Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The epigenetic regulation of mammalian telomeres

Key Points

  • Telomeres are specialized chromatin structures located at the ends of chromosomes that protect chromosome ends from repair and degradation activities. Telomeres consist of G-rich repeats, which are bound by telomere-repeat-binding factors.

  • Telomerase is a cellular reverse transcriptase that synthesizes telomeric repeats de novo at chromosome ends. Recombination between telomeric sequences can also lead to telomere elongation independently of telomerase.

  • Telomeres and subtelomeres contain histone and DNA modifications that are also enriched at constitutive heterochromatin domains, such as those of pericentric heterochromatin.

  • From yeast to mammals, loss of heterochromatic marks at telomeres and subtelomeres results in telomere-length deregulation and disruption of telomeric silencing, or TPE (the transcriptional repression of genes located near the telomeres).

  • Loss of either histone methylation or DNA methylation at mammalian telomeres or subtelomeres also leads to de-repression of telomere recombination.

  • Histone- and DNA-methylation defects are associated with several human diseases, including cancer. These defects could have an impact on telomere-length regulation, and therefore contribute to disease phenotypes.

  • Telomere shortening to a critically short length leads to epigenetic defects at mammalian telomeres and subtelomeres, characterized by decreased histone and DNA methylation and increased histone acetylation.

  • Histone and DNA modifications provide a mechanism by which telomere repeats are counted and autoregulated.

  • Various diseases associated with ageing, including cancer and a number of premature ageing syndromes, are characterized by critically short telomeres, which in turn could affect the epigenetic status of telomeres and subtelomeres.

Abstract

Increasing evidence indicates that chromatin modifications are important regulators of mammalian telomeres. Telomeres provide well studied paradigms of heterochromatin formation in yeast and flies, and recent studies have shown that mammalian telomeres and subtelomeric regions are also enriched in epigenetic marks that are characteristic of heterochromatin. Furthermore, the abrogation of master epigenetic regulators, such as histone methyltransferases and DNA methyltransferases, correlates with loss of telomere-length control, and telomere shortening to a critical length affects the epigenetic status of telomeres and subtelomeres. These links between epigenetic status and telomere-length regulation provide important new avenues for understanding processes such as cancer development and ageing, which are characterized by telomere-length defects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of telomeres and subtelomeres in yeast and mammals.
Figure 2: Epigenetic modifications at mammalian pericentromeric and telomeric regions.
Figure 3: A model for the role of epigenetic modifications in telomere-length control.
Figure 4: Epigenetic defects at telomeres and human disease.

Similar content being viewed by others

References

  1. de Lange, T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 19, 2100–2110 (2005). A must-read review on the protein composition of mammalian telomeres and their role in the regulation of telomere length and telomere capping.

    Article  CAS  PubMed  Google Scholar 

  2. Chan, S. W. & Blackburn, E. H. New ways not to make ends meet: telomerase, DNA damage proteins and heterochromatin. Oncogene 21, 553–563 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Liu, D., O'Connor, M. S., Qin, J. & Songyang, Z. Telosome, a mammalian telomere-associated complex formed by multiple telomeric proteins. J. Biol. Chem. 279, 51338–51342 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Collins, K. & Mitchell, J. R. Telomerase in the human organism. Oncogene 21, 564–579 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Muntoni, A. & Reddel, R. R. The first molecular details of ALT in human tumor cells. Hum. Mol. Genet. 14, 191–196 (2005).

    Article  Google Scholar 

  6. Dunham, M. A., Neumann, A. A., Fasching, C. L. & Reddel, R. R. Telomere maintenance by recombination in human cells. Nature Genet. 26, 447–450 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Slagboom, P. E., Droog, S. & Boomsma, D. I. Genetic determination of telomere size in humans: a twin study of three age groups. Am. J. Hum. Genet. 55, 876–882 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhu, L. et al. Telomere length regulation in mice is linked to a novel chromosome locus. Proc. Natl Acad. Sci. USA 95, 8648–8653 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Flores, I., Cayuela, M. L. & Blasco, M. A. Effects of telomerase and telomere length on epidermal stem cell behavior. Science 309, 1253–1256 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Blasco, M. A. et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91, 25–34 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Lee, H.-W., Blasco, M. A., Gottlieb, G. J., Greider, C. W. & DePinho, R. A. Essential role of mouse telomerase in highly proliferative organs. Nature 392, 569–574 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Herrera, E. et al. Disease states associated to telomerase deficiency appear earlier in mice with short telomeres. EMBO J. 18, 2950–2960 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mason, P. J., Wilson, D. B. & Bessler, M. Dyskeratosis congenita — a disease of dysfunctional telomere maintenance. Curr. Mol. Med. 5, 159–170 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Shay, J. W. & Wright, W. E. Telomerase therapeutics for cancer: challenges and new directions. Nature Rev. Drug Discov. 5, 577–584 (2006).

    Article  CAS  Google Scholar 

  15. Baur, J. A., Zou, Y., Shay, J. W. & Wright, W. E. Telomere position effect in human cells. Science 292, 2075 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Koering, C. E. et al. Human telomeric position effect is determined by chromosomal context and telomeric chromatin integrity. EMBO Rep. 3, 1055–1061 (2002). References 15 and 16 provide conclusive evidence that TPE (or 'silencing' of genes near the telomeres) operates in mammalian cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Makarov, V. L., Lejnine, S., Bedoyan, J. & Langmore, J. P. Nucleosomal organization of telomere-specific chromatin in rat. Cell 73, 775–787 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Tommerup, H., Dousmanis, A. & de Lange, T. Unusual chromatin in human telomeres. Mol. Cell. Biol. 14, 5777–5785 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Garcia-Cao, M., O'Sullivan, R., Peters, A. H., Jenuwein, T. & Blasco, M. A. Epigenetic regulation of telomere length in mammalian cells by the SUV39H1 and SUV39H2 histone methyltransferases. Nature Genet. 36, 94–99 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Gonzalo, S. et al. Role of the RB1 family in stabilizing histone methylation at constitutive heterochromatin. Nature Cell Biol. 7, 420–428 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Gonzalo, S. et al. DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nature Cell Biol. 8, 416–424 (2006). This work shows that mammalian subtelomeric DNA is heavily methylated, and that this epigenetic modification acts as a negative regulator of telomere length and telomere recombination independently of histone methylation.

    Article  CAS  PubMed  Google Scholar 

  22. Fraga, M. F. et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nature Genet. 37, 391–400 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. van Overveld, P. G. et al. Hypomethylation of D4Z4 in 4q-linked and non-4q-linked facioscapulohumeral muscular dystrophy. Nature Genet. 35, 315–317 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Garcia-Cao, M., Gonzalo, S., Dean, D. & Blasco, M. A. A role for the Rb family of proteins in controlling telomere length. Nature Genet. 32, 415–419 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Blasco, M. A. Telomeres and human disease: ageing, cancer and beyond. Nature Rev. Genet. 6, 611–622 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Griffith, J. D. et al. Mammalian telomeres end in a large duplex loop. Cell 97, 503–514 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. de Lange, T. T-loops and the origin of telomeres. Nature Rev. Mol. Cell Biol. 5, 323–329 (2004).

    Article  CAS  Google Scholar 

  28. Conrad, M. N., Wright, J. H., Wolf, A. J. & Zakian, V. A. Rap1 protein interacts with yeast telomeres in vivo: overproduction alters telomere structure and decreases chromosome stability. Cell 63, 739–750 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. Nugent, C. I., Hughes, T. R., Lue, N. F. & Lundblad, V. Cdc13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science 274, 249–252 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Tham, W. H. & Zakian, V. A. Transcriptional silencing at Saccharomyces telomeres: implications for other organisms. Oncogene 21, 512–521 (2002). A must-read review on budding yeast telomeric heterochromatin and its roles in controlling telomere length and telomeric silencing.

    Article  CAS  PubMed  Google Scholar 

  31. Marcand, S., Gilson, E. & Shore, D. A protein-counting mechanism for telomere length regulation in yeast. Science 275, 986–990 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Kyrion, G., Boakye, K. A. & Lustig, A. J. C-terminal truncation of RAP1 results in the deregulation of telomere size, stability, and function in Saccharomyces cerevisiae. Mol. Cell. Biol. 12, 5159–5173 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Krauskopf, A. & Blackburn, E. H. Control of telomere growth by interactions of RAP1 with the most distal telomeric repeats. Nature 383, 354–357 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Levy, D. L. & Blackburn, E. H. Counting of Rif1p and Rif2p on Saccharomyces cerevisiae telomeres regulates telomere length. Mol. Cell. Biol. 24, 10857–10867 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Palladino, F. et al. SIR3 and SIR4 proteins are required for the positioning and integrity of yeast telomeres. Cell 75, 543–555 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. Cooper, J. P., Nimmo, E. R., Allshire, R. C. & Cech, T. R. Regulation of telomere length and function by a MYB-domain protein in fission yeast. Nature 385, 744–747 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Baumann, P. & Cech, T. R. POT1, the putative telomere end-binding protein in fission yeast and humans. Science 292, 1171–1175 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Kanoh, J. & Ishikawa, F. spRap1 and spRif1, recruited to telomeres by Taz1, are essential for telomere function in fission yeast. Curr. Biol. 11, 1624–1630 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Ye, J. Z. et al. POT1-interacting protein PIP1: a telomere length regulator that recruits POT1 to the TIN2/TRF1 complex. Genes Dev. 18, 1649–1654 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu, D. et al. PTOP interacts with POT1 and regulates its localization to telomeres. Nature Cell Biol. 6, 673–680 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Smith, S., Giriat, I., Schmitt, A. & de Lange, T. Tankyrase, a poly(ADP-ribose) polymerase at human telomeres. Science 282, 1484–1487 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Celli, G. B. & de Lange, T. DNA processing is not required for ATM-mediated telomere damage response after TRF2 deletion. Nature Cell Biol. 7, 712–718 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Hockemeyer, D., Daniela, J. P., Takai, H. & de Lange, T. Recent expansion of the telomeric complex in rodents: two distinct POT1 proteins protect mouse telomeres. Cell 126, 63–77 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Zhu, X. D., Kuster, B., Mann, M., Petrini, J. H. & Lange, T. Cell-cycle-regulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres. Nature Genet. 25, 347–352 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Samper, E., Goytisolo, F. A., Slijepcevic, P., van Buul, P. P. & Blasco, M. A. Mammalian KU86 protein prevents telomeric fusions independently of the length of TTAGGG repeats and the G-strand overhang. EMBO Rep. 1, 244–252 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tarsounas, M. et al. Telomere maintenance requires the RAD51D recombination/repair protein. Cell 117, 337–347 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Karlseder, J. et al. The telomeric protein TRF2 binds the ATM kinase and can inhibit the ATM-dependent DNA damage response. PLoS Biol. 2, e240 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bradshaw, P. S., Stavropoulos, D. J & Meyn, M. S. Human telomeric protein TRF2 associates with genomic double-strand breaks as an early response to DNA damage. Nature Genet. 37, 193–197 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Oh, B.-K., Kim, Y.-J., Park, C. & Park, Y. N. Up-regulation of telomere-binding proteins, TRF1, TRF2, and TIN2 is related to telomere shortening during human multistep hepatocarcinogenesis. Am. J. Pathol. 166, 73–80 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Matsutani, N. et al. Expression of telomeric repeat binding factor 1 and 2 and TRF1-interacting nuclear protein 2 in human gastric carcinomas. Int. J. Oncol. 19, 507–512 (2001).

    CAS  PubMed  Google Scholar 

  51. Muñoz, P. et al. XPF nuclease-dependent telomere loss and increased DNA damage in mice overexpressing TRF2 result in premature aging and cancer. Nature Genet. 10, 1063 (2005).

    Article  CAS  Google Scholar 

  52. Nakanishi, K. et al. Expression of mRNAs for telomeric repeat binding factor (TRF)-1 and TRF2 in atypical adenomatous hyperplasia and adenocarcinoma of the lung. Clin. Cancer Res. 9, 1105–1111 (2003).

    CAS  PubMed  Google Scholar 

  53. Bellon, M. et al. Increased expression of telomere length regulating factors TRF1, TRF2 and TIN2 in patients with adult T-cell leukemia. Int. J. Cancer 119, 2090–2097 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Blanco, R., Muñ oz, P., Klatt, P., Flores, J. M. & Blasco, M. A. Telomerase abrogation dramatically accelerates TRF2-induced epithelial carcinogenesis. Genes Dev. 21, 206–220 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lazzerini Denchi, E., Celli, G. & de Lange, T. Hepatocytes with extensive telomere deprotection and fusion remain viable and regenerate liver mass through endoreduplication. Genes Dev. 20, 2648–2653 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Flores, I., Cayuela, M. L. & Blasco, M. A. Effects of telomerase and telomere length on epidermal stem cell behavior. Science 309, 1253–1256 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Sarin, K. Y. et al. Conditional telomerase induction causes proliferation of hair follicle stem cells. Nature 436, 1048–1052 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mason, J. M. & Biessmann, H. The unusual telomeres of Drosophila. Trends Genet. 11, 58–62 (1995).

    Article  CAS  PubMed  Google Scholar 

  59. Lundblad, V. & Blackburn, E. H. An alternative pathway for yeast telomere maintenance rescues est1- senescence. Cell 73, 347–360 (1993).

    Article  CAS  PubMed  Google Scholar 

  60. Lundblad, V. Telomere maintenance without telomerase. Oncogene 21, 522–531 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Le, S., Moore, J. K., Haber, J. E. & Greider, C. W. RAD50 and RAD51 define two pathways that collaborate to maintain telomeres in the absence of telomerase. Genetics 152, 143–152 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Teng, S. C. & Zakian, V. A. Telomere–telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 8083–8093 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hande, M. P., Samper, E., Lansdorp, P. & Blasco, M. A. Telomere length dynamics and chromosomal instability in cells derived from telomerase null mice. J. Cell Biol. 44, 589–601 (1999).

    Article  Google Scholar 

  64. Chang, S., Khoo, C. M., Naylor, M. L., Maser, R. S. & DePinho, R. A. Telomere-based crisis: functional differences between telomerase activation and ALT in tumor progression. Genes Dev. 17, 88–100 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Niida, H. et al. Telomere maintenance in telomerase-deficient mouse embryonic stem cells: characterization of an amplified telomeric DNA. Mol. Cell. Biol. 20, 4115–4127 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Herrera, E., Martinez, A. C. & Blasco, M. A. Impaired germinal center reaction in mice with short telomeres. EMBO J. 19, 472–481 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Laud, P. R. et al. Elevated telomere–telomere recombination in WRN-deficient, telomere dysfunctional cells promotes escape from senescence and engagement of the ALT pathway. Genes Dev. 19, 2560–2570 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wu, L. et al. Pot1 deficiency initiates DNA damage checkpoint activation and aberrant homologous recombination at telomeres. Cell 126, 49–62 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Levis, R., Hazelrigg, T. & Rubin, G. M. Effects of genomic position on the expression of transduced copies of the white gene of Drosophila. Science 229, 558–561 (1985).

    Article  CAS  PubMed  Google Scholar 

  70. Gottschling, D. E., Aparicio, O. M., Billington, B. L. & Zakian, V. A. Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63, 751–762 (1990).

    Article  CAS  PubMed  Google Scholar 

  71. Nimmo, E. R., Cranston, G. & Allshire, R. C. Telomere-associated chromosome breakage in fission yeast results in variegated expression of adjacent genes. EMBO J. 13, 3801–3811 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kyrion, G., Liu, K., Liu, C. & Lustig, A. J. RAP1 and telomere structure regulate telomere position effects in Saccharomyces cerevisiae. Genes Dev. 7, 1146–1159 (1993).

    Article  CAS  PubMed  Google Scholar 

  73. Aparicio, O. M., Billington, B. L. & Gottschling, D. E. Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell 66, 1279–1287 (1991).

    Article  CAS  PubMed  Google Scholar 

  74. Hecht, A., Laroche, T., Strahl-Bolsinger, S., Gasser, S. M. & Grunstein, M. Histone H3 and H4 N-termini interact with Sir3 and Sir4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell 80, 583–592 (1995). A molecular model for how heterochromatin is formed at budding yeast telomeres is first proposed here.

    Article  CAS  PubMed  Google Scholar 

  75. Moretti, P. & Shore, D. Multiple interactions in Sir protein recruitment by Rap1p at silencers and telomeres in yeast. Mol. Cell. Biol. 21, 8082–8094 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wright, J. H., Gottschling, D. E. & Zakian, V. A. Saccharomyces telomeres assume a non-nucleosomal chromatin structure. Genes Dev. 6, 197–210 (1992).

    Article  CAS  PubMed  Google Scholar 

  77. Luo, K., Vega-Palas, M. A. & Grunstein, M. Rap1–Sir4 binding independent of other Sir, yKu, or histone interactions initiates the assembly of telomeric heterochromatin in yeast. Genes Dev. 16, 1528–1539 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Strahl-Bolsinger, S., Hecht, A., Luo, K. & Grunstein, M. SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast. Genes Dev. 11, 83–93 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. de Bruin, D., Kantrow, S. M., Liberatore, R. A. & Zakian, V. A. Telomere folding is required for the stable maintenance of telomere position effects in yeast. Mol. Cell. Biol. 20, 7991–8000 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Maillet, L. et al. Evidence for silencing compartments within the yeast nucleus: a role for telomere proximity and Sir protein concentration in silencer-mediated repression. Genes Dev. 10, 1796–1811 (1996).

    Article  CAS  PubMed  Google Scholar 

  81. Fourel, G., Revardel, E., Koering, C. E. & Gilson, E. Cohabitation of insulators and silencing elements in yeast subtelomeric regions. EMBO J. 18, 2522–2537 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pryde, F. E. & Louism, E. J. Limitations of silencing at native yeast telomeres. EMBO J. 18, 2538–2550 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Emre, N. C. et al. Maintenance of low histone ubiquitylation by Ubp10 correlates with telomere-proximal Sir2 association and gene silencing. Mol. Cell 17, 585–594 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Cenci, G. et al. UbcD1, a Drosophila ubiquitin-conjugating enzyme required for proper telomere behavior. Genes Dev. 11, 863–875 (1997).

    Article  CAS  PubMed  Google Scholar 

  85. Greenwell, P. W. et al. TEL1, a gene involved in controlling telomere length in S. cerevisiae, is homologous to the human ataxia telangiectasia gene. Cell 82, 823–829 (1995).

    Article  CAS  PubMed  Google Scholar 

  86. Porter, S. E., Greenwell, P. W., Ritchie, K. B. & Petes, T. D. The DNA-binding protein Hdf1p (a putative Ku homologue) is required for maintaining normal telomere length in Saccharomyces cerevisiae. Nucleic Acids Res. 24, 582–585 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Nislow, C., Ray, E. & Pillus, L. SET1, a yeast member of the trithorax family, functions in transcriptional silencing and diverse cellular processes. Mol. Biol. Cell 8, 2421–2436 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gartenberg, M. R., Neumann, F. R., Laroche, T., Blaszczyk, M. & Gasser, S. M. Sir-mediated repression can occur independently of chromosomal and subnuclear contexts. Cell 119, 955–967 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Berthiau, A. S. et al. Subtelomeric proteins negatively regulate telomere elongation in budding yeast. EMBO J. 25, 846–856 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hediger, F., Berthiau, A. S., van Houwe, G., Gilson, E. & Gasser, S. M. Subtelomeric factors antagonize telomere anchoring and Tel1-independent telomere length regulation. EMBO J. 25, 857–867 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Teng, S. C., Chang, J., McCowan, B. & Zakian, V. A. Telomerase-independent lengthening of yeast telomeres occurs by an abrupt Rad50p-dependent, Rif-inhibited recombinational process. Mol. Cell 6, 947–952 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Nakayama, J., Rice, J. C., Strahl, B. D., Allis, C. D. & Grewal, S. I. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292, 110–113 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Volpe, T. A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833–1837 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Kanoh, J., Sadaie, M., Urano, T. & Ishikawa, F. Telomere binding protein Taz1 establishes Swi6 heterochromatin independently of RNAi at telomeres. Curr. Biol. 15, 1808–1819 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Ueno, M. et al. Fission yeast Arp6 is required for telomere silencing, but functions independently of Swi6. Nucleic Acids Res. 32, 736–741 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ekwall, K. et al. Mutations in the fission yeast silencing factors clr4+ and rik1+ disrupt the localisation of the chromo domain protein Swi6p and impair centromere function. J. Cell Sci. 109, 2637–2648 (1996).

    CAS  PubMed  Google Scholar 

  97. Hall, I. M., Noma, K. & Grewal, S. I. RNA interference machinery regulates chromosome dynamics during mitosis and meiosis in fission yeast. Proc. Natl Acad. Sci. USA 100, 193–198 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Perrini, B. et al. HP1 controls telomere capping, telomere elongation, and telomere silencing by two different mechanisms in Drosophila. Mol. Cell 15, 467–476 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Savitsky, M., Kwon, D., Georgiev, P., Kalmykova, A. & Gvozdev, V. Telomere elongation is under the control of the RNAi-based mechanism in the Drosophila germline. Genes Dev. 20, 345–354 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Xhemalce, B., Seeler, J. S., Thon, G., Dejean, A. & Arcangioli, B. Role of the fission yeast SUMO E3 ligase Pli1p in centromere and telomere maintenance. EMBO J. 23, 3844–3853 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Xhemalce, B. et al. Role of SUMO in the dynamics of telomere maintenance in fission yeast. Proc. Natl Acad. Sci. USA. 104, 893–898 (2007). A role for SUMO proteins in telomerase-mediated telomere elongation is first shown here.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kanoh, J. et al. The fission yeast spSet1p is a histone H3-K4 methyltransferase that functions in telomere maintenance and DNA repair in an ATM kinase Rad3-dependent pathway. J. Mol. Biol. 326, 1081–1094 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Peters, A. H. et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107, 323–337 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Schotta, G. et al. A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev 18, 1251–1262 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kourmouli, N. et al. Heterochromatin and tri-methylated lysine 20 of histone 4 in mammals. J. Cell Sci. 117, 2491–2501 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–120 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Benetti, R., Garcia-Cao, M. & Blasco, M. A. Telomere length regulates the epigenetic status of mammalian telomeres and subtelomeres. Nature Genet. 39, 243–250 (2007). Shows for the first time that telomere shortening to a critical length in mammals results in loss of histone and DNA methylation at mammalian telomeres and subtelomeres, concomitant with increased histone acetylation.

    Article  CAS  PubMed  Google Scholar 

  108. Netzer, C. et al. SALL1, the gene mutated in Townes–Brocks syndrome, encodes a transcriptional repressor which interacts with TRF1/PIN2 and localizes to pericentromeric heterochromatin. Hum. Mol. Genet. 10, 3017–3024 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Kaminker, P. et al. Higher-order nuclear organization in growth arrest of human mammary epithelial cells: a novel role for telomere-associated protein TIN2. J Cell Sci. 118, 1321–1330 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Jones, P. A. & Baylin, S. B. The fundamental role of epigenetic events in cancer. Nature Rev. Genet. 3, 415–428 (2002).

    Article  CAS  PubMed  Google Scholar 

  111. Dominguez-Bendala, J. & McWhir, J. Enhanced gene targeting frequency in ES cells with low genomic methylation levels. Transgenic Res. 13, 69–74 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Maloisel, L. & Rossignol, J. L. Suppression of crossing-over by DNA methylation in Ascobolus. Genes Dev. 12, 1381–1389 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bender, J. Cytosine methylation of repeated sequences in eukaryotes: the role of DNA pairing. Trends Biochem. Sci. 23, 252–256 (1998).

    Article  CAS  PubMed  Google Scholar 

  114. Pedram, M. et al. Telomere position effect and silencing of transgenes near telomeres in the mouse. Mol. Cell. Biol. 26, 1865–1878 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Steinert, S., Shay, J. W. & Wright, W. E. Modification of subtelomeric DNA. Mol. Cell. Biol. 24, 4571–4580 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Okano, M., Bell, D. W., Haber, D. A. & Li, E. DNA methyltransferases DNMT3a and DNMT3b are essential for de novo methylation and mammalian development. Cell 99, 247–257 (1999).

    Article  CAS  PubMed  Google Scholar 

  117. Okano, M., Xie, S. & Li, E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nature Genet. 19, 219–220 (1998).

    Article  CAS  PubMed  Google Scholar 

  118. Chen, T., Tsujimoto, N. & Li, E. The PWWP domain of Dnmt3a and Dnmt3b is required for directing DNA methylation to the major satellite repeats at pericentric heterochromatin. Mol. Cell. Biol. 24, 9048–9058 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ofir, R., Wong, A. C., McDermid, H. E., Skorecki, K. L. & Selig, S. Position effect of human telomeric repeats on replication timing. Proc. Natl Acad. Sci. USA 96, 11434–11439 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Jiang, G. et al. Testing the position-effect variegation hypothesis for facioscapulohumeral muscular dystrophy by analysis of histone modification and gene expression in subtelomeric 4q. Hum. Mol. Genet. 12, 2909–2921 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Bayne, R. A. L. et al. Sandwiching of a gene within 12 kb of a functional telomere and alpha satellite does not result in silencing. Hum Mol Genet. 3, 539–546 (1994).

    Article  CAS  PubMed  Google Scholar 

  122. Wright, W. E., Tesmer, V. M., Liao, M. L., & Shay, J. W. Normal human telomeres are not late replicating. Exp. Cell Res. 251, 492–499 (1999).

    Article  CAS  PubMed  Google Scholar 

  123. Ancelin, K. et al. Targeting assay to study the cis functions of human telomeric proteins: evidence for inhibition of telomerase by TRF1 and for activation of telomere degradation by TRF2. Mol. Cell. Biol. 22, 3474–3487 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Loayza, D. & De Lange, T. POT1 as a terminal transducer of TRF1 telomere length control. Nature 423, 1013–1018 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. Wang, R. C., Smogorzewska, A. & de Lange, T. Homologous recombination generates T-loop-sized deletions at human telomeres. Cell 119, 355–368 (2004).

    Article  CAS  PubMed  Google Scholar 

  126. Dynek, J. N. & Smith, S. Resolution of sister telomere association is required for progression through mitosis. Science 304, 97–100 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Buck, S. W. & Shore, D. Action of a RAP1 carboxy-terminal silencing domain reveals an underlying competition between HMR and telomeres in yeast. Genes Dev. 9, 370–384 (1995).

    Article  CAS  PubMed  Google Scholar 

  128. Wiley, E. A. & Zakian, V. A. Extra telomeres, but not internal tracts of telomeric DNA, reduce transcriptional repression at Saccharomyces telomeres. Genetics 139, 67–79 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Marcand, S., Brevet, V. & Gilson, E. Progressive cis-inhibition of telomerase upon telomere elongation. EMBO J. 18, 3509–3519 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Teixeira, M. T., Arneric, M., Sperisen, P. & Lingner, J. Telomere length homeostasis is achieved via a switch between telomerase-extendible and -nonextendible states. Cell 117, 323–335 (2004). This work shows that budding yeast telomerase activity preferentially acts on the shortest telomeres.

    Article  CAS  PubMed  Google Scholar 

  131. Samper, E., Flores, J. M. & Blasco, M. A. Restoration of telomerase activity rescues chromosomal instability and premature aging in Terc−/− mice with short telomeres. EMBO Rep. 2, 800–807 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hemann, M. T., Strong, M. A., Hao, L. Y. & Greider, C. W. The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell 107, 67–77 (2001). References 131 and 132 show that mammalian telomerase activity preferentially acts on the shortest telomeres.

    Article  CAS  PubMed  Google Scholar 

  133. Xu, G. L. et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402, 187–191 (1999).

    Article  CAS  PubMed  Google Scholar 

  134. Amir, R. E. et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nature Genet. 23, 185–188 (1999).

    Article  CAS  PubMed  Google Scholar 

  135. Cawthon, R. M. et al. Association between telomere length in blood and mortality in people aged 60 years or older. Lancet 361, 393–395 (2003).

    Article  CAS  PubMed  Google Scholar 

  136. Valdes, A. M. et al. Obesity, cigarette smoking, and telomere length in women. Lancet 366, 662–664 (2005).

    Article  CAS  PubMed  Google Scholar 

  137. Epel, E. S. et al. Accelerated telomere shortening in response to life stress. Proc. Natl Acad. Sci. USA 101, 17312–17315 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Haigis, M. C. et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic β-cells. Cell 126, 941–954 (2006).

    Article  CAS  PubMed  Google Scholar 

  139. Mostoslavsky, R. et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124, 315–329 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. Chua, K. F. et al. Mammalian SIRT1 limits replicative life span in response to chronic genotoxic stress. Cell Metab. 2, 67–76 (2005).

    Article  CAS  PubMed  Google Scholar 

  141. Roth, W. et al. PIASy-deficient mice display modest defects in IFN and Wnt signaling. J. Immunol. 173, 6189–6199 (2004).

    Article  CAS  PubMed  Google Scholar 

  142. Nacerddine, K. et al. The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Dev. Cell. 9, 769–779 (2005).

    Article  CAS  PubMed  Google Scholar 

  143. Marciniak, R. A. et al. A novel telomere structure in a human alternative lengthening of telomeres cell line. Cancer Res. 65, 2730–2737 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I am indebted to E. Gilson (Ecole Normale Supérieure de Lyon, France) for useful discussions and critical reading of the manuscript. M.A.B.'s laboratory is funded by the Spanish Ministry of Education and Culture (MCyT), by the Regional Government of Madrid, the European Union and the Josef Steiner Cancer Research Award 2003.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Spanish National Cancer Research Centre (CNIO)

Glossary

Dyskeratosis congenita

A condition that is characterized by bone marrow failure, genetic instability, elevated cancer risk and other abnormalities. Mutations in telomerase components have been described in some cases.

Aplastic anaemia

A condition that results from a peripheral deficiency of all bone-marrow-derived haematopoietic lineages, such as red blood cells, platelets and leukocytes. There are many causes of this potentially fatal clinical syndrome. Mutations in telomerase components have been described in some cases.

Heterochromatin

Chromosomal material that is tightly coiled and generally inactive in terms of gene expression.

Nucleosome

The fundamental unit into which DNA and histones are packaged in eukaryotic cells. It is the basic structural subunit of chromatin and consists of 200 bp of DNA wrapped around an octamer of histone proteins.

Histone modifications

Histones undergo post-translational modifications that alter their interaction with DNA and nuclear proteins. In particular, the tails of histones H3 and H4 can be covalently modified at several residues. Modifications of the tail include methylation, acetylation, phosphorylation and ubiquitination, and affect several biological processes, including gene expression, DNA repair and chromosome condensation.

DNA methylation

DNA methylation occurs predominantly in repetitive genomic regions that contain CpG residues. DNA methylation represses transcription directly by inhibiting the binding of specific transcription factors, and indirectly by recruiting methyl-CpG-binding proteins and their associated repressive chromatin-remodelling activities.

PML body

Subnuclear compartments that are defined by the presence of the PML (promyelocytic leukaemia) protein. They have been associated with diverse nuclear functions including transcription, DNA repair, viral defense, stress, cell-cycle regulation, proteolysis and apoptosis.

Pericentric heterochromatin

The late-replicating, gene-sparse, transcriptionally inactive, condensed chromatin regions that are rich in repeated sequence and occur near the centromeres of chromosomes.

Small interfering RNA

A non-coding RNA (22 nucleotides long) that is derived from the processing of long dsRNA during RNAi. siRNAs direct the destruction or translation repression of mRNA targets that they hybridize with.

ICF

Immunodeficiency–centromeric instability–facial anomalies syndrome (ICF) is an extremely rare autosomal recessive disease that is characterized by profound immunodeficiency. Many ICF patients carry mutations of the DNMT3B gene, leading to DNA-methylation defects.

Rett syndrome

An X-linked dominant neurological disorder that mainly affects girls and is one of the most common causes of mental retardation in females. Typical Rett syndrome is due to a mutation in the MECP2 gene (methyl-CpG-binding protein 2) resulting in decreased DNA methylation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blasco, M. The epigenetic regulation of mammalian telomeres. Nat Rev Genet 8, 299–309 (2007). https://doi.org/10.1038/nrg2047

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2047

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing