Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The evolutionary significance of cis-regulatory mutations

Key Points

  • It is now well established that mutations within cis-regulatory regions are responsible for various significant evolutionary differences in organismal traits.

  • It has been proposed that cis-regulatory mutations make a qualitatively distinct contribution to trait evolution, in part because they might result in more limited pleiotropy and therefore fewer functional trade-offs, and in part because they might commonly be co-dominant and therefore immediately visible to selection.

  • Many species-specific differences in cuticular colouration in fruitflies are the product of mutations in the cis-regulatory regions of yellow (y), ebony (e) and bric a brac 1/2 (bab1/bab2).

  • The loss of pelvic armour in stickleback fish has evolved repeatedly through cis-regulatory mutations in paired-like homeodomain transcription factor 1 (pitx1).

  • Many traits that are unique to humans or that vary among them are also due to mutations within cis-reguatory regions, including functionally significant mutations near Duffy blood group, chemokine receptor (DARC), lactase (LCT) and prodynorphin (PDYN).

  • Taken collectively, the evidence from the best-studied cases supports the idea that cis-regulatory mutations make a qualitatively distinctive contribution to trait evolution.

Abstract

For decades, evolutionary biologists have argued that changes in cis-regulatory sequences constitute an important part of the genetic basis for adaptation. Although originally based on first principles, this claim is now empirically well supported: numerous studies have identified cis-regulatory mutations with functionally significant consequences for morphology, physiology and behaviour. The focus has now shifted to considering whether cis-regulatory and coding mutations make qualitatively different contributions to phenotypic evolution. Cases in which parallel mutations have produced parallel trait modifications in particular suggest that some phenotypic changes are more likely to result from cis-regulatory mutations than from coding mutations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Functional classes of mutations.
Figure 2: Evolution of cuticular pigmentation in Drosophila species.
Figure 3: Evolution of armour reduction in stickleback fish.
Figure 4: Cis-regulatory mutations with phenotypic consequences in humans.

Similar content being viewed by others

References

  1. Jacob, F. & Monod, J. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3, 318–356 (1961).

    CAS  PubMed  Google Scholar 

  2. Monod, J. & Jacob, F. General conclusions — teleonomic mechanisms in cellular metabolism, growth, and differentiation. Cold Spring Harb. Symp. Quant. Biol. 26, 389–401 (1961).

    Article  CAS  PubMed  Google Scholar 

  3. Britten, R. J. & Davidson, E. H. Repetitive and non-repetitive DNA sequences and a speculation on the origins of evolutionary novelty. Q. Rev. Biol. 46, 111–138 (1971).

    Article  CAS  PubMed  Google Scholar 

  4. King, M. C. & Wilson, A. C. Evolution at two levels in humans and chimpanzees. Science 188, 107–116 (1975). This classic paper proposed that phenotypic differences between humans and chimpanzees are largely due to cis -regulatory mutations.

    Article  CAS  PubMed  Google Scholar 

  5. Carroll, S. B., Grenier, J. & Weatherbee, S. From DNA to Diversity (Blackwell Publishing, Malden, 2004).

    Google Scholar 

  6. Stern, D. L. Evolutionary developmental biology and the problem of variation. Evolution 54, 1079–1091 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Wilkins, A. S. The Evolution of Developmental Pathways (Sinauer Associates, Sunderland, 2002).

    Google Scholar 

  8. Wray, G. A. et al. The evolution of transcriptional regulation in eukaryotes. Mol. Biol. Evol. 20, 1377–1419 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Davidson, E. H. The Regulatory Genome: Gene Regulatory Networks in Development and Evolution (Academic, Burlington, 2006).

    Google Scholar 

  10. Gerhart, J. & Kirschner, M. Cells, Embryos, and Evolution: Toward a Cellular and Developmental Understanding of Phenotypic Variation and Evolutionary Adaptability (Blackwell Science, Malden, 1997).

    Google Scholar 

  11. Ruvkun, G., Wightman, B., Burglin, T. & Arasu, P. Dominant gain-of-function mutations that lead to misregulation of the C. elegans heterochronic gene lin-14, and the evolutionary implications of dominant mutations in pattern-formation genes. Dev. Suppl. 1, 47–54 (1991).

    CAS  PubMed  Google Scholar 

  12. Pastinen, T. et al. A survey of genetic and epigenetic variation affecting human gene expression. Physiol. Genomics 16, 184–193 (2003).

    Article  Google Scholar 

  13. Ronald, J., Brem, R. B., Whittle, J. & Kruglyak, L. Local regulatory variation in Saccharomyces cerevisiae. PLoS Genet. 1, e25 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wittkopp, P. J., Haerum, B. K. & Clark, A. G. Evolutionary changes in cis and trans gene regulation. Nature 430, 85–88 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Li, W. H. Molecular Evolution (Sinauer Associates, Sunderland, 1997). References 13–15 measured the relative contributions of mutations in cis and trans to differences in transcription.

    Google Scholar 

  16. Force, A. et al. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151, 1531–1545 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Gompel, N. & Carroll, S. B. Genetic mechanisms and constraints governing the evolution of correlated traits in drosophilid flies. Nature 424, 931–935 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Hollocher, H., Hatcher, J. L. & Dyreson, E. G. Genetic and developmental analysis of abdominal pigmentation differences across species in the Drosophila dunni subgroup. Evolution 54, 2057–2071 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Kopp, A., Duncan, I., Godt, D. & Carroll, S. B. Genetic control and evolution of sexually dimorphic characters in Drosophila. Nature 408, 553–559 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Kopp, A. & True, J. R. Evolution of male sexual characters in the Oriental Drosophila melanogaster species group. Evol. Dev. 4, 278–291 (2002).

    Article  PubMed  Google Scholar 

  21. Hovemann, B. Tissue specific expression of the ebony gene. J. Neurogenet. 7, 128–128 (1991).

    Google Scholar 

  22. Hovemann, B. T. et al. The Drosophila ebony gene is closely related to microbial peptide synthetases and shows specific cuticle and nervous system expression. Gene 221, 1–9 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. True, J. R. et al. Drosophila tan encodes a novel hydrolase required in pigmentation and vision. PLoS Genet. 1, e63 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Walter, M. F. et al. Temporal and spatial expression of the yellow gene in correlation with cuticle formation and dopa decarboxylase activity in Drosophila development. Dev. Biol. 147, 32–45 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Wittkopp, P. J., True, J. R. & Carroll, S. B. Reciprocal functions of the Drosophila yellow and ebony proteins in the development and evolution of pigment patterns. Development 129, 1849–1858 (2002).

    CAS  PubMed  Google Scholar 

  26. Gompel, N., Prud'homme, B., Wittkopp, P. J., Kassner, V. A. & Carroll, S. B. Chance caught on the wing: cis-regulatory evolution and the origin of pigment patterns in Drosophila. Nature 433, 481–487 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Jeong, S., Rokas, A. & Carroll, S. B. Regulation of body pigmentation by the Abdominal-B Hox protein and its gain and loss in Drosophila evolution. Cell 125, 1387–1399 (2006). This study illustrates the power of using a combination of detailed molecular genetic analyses with an in-depth sampling of related species.

    Article  CAS  PubMed  Google Scholar 

  28. Prud'homme, B. et al. Repeated morphological evolution through cis-regulatory changes in a pleiotropic gene. Nature 440, 1050–1053 (2006). References 26 and 28 illustrate a remarkable case of similar genetic bases for a parallel change in wing pigmentation in flies.

    Article  CAS  PubMed  Google Scholar 

  29. Wittkopp, P. J., Vaccaro, K. & Carroll, S. B. Evolution of yellow gene regulation and pigmentation in Drosophila. Curr. Biol. 12, 1547–1556 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Beverley, S. M. & Wilson, A. C. Molecular evolution in Drosophila and the higher Diptera II. A time scale for fly evolution. J. Mol. Evol. 21, 1–13 (1984).

    Article  CAS  PubMed  Google Scholar 

  31. Vieira, J., Vieira, C. P., Hartl, D. L. & Lozovskaya, E. R. A framework physical map of Drosophila virilis based on P1 clones: applications in genome evolution. Chromosoma 106, 99–107 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Wittkopp, P. J., Williams, B. L., Selegue, J. E. & Carroll, S. B. Drosophila pigmentation evolution: divergent genotypes underlying convergent phenotypes. Proc. Natl Acad. Sci. USA 100, 1808–1813 (2003). This study demonstrated that parallel morphological changes do not always have a similar underlying genetic basis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Simpson, P., Woehl, R. & Usui, K. The development and evolution of bristle patterns in Diptera. Development 126, 1349–1364 (1999).

    CAS  PubMed  Google Scholar 

  34. Sucena, E. & Stern, D. L. Divergence of larval morphology between Drosophila sechellia and its sibling species caused by cis-regulatory evolution of ovo/shaven-baby. Proc. Natl Acad. Sci. USA 97, 4530–4534 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Skaer, N. & Simpson, P. Genetic analysis of bristle loss in hybrids between Drosophila melanogaster and D. simulans provides evidence for divergence of cis-regulatory sequences in the achaete–scute gene complex. Dev. Biol. 221, 148–167 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Sucena, E., Delon, I., Jones, I., Payre, F. & Stern, D. L. Regulatory evolution of shavenbaby/ovo underlies multiple cases of morphological parallelism. Nature 424, 935–938 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Peichel, C. L. et al. The genetic architecture of divergence between threespine stickleback species. Nature 414, 901–905 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Bell, M. A. & Foster, S. A. (eds) The Evolutionary Biology Of The Threespine Stickleback (Oxford Univ. Press, New York, 1994).

    Google Scholar 

  39. Cresko, W. A. et al. Parallel genetic basis for repeated evolution of armor loss in Alaskan threespine stickleback populations. Proc. Natl Acad. Sci. USA 101, 6050–6055 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shapiro, M. D. et al. Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks. Nature 428, 717–723 (2004). This study used a combination of genetic mapping and expression analyses to demonstrate that cis -regulatory mutation(s) constitute the primary genetic basis for loss of pelvic armour in sticklebacks.

    Article  CAS  PubMed  Google Scholar 

  41. Shang, J., Luo, Y. & Clayton, D. A. Backfoot is a novel homeobox gene expressed in the mesenchyme of developing hind limb. Dev. Dyn. 209, 242–253 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Marcil, A., Dumontier, E., Chamberland, M., Camper, S. A. & Drouin, J. Pitx1 and Pitx2 are required for development of hindlimb buds. Development 130, 45–55 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. McLennan, D. A. & Mattern, M. Y. The phylogeny of the Gasterosteidae: combining behavioral and morphological data sets. Cladistics 17, 11–27 (2001).

    Article  Google Scholar 

  44. Bell, M. A., Baumgartner, J. V. & Olson, E. C. Patterns of temporal change in single morphological characters of a miocene stickleback fish. Paleobiology 11, 258–271 (1985).

    Article  Google Scholar 

  45. Shapiro, M. D., Bell, M. A. & Kingsley, D. M. Parallel origins of pelvic reduction in vertebrates. Proc. Natl Acad. Sci. USA 103, 3753–3758 (2006).

    Google Scholar 

  46. Tanaka, M. et al. Developmental genetic basis for the evolution of pelvic fin loss in the pufferfish Takifugu rubripes. Dev. Biol. 281, 227–239 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Carroll, S. B. Genetics and the making of Homo sapiens. Nature 422, 849–857 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Vallender, E. J. & Lahn, B. T. Positive selection on the human genome. Hum. Mol. Genet. 13, R245–R254 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Chaudhuri, A. et al. Expression of the Duffy antigen in K562 cells. Evidence that it is the human erythrocyte chemokine receptor. J. Biol. Chem. 269, 7835–7838 (1994).

    CAS  PubMed  Google Scholar 

  50. Horuk, R. et al. A receptor for the malarial parasite Plasmodium vivax: the erythrocyte chemokine receptor. Science 261, 1182–1184 (1993).

    Article  CAS  PubMed  Google Scholar 

  51. Tournamille, C. et al. Sequence, evolution and ligand binding properties of mammalian Duffy antigen/receptor for chemokines. Immunogenetics 55, 682–694 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Pogo, A. O. & Chaudhuri, A. The Duffy protein: a malarial and chemokine receptor. Semin. Hematol. 37, 122–129 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Hadley, T. J. & Peiper, S. C. From malaria to chemokine receptor: the emerging physiologic role of the Duffy blood group antigen. Blood 89, 3077–3091 (1997).

    CAS  PubMed  Google Scholar 

  54. Miller, L. H., Mason, S. J., Clyde, D. F. & McGinniss, M. H. The resistance factor to Plasmodium vivax in blacks. The Duffy-blood-group genotype, FyFy. N. Engl. J. Med. 295, 302–304 (1976).

    Article  CAS  PubMed  Google Scholar 

  55. Chaudhuri, A., Polyakova, J., Zbrzezna, V. & Pogo, A. O. The coding sequence of Duffy blood group gene in humans and simians: restriction fragment length polymorphism, antibody and malarial parasite specificities, and expression in nonerythroid tissues in Duffy-negative individuals. Blood 85, 615–621 (1995).

    CAS  PubMed  Google Scholar 

  56. Peiper, S. C. et al. The Duffy antigen/receptor for chemokines (DARC) is expressed in endothelial cells of Duffy negative individuals who lack the erythrocyte receptor. J. Exp. Med. 181, 1311–1317 (1995).

    Article  CAS  PubMed  Google Scholar 

  57. Iwamoto, S., Li, J., Sugimoto, N., Okuda, H. & Kajii, E. Characterization of the Duffy gene promoter: evidence for tissue-specific abolishment of expression in Fy(a-b-) of black individuals. Biochem. Biophys. Res. Commun. 222, 852–859 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Tournamille, C., Colin, Y., Cartron, J. P. & Le Van Kim, C. Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals. Nature Genet. 10, 224–228 (1995).

    Article  CAS  PubMed  Google Scholar 

  59. Hamblin, M. T. & Di Rienzo, A. Detection of the signature of natural selection in humans: evidence from the Duffy blood group locus. Am. J. Hum. Genet. 66, 1669–1679 (2000). References 58 and 59 provided evidence regarding the molecular and evolutionary mechanisms, respectively, for adaptive evolution of a regulatory SNP that provides protection from malarial infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hamblin, M. T., Thompson, E. E. & Di Rienzo, A. Complex signatures of natural selection at the Duffy blood group locus. Am. J. Hum. Genet. 70, 369–383 (2002).

    Article  PubMed  Google Scholar 

  61. Swallow, D. M. Genetics of lactase persistence and lactose intolerance. Annu. Rev. Genet. 37, 197–219 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Bersaglieri, T. et al. Genetic signatures of strong recent positive selection at the lactase gene. Am. J. Hum. Genet. 74, 1111–1120 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Olds, L. C. & Sibley, E. Lactase persistence DNA variant enhances lactase promoter activity in vitro: functional role as a cis regulatory element. Hum. Mol. Genet. 12, 2333–2340 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Tishkoff, S. A. et al. Convergent adaptation of human lactase persistence in Africa and Europe. Nature Genet. 39, 31–40 (2007). This study demonstrated a nearly parallel genetic basis for an important physiological adaptation during recent human evolution.

    Article  CAS  PubMed  Google Scholar 

  65. Fisher, S. E. & Marcus, G. F. The eloquent ape: genes, brains and the evolution of language. Nature Rev. Genet. 7, 9–20 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Sikela, J. M. The jewels of our genome: the search for the genomic changes underlying the evolutionarily unique capacities of the human brain. PLoS Genet. 2, e80 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Enard, W. et al. Intra- and interspecific variation in primate gene expression patterns. Science 296, 340–343 (2002). The authors demonstrated an elevated rate of change in the expression of genes within the brain on the branch leading to humans relative to that leading to chimpanzees.

    Article  CAS  PubMed  Google Scholar 

  68. Caceres, M. et al. Elevated gene expression levels distinguish human from non-human primate brains. Proc. Natl Acad. Sci. USA 100, 13030–13035 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Khaitovich, P. et al. Parallel patterns of evolution in the genomes and transcriptomes of humans and chimpanzees. Science 309, 1850–1854 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Khaitovich, P. et al. Regional patterns of gene expression in human and chimpanzee brains. Genome Res. 14, 1462–1473 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rockman, M. V. et al. Ancient and recent positive selection transformed opioid cis-regulation in humans. PLoS Biol. 3, e387 (2005). This study found evidence of positive selection on specific cis -regulatory mutations at a locus encoding a neuropeptide with roles in human cognition.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rodgers, R. J. & Cooper, S. J. (eds) Endorphins, Opiates, and Behavioural Processes (Wiley, New York, 1988).

    Google Scholar 

  73. Wagner, J. J., Terman, G. W. & Chavkin, C. Endogenous dynorphins inhibit excitatory neurotransmission and block LTP induction in the hippocampus. Nature 363, 451–454 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hurd, Y. L. Subjects with major depression or bipolar disorder show reduction of prodynorphin mRNA expression in discrete nuclei of the amygdaloid complex. Mol. Psychiatry 7, 75–81 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Peckys, D. & Hurd, Y. L. Prodynorphin and k opioid receptor mRNA expression in the cingulate and prefrontal cortices of subjects diagnosed with schizophrenia or affective disorders. Brain Res. Bull. 55, 619–624 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Stogmann, E. et al. A functional polymorphisms in the prodynorphin gene promoter is associated with temporal lobe epilepsy. Ann. Neurol. 51, 260–263 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Ventriglia, M. et al. Allelic variation in the human prodynorphin gene promoter and schizophrenia. Neuropsychobiology 46, 17–21 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Nachman, M. W., Hoekstra, H. E. & D'Agostino, S. L. The genetic basis of adaptive melanism in pocket mice. Proc. Natl Acad. Sci. USA 100, 5268–5273 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Theron, E., Hawkins, K., Bermingham, E., Ricklefs, R. E. & Mundy, N. I. The molecular basis of an avian plumage polymorphism in the wild: a melanocortin-1-receptor point mutation is perfectly associated with the melanic plumage morph of the bananaquit, Coereba flaveola. Curr. Biol. 11, 550–557 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Kopp, A. Basal relationships in the Drosophila melanogaster species group. Mol. Phylogenet. Evol. 39, 787–798 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Enattah, N. S. et al. Identification of a variant associated with adult-type hypolactasia. Nature Genet. 30, 233–237 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Bachner-Melman, R. et al. AVPR1a and SLC6A4 gene polymorphisms are associated with creative dance performance. PLoS Genet. 1, e42 (2005).

  83. Hammock, E. A. & Young, L. J. Microsatellite instability generates diversity in brain and sociobehavioral traits. Science 308, 1630–1634 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Daborn, P. J. et al. A single p450 allele associated with insecticide resistance in Drosophila. Science 297, 2253–2256 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Lerman, D. N. & Feder, M. E. Naturally occurring transposable elements disrupt hsp70 promoter function in Drosophila melanogaster. Mol. Biol. Evol. 22, 776–783 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Lerman, D. N., Michalak, P., Helin, A. B., Bettencourt, B. R. & Feder, M. E. Modification of heat-shock gene expression in Drosophila melanogaster populations via transposable elements. Mol. Biol. Evol. 20, 135–144 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Enoch, M. A. et al. 5-HT2A promoter polymorphism –1438G/A, anorexia nervosa, and obsessive-compulsive disorder. Lancet 351, 1785–1786 (1998).

    Article  CAS  PubMed  Google Scholar 

  88. Moraes, M. O. et al. Interleukin-10 promoter single-nucleotide polymorphisms as markers for disease susceptibility and disease severity in leprosy. Genes Immun. 5, 592–595 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Shin, H. D. et al. Genetic restriction of HIV-1 pathogenesis to AIDS by promoter alleles of IL10. Proc. Natl Acad. Sci. USA 97, 14467–14472 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. He, G. et al. Interleukin-10 –1082 promoter polymorphism is associated with schizophrenia in a Han Chinese sib-pair study. Neurosci. Lett. 394, 1–4 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Crawford, D. L., Segal, J. A. & Barnett, J. L. Evolutionary analysis of TATA-less proximal promoter function. Mol. Biol. Evol. 16, 194–207 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. Caspi, A. et al. Role of genotype in the cycle of violence in maltreated children. Science 297, 851–854 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Kim-Cohen, J. et al. MAOA, maltreatment, and gene–environment interaction predicting children's mental health: new evidence and a meta-analysis. Mol. Psychiatry 11, 903–913 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Beyzade, S. et al. Influences of matrix metalloproteinase-3 gene variation on extent of coronary atherosclerosis and risk of myocardial infarction. J. Am. Coll. Cardiol. 41, 2130–2137 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Ye, S. et al. Progression of coronary atherosclerosis is associated with a common genetic variant of the human stromelysin-1 promoter which results in reduced gene expression. J. Biol. Chem. 271, 13055–13060 (1996).

    Article  CAS  PubMed  Google Scholar 

  96. Marcellini, S. & Simpson, P. Two or four bristles: functional evolution of an enhancer of scute in drosophilidae. PLoS Biol. 4, e386 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hariri, A. R. et al. Serotonin transporter genetic variation and the response of the human amygdala. Science 297, 400–403 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Trefilov, A., Berard, J., Krawczak, M. & Schmidtke, J. Natal dispersal in rhesus macaques is related to serotonin transporter gene promoter variation. Behav. Genet. 30, 295–301 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Clark, R. M., Wagler, T. N., Quijada, P. & Doebley, J. A distant upstream enhancer at the maize domestication gene tb1 has pleiotropic effects on plant and inflorescent architecture. Nature Genet. 38, 594–597 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Wang, R. L., Stec, A., Hey, J., Lukens, L. & Doebley, J. The limits of selection during maize domestication. Nature 398, 236–239 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Stern, D. L. A role of Ultrabithorax in morphological differences between Drosophila species. Nature 396, 463–466 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Drapeau, M. D., Cyran, S. A., Viering, M. M., Geyer, P. K. & Long, A. D. A cis-regulatory sequence within the yellow locus of Drosophila melanogaster required for normal male mating success. Genetics 172, 1009–1030 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Knight, J. C. Regulatory polymorphisms underlying complex disease traits. J. Mol. Med. 83, 97–109 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Rockman, M. V. & Wray, G. A. Abundant raw material for cis-regulatory evolution in humans. Mol. Biol. Evol. 19, 1991–2004 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to C. Babbitt, D. Garfield, J. Tung, and three anonymous reviewers for helpful comments. G.A.W.'s research is supported by the US National Science Foundation and the Institute for Genome Sciences & Policy at Duke University.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

The Wray Laboratory homepage

Glossary

Cis-regulatory region

A segment of DNA that regulates transcription; such segments typically lie immediately 5′ of the start site of transcription, but are often discontinuous, and individual segments can reside within introns, 5′ and 3′ UTRs, or tens of kilobases on either side of the gene they regulate.

Clade

A group of species that share a unique common ancestor.

Co-dominant

A mutation that has an additive phenotypic impact, and is therefore apparent in heterozygotes.

Pleiotropy

The ability of a gene or mutation to alter more than one trait.

Functional trade-off

For many traits, improving one aspect of function might incur a cost in some other aspect of function.

Crypsis

Concealment from predators, usually through shape and colouration of the integument.

Candidate gene

A gene that seems likely, on the basis of its function or a prior association study, to contain a mutation or mutations that underlie a phenotypic trait of interest.

Trans

Located far away from the gene of interest; in practical terms, anywhere in the genome except nearby.

Macrochaete

The largest bristles on flies; their function is mechanosensory.

Pastoralism

The practice of tending domesticated animals for the milk they produce.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wray, G. The evolutionary significance of cis-regulatory mutations. Nat Rev Genet 8, 206–216 (2007). https://doi.org/10.1038/nrg2063

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2063

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing