details the relationship between juvenile hormones and nutrition as regulators of growth in the late-forming eye and wing discs of M. sexta.

    Article  CAS  PubMed  Google Scholar 

  46. Davis, K. T. & Shearn, A. In vitro growth of imaginal disks from Drosophila melanogaster. Science 196, 438–440 (1977).

    Article  CAS  PubMed  Google Scholar 

  47. Hwangbo, D. S., Gershman, B., Tu, M. P., Palmer, M. & Tatar, M. Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature 429, 562–566 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Kawamura, K., Shibata, T., Saget, O., Peel, D. & Bryant, P. J. A new family of growth factors produced by the fat body and active on Drosophila imaginal disc cells. Development 126, 211–219 (1999).

    CAS  PubMed  Google Scholar 

  49. Zurovec, M., Dolezal, T., Gazi, M., Pavlova, E. & Bryant, P. J. Adenosine deaminase-related growth factors stimulate cell proliferation in Drosophila by depleting extracellular adenosine. Proc. Natl Acad. Sci. USA 99, 4403–4408 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dolezal, T., Dolezelova, E., Zurovec, M. & Bryant, P. J. A role for adenosine deaminase in Drosophila larval development. PLoS Biol. 3, e201 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Colombani, J. et al. Antagonistic actions of ecdysone and insulins determine final size in Drosophila. Science 310, 667–670 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Mirth, C., Truman, J. W. & Riddiford, L. M. The role of the prothoracic gland in determining critical weight for metamorphosis in Drosophila melanogaster. Curr. Biol. 15, 1796–1807 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Caldwell, P. E., Walkiewicz, M. & Stern, M. Ras activity in the Drosophila prothoracic gland regulates body size and developmental rate via ecdysone release. Curr. Biol. 15, 1785–1795 (2005).References 51–53 demonstrate that IIS activity in the prothoracic gland stimulates ecdysone production and thereby reduces adult size. Reference 53 also shows that Ras–MAPK activity has a similar effect.

    Article  CAS  PubMed  Google Scholar 

  54. Riddiford, L. M. in The Development of Drosophila melanogaster (eds Bate, M. & Martinez Arias, A.) 899–939 (Cold Spring Harbor Lab. Press, Cold Spring Harbor, 1993).

    Google Scholar 

  55. Riddiford, L. M., Cherbas, P. & Truman, J. W. Ecdysone receptors and their biological actions. Vitam. Horm. 60, 1–73 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Nijhout, H. F. & Grunert, L. W. Bombyxin is a growth factor for wing imaginal disks in Lepidoptera. Proc. Natl Acad. Sci. USA 99, 15446–15450 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Champlin, D. T. & Truman, J. W. Ecdysteroid coordinates optic lobe neurogenesis via a nitric oxide signaling pathway. Development 127, 3543–3551 (2000).

    CAS  PubMed  Google Scholar 

  58. De Jong, G. & Bochdanovits, Z. Latitudinal clines in Drosophila melanogaster: body size, allozyme frequencies, inversion frequencies, and the insulin-signalling pathway. J. Genet. 82, 207–223 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Edgar, B. & Nijhout, H. F. in Cell Growth: Control of Cell Size (eds Hall, M. N., Raff, M. & Thomas, G.) 23–83 (Cold Spring Harbor Lab. Press, Cold Spring Harbor, 2004).

    Google Scholar 

  60. Frei, C., Galloni, M., Hafen, E. & Edgar, B. A. The Drosophila mitochondrial ribosomal protein mRpL12 is required for Cyclin D/Cdk4-driven growth. EMBO J. 24, 623–634 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Grewal, S. S., Li, L., Orian, A., Eisenman, R. N. & Edgar, B. A. Myc-dependent regulation of ribosomal RNA synthesis during Drosophila development. Nature Cell Biol. 7, 295–302 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Datar, S. A., Jacobs, H. W., de la Cruz, A. F., Lehner, C. F. & Edgar, B. A. The Drosophila cyclin D–Cdk4 complex promotes cellular growth. EMBO J. 19, 4543–4554 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zwaan, B. J., Azevedo, R. B., James, A. C., Van' t Land, J. & Partridge, L. Cellular basis of wing size variation in Drosophila melanogaster: a comparison of latitudinal clines on two continents. Heredity 84, 338–347 (2000).

    Article  PubMed  Google Scholar 

  64. Emlen, D. J., Szafran, Q., Corley, L. S. & Dworkin, I. Insulin signaling and limb-patterning: candidate pathways for the origin and evolutionary diversification of beetle 'horns'. Heredity 97, 179–191 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Bryant, P. J. & Levinson, P. Intrinsic growth control in the imaginal primordia of Drosophila, and the autonomous action of a lethal mutation causing overgrowth. Dev. Biol. 107, 355–363 (1985).

    Article  CAS  PubMed  Google Scholar 

  66. Zitnan, D., Sehnal, F. & Bryant, P. J. Neurons producing specific neuropeptides in the central nervous system of normal and pupariation-delayed Drosophila. Dev. Biol. 156, 117–135 (1993).

    Article  CAS  PubMed  Google Scholar 

  67. Sehnal, F. & Bryant, P. J. Delayed pupariation in Drosophila imaginal disc overgrowth mutants is associated with reduced ecdysteroid titer. J. Insect Physiol. 12, 1051–1059. (1993).

    Article  Google Scholar 

  68. Brumby, A. M. & Richardson, H. E. Using Drosophila melanogaster to map human cancer pathways. Nature Rev. Cancer 5, 626–639 (2005).

    Article  CAS  Google Scholar 

  69. Shearn, A., Rice, T., Garen, A. & Gehring, W. Imaginal disc abnormalities in lethal mutants of Drosophila. Proc. Natl Acad. Sci. USA 68, 2594–2598 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shearn, A. & Garen, A. Genetic control of imaginal disc development in Drosophila. Proc. Natl Acad. Sci. USA 71, 1393–1397 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Szabad, J. & Bryant, P. J. The mode of action of ''discless'' mutations in Drosophila melanogaster. Dev. Biol. 93, 240–256 (1982).

    Article  CAS  PubMed  Google Scholar 

  72. Browder, M. H., D'Amico, L. J. & Nijhout, H. F. The role of low levels of juvenile hormone esterase in the metamorphosis of Manduca sexta. J. Insect Sci. 1, 11 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. King-Jones, K., Charles, J. P., Lam, G. & Thummel, C. S. The ecdysone-induced DHR4 orphan nuclear receptor coordinates growth and maturation in Drosophila. Cell 121, 773–784 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Calboli, F. C., Gilchrist, G. W. & Partridge, L. Different cell size and cell number contribution in two newly established and one ancient body size cline of Drosophila subobscura. Evolution 57, 566–573 (2003).

    Article  PubMed  Google Scholar 

  75. Bryant, P. J. & Levinson, P. Intrinsic growth control in the imaginal primordia of Drosophila, and the autonomous action of a lethal mutation causing overgrowth. Dev. Biol. 107, 355–363 (1985).

    Article  CAS  PubMed  Google Scholar 

  76. Truman, J. W. & Bate, M. Spatial and temporal patterns of neurogenesis in the central nervous system of Drosophila melanogaster. Dev. Biol. 125, 145–157 (1988).

    Article  CAS  PubMed  Google Scholar 

  77. Sears, K. E., Behringer, R. R., Rasweiler, J. J. T. & Niswander, L. A. Development of bat flight: morphologic and molecular evolution of bat wing digits. Proc. Natl Acad. Sci. USA 103, 6581–6586 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Emlen, D. J. & Nijhout, H. F. The development and evolution of exaggerated morphologies in insects. Annu. Rev. Entomol. 45, 661–708 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Davidowitz, G. & Nijhout, H. F. The physiological basis of reaction norms: the interaction among growth rate, the duration of growth and body size. Integr. Comp. Biol. 144, 443–449 (2004).

    Article  Google Scholar 

  80. Atkinson, D. Temperature and organism size — a biological law for ectotherms? Adv. Ecol. Res. 25, 1–58 (1994).

    Article  Google Scholar 

  81. French, V., Feast, M. & Partridge, L. Body size and cell size in Drosophila: the developmental response to temperature. J. Insect Physiol. 44, 1081–1089 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Azevedo, R. B. R., French, V. & Partridge, L. Temperature modulates epidermal cell size in Drosophila melanogaster. J. Insect Physiol. 48, 231–237 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Puig, O., Marr, M. T., Ruhf, M. L. & Tjian, R. Control of cell number by Drosophila FOXO: downstream and feedback regulation of the insulin receptor pathway. Genes Dev. 17, 2006–2020 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hennig, K. M., Colombani, J. & Neufeld, T. P. TOR coordinates bulk and targeted endocytosis in the Drosophila melanogaster fat body to regulate cell growth. J. Cell Biol. 173, 963–974 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. MacWhinnie, S. G. et al. The role of nutrition in creation of the eye imaginal disc and initiation of metamorphosis in Manduca sexta. Dev. Biol. 285, 285–297 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Flatt, T., Tu, M. P. & Tatar, M. Hormonal pleiotropy and the juvenile hormone regulation of Drosophila development and life history. BioEssays 27, 999–1010 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Yamanaka, N. et al. From the cover: regulation of insect steroid hormone biosynthesis by innervating peptidergic neurons. Proc. Natl Acad. Sci. USA 103, 8622–8627 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Shafiei, M., Moczek, A. P. & Nijhout, H. F. Food availability controls the onset of metamorphosis in the dung beetle Onthophagus taurus (Coleoptera: Scarabeidae). Physiol. Entomol. 26, 173–180 (2001).

    Article  Google Scholar 

  89. Riddiford, L. M., Hiruma, K., Zhou, X. & Nelson, C. A. Insights into the molecular basis of the hormonal control of molting and metamorphosis from Manduca sexta and Drosophila melanogaster. Insect Biochem. Mol. Biol. 33, 1327–1338 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Truman, J. W. & Riddiford, L. M. Physiology of insect rhythms. 3. The temporal organization of the endocrine events underlying pupation of the tobacco hornworm. J. Exp. Biol. 60, 371–382 (1974).

    CAS  PubMed  Google Scholar 

  91. Parvy, J. P. et al. A role for bFTZ-F1 in regulating ecdysteroid titers during post-embryonic development in Drosophila melanogaster. Dev. Biol. 282, 84–94 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. James, A. C., Azevedo, R. B. & Partridge, L. Cellular basis and developmental timing in a size cline of Drosophila melanogaster. Genetics 140, 659–666 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Partridge, L., Barrie, B. Fowler K. & French, V. Evolution and development of body size and cell size in Drosophila melanogaster in response to temperature. Evolution 48, 1269–1276 (1994).

    Article  PubMed  Google Scholar 

  94. Partridge, L., Langelan, R., Fowler, K., Zwaan, B. & French, V. Correlated responses to selection on body size in Drosophila melanogaster. Genet. Res. 74, 43–54 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Gockel, J., Kennington, W. J., Hoffmann, A., Goldstein, D. B. & Partridge, L. Nonclinality of molecular variation implicates selection in maintaining a morphological cline of Drosophila melanogaster. Genetics 158, 319–323 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce A. Edgar.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Edgar laboratory homepage

Glossary

Fat body

A mesoderm-derived energy-storage organ that fulfils the functions that are assumed by the liver and adipose tissues in mammals.

Adipokinetic hormones

Peptide hormones with functions analogous to glucagons, produced by the corpora cardiaca, a portion of the ring gland. These hormones stimulate the mobilization of stored fat and carbohydrates from the fat body upon starvation.

Insulin-like peptides

(ILPs). Peptide hormones that are homologous to vertebrate insulins and insulin-like growth factors. ILPs are produced by medial neurosecretory cells in the brain, as well as the gut and imaginal discs. These ligands bind the insulin receptor and promote cellular glucose import, energy storage in the form of glycogen and triglycerides, and cell growth. Drosophila melanogaster has seven paralogous genes. Orthologous genes in the silk moth, Bombyx mori, are called bombyxins.

Cell autonomous

If the activity of a gene has effects only in the cells that express it, its function is said to be cell autonomous; if it causes effects in cells other than (or in addition to) those that express it, its function is cell non-autonomous.

Intracellular second messenger

A signalling molecule in cells, the concentration of which changes on the binding of an extracellular ligand to a plasma-membrane-bound receptor.

20-hydroxyecdysone

(20E). The insect moulting hormone, a steroid. The pro-hormone ecdysone is produced by the prothoracic gland. Ecdysone is then converted into active 20E by the fat body, malpighian tubules (analogous to the kidneys) and possibly the epidermis.

Juvenile hormone

(JH). A sesquiterpene produced by the corpora allata, which is a portion of the ring gland. JH promotes juvenile (larval) development and inhibits metamorphosis. It is degraded, in part, by juvenile hormone esterase, which is produced by the fat body and malpighian tubules (kidney).

Prothoracicotropic hormone

(PTTH). A neuropetide that is secreted by cells in the brain. PTTH stimulates ecdysone production by the prothoracic gland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edgar, B. How flies get their size: genetics meets physiology. Nat Rev Genet 7, 907–916 (2006). https://doi.org/10.1038/nrg1989

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1989

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing