Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

RNA regulons: coordination of post-transcriptional events

Key Points

  • Transcription is surprisingly stochastic, yet protein production is precise, indicating the importance of post-transcriptional events in the regulation of gene expression.

  • Transcription and translation are not directly coupled in eukaryotic cells, but intervening steps between them help to coordinate protein biosynthesis.

  • RNA-binding proteins (RBPs) co-regulate functionally related mRNAs in ribonucleoprotein (RNP) modules at the steps of splicing, export, stability, localization and translation.

  • Genome-wide methods identified subsets of functionally related mRNAs that associate with RBPs forming 'RNA operons', which drive the coordinated expression of these mRNAs. Some of these mRNAs undergo simultaneous decay, whereas some are translationally co-regulated by polysomes.

  • Each mRNA can be co-regulated with others in multiple combinations; such structures of higher-order coordination can be defined as RNA regulons.

  • RNA regulons dynamically exchange specific mRNAs during proliferation, differentiation, genotoxic treatments or biological cycles.

  • Several RBPs are dysregulated and some mRNAs are defective in human diseases, indicating that mRNA regulons might be implicated in many pathological processes.

Abstract

Recent findings demonstrate that multiple mRNAs are co-regulated by one or more sequence-specific RNA-binding proteins that orchestrate their splicing, export, stability, localization and translation. These and other observations have given rise to a model in which mRNAs that encode functionally related proteins are coordinately regulated during cell growth and differentiation as post-transcriptional RNA operons or regulons, through a ribonucleoprotein-driven mechanism. Here I describe several recently discovered examples of RNA operons in budding yeast, fruitfly and mammalian cells, and their potential importance in processes such as immune response, oxidative metabolism, stress response, circadian rhythms and disease. I close by considering the evolutionary wiring and rewiring of these combinatorial post-transcriptional gene-expression networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interconnected steps of post-transcriptional regulation and its potential coordination.
Figure 2: Coordination of subsets of eukaryotic mRNAs from transcription to translation.
Figure 3: Formation and dynamics of ribonucleoprotein (RNP) complexes.
Figure 4: Dynamics of post-transcriptional co-regulation.
Figure 5: Model of the Puf3 RNA operon.
Figure 6: Evolutionary wiring and rewiring of RNA–protein interactions.

Similar content being viewed by others

References

  1. Orphanides, G. & Reinberg, D. A unified theory of gene expression. Cell 108, 439–451 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Beckwith, J. The Operon: An Historical Account 1227–1231 (ASM, Washington, 1996).

    Google Scholar 

  3. Harbison, C. T. et al. Transcriptional regulatory code of a eukaryotic genome. Nature 431, 99–104 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kosak, S. T. & Groudine, M. Form follows function: the genomic organization of cellular differentiation. Genes Dev. 18, 1371–1384 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Blumenthal, T. Operons in eukaryotes. Brief. Funct. Genomic. Proteomic. 3, 199–211 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Ben-Shahar, Y., Nannapaneni, K., Casavant, T. L., Scheetz, T. E. & Welsh, M. J. Eukaryotic operon-like transcription of functionally related genes in Drosophila. Proc. Natl Acad. Sci. USA 104, 222–227 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Britten, R. J. & Davidson, E. H. Gene regulation for higher cells: a theory. Science 165, 349–357 (1969).

    Article  CAS  PubMed  Google Scholar 

  8. Waterston, R. H., Lander, E. S. & Sulston, J. E. On the sequencing of the human genome. Proc. Natl Acad. Sci. USA 99, 3712–3716 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Keene, J. D. Ribonucleoprotein infrastructure regulating the flow of genetic information between the genome and the proteome. Proc. Natl Acad. Sci. USA 98, 7018–7024 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Keene, J. D. & Tenenbaum, S. A. Eukaryotic mRNPs may represent posttranscriptional operons. Mol. Cell 9, 1161–1167 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Hieronymus, H. & Silver, P. A. A systems view of mRNP biology. Genes Dev. 18, 2845–2860 (2004). A comprehensive overview that articulates the advent of a new field in systems biology; the authors outline its conceptual framework and describe its experimental basis.

    Article  CAS  PubMed  Google Scholar 

  12. Moore, M. J. From birth to death: the complex lives of eukaryotic mRNAs. Science 309, 1514–1518 (2005). A beautifully written essay that captivates the sequence of events by which eukaryotic mRNAs are transcribed, organized, processed and transported to reach their final fates of turnover and protein synthesis.

    Article  CAS  PubMed  Google Scholar 

  13. Keene, J. D. & Lager, P. J. Post-transcriptional operons and regulons co-ordinating gene expression. Chromosome Res. 13, 327–337 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Saunders, M. A., Liang, H. & Li, W. H. Human polymorphism at microRNAs and microRNA target sites. Proc. Natl Acad. Sci. USA 104, 3300–3305 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chan, C. S., Elemento, O. & Tavazoie, S. Revealing posttranscriptional regulatory elements through network-level conservation. PLoS Comput. Biol. 1, e69 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Abdelmohsen, K. et al. Phosphorylation of HuR by Chk2 regulates SIRT1 expression. Mol. Cell 25, 543–557 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Intine, R. V., Tenenbaum, S. A., Sakulich, A. L., Keene, J. D. & Maraia, R. J. Differential phosphorylation and subcellular localization of La RNPs associated with precursor tRNAs and translation-related mRNAs. Mol. Cell 12, 1301–1307 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Garbarino-Pico, E. et al. Immediate early response of the circadian polyA ribonuclease nocturnin to two extracellular stimuli. RNA 13, 745–755 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Maniatis, T. & Reed, R. An extensive network of coupling among gene expression machines. Nature 416, 499–506 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Moore, M. J., Schwartzfarb, E. M., Silver, P. A. & Yu, M. C. Differential recruitment of the splicing machinery during transcription predicts genome-wide patterns of mRNA splicing. Mol. Cell 24, 903–915 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Sanford, J. R., Gray, N. K., Beckmann, K. & Caceres, J. F. A novel role for shuttling SR proteins in mRNA translation. Genes Dev. 18, 755–768 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Greenleaf, A. L. Positive patches and negative noodles: linking RNA processing to transcription? Trends Biochem. Sci. 18, 117–119 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Le Hir, H., Izaurralde, E., Maquat, L. E. & Moore, M. J. The spliceosome deposits multiple proteins 20–24 nucleotides upstream of mRNA exon–exon junctions. EMBO J. 19, 6860–6869 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kaplan, J. C., Kahn, A. & Chelly, J. Illegitimate transcription: its use in the study of inherited disease. Hum. Mutat. 1, 357–360 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Blake, W. J., Kearn, M., Cantor, C. R. & Collins, J. J. Noise in eukaryotic gene expression. Nature 422, 633–637 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Rodriguez-Trelles, F., Tarrio, R. & Ayala, F. J. Is ectopic expression caused by deregulatory mutations or due to gene-regulation leaks with evolutionary potential? Bioessays 27, 592–601 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Yanai, I. et al. Similar gene expression profiles do not imply similar tissue functions. Trends Genet. 22, 132–138 (2006). A forward-thinking description of tissue-specific gene expression, its apparent leakiness and the suggestion that it involves coordinated post-transcriptional events.

    Article  CAS  PubMed  Google Scholar 

  28. Oliver, B., Parisi, M. & Clark, D. Gene expression neighborhoods. J. Biol. 1, 4 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Aten, J. A. & Kanaar, R. Chromosomal organization: mingling with the neighbors. PLoS Biol. 4, e155 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hurst, L. D., Pal, C. & Lercher, M. J. The evolutionary dynamics of eukaryotic gene order. Nature Rev. Genet. 5, 299–310 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Spellman, P. T. & Rubin, G. M. Evidence for large domains of similarly expressed genes in the Drosophila genome. J. Biol. 1, 5 (2002). A retrospective study of a large body of expression data from fruitflies, showing that co-localized genes are transcribed together in chromatin domains but the proteins that are encoded by these genes are not functionally related.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Seydoux, G. & Braun, R. E. Pathway to totipotency: lessons from germ cells. Cell 127, 891–904 (2006). A review of current concepts in the field of germ-cell development that, among other things, suggests that totipotent germ cells use RNA-centric 'hubs' to provide plasticity in response to developmental signals.

    Article  CAS  PubMed  Google Scholar 

  33. Golding, I. & Cox, E. C. Eukaryotic transcription: what does it mean for a gene to be 'on'? Curr. Biol. 16, R371–R373 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Raj, A., Peskin, C. S., Tranchina, D., Vargas, D. Y. & Tyagi, S. Stochastic mRNA synthesis in mammalian cells. PLoS Biol. 4, e309 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jin, L., Guzik, B. W., Bor, Y. C., Rekosh, D. & Hammarskjold, M. L. Tap and NXT promote translation of unspliced mRNA. Genes Dev. 17, 3075–3086 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bor, Y. C. et al. The Wilms' tumor 1 (WT1) gene (+KTS isoform) functions with a CTE to enhance translation from an unspliced RNA with a retained intron. Genes Dev. 20, 1597–1608 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gama-Carvalho, M., Barbosa-Morais, N. L., Brodsky, A. S., Silver, P. A. & Carmo-Fonseca, M. Genome-wide identification of functionally distinct subsets of cellular mRNAs associated with two nucleocytoplasmic-shuttling mammalian splicing factors. Genome Biol. 7, R113 (2006). An elegant demonstration that the polypyrimidine tract RNA-binding protein and the U2AF2 splicing factors associate with discrete subsets of mature spliced mRNAs in the cytoplasm.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Keene, J. D. Why is Hu where? Shuttling of early-response-gene messenger RNA subsets. Proc. Natl Acad. Sci. USA 96, 5–7 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhu, H., Hasman, R. A., Barron, V. A., Luo, G. & Lou, H. A nuclear function of Hu proteins as neuron-specific alternative RNA processing regulators. Mol. Biol. Cell 17, 5105–5114 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ule, J. et al. CLIP identifies Nova-regulated RNA networks in the brain. Science 302, 1212–1215 (2003).

    CAS  PubMed  Google Scholar 

  41. Pan, Q. et al. Revealing global regulatory features of mammalian alternative splicing using a quantitative microarray platform. Mol. Cell 16, 929–941 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Ule, J. et al. An RNA map predicting Nova-dependent splicing regulation. Nature 444, 580–586 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Hieronymus, H. & Silver, P. A. Genome-wide analysis of RNA–protein interactions illustrates specificity of the mRNA export machinery. Nature Genet. 33, 155–161 (2003). A landmark paper describing how mRNA subsets that encode functionally related proteins associate combinatorially with export proteins Mex67 and Yra1 in yeast.

    Article  CAS  PubMed  Google Scholar 

  44. Guisbert, K., Duncan, K., Li, H. & Guthrie, C. Functional specificity of shuttling hnRNPs revealed by genome-wide analysis of their RNA binding profiles. RNA 11, 383–393 (2005).

    Article  CAS  Google Scholar 

  45. Tenenbaum, S. A., Carson, C. C., Lager, P. J. & Keene, J. D. Identifying mRNA subsets in messenger ribonucleoprotein complexes by using cDNA arrays. Proc. Natl Acad. Sci. USA 97, 14085–14090 (2000). First use of RIP–chip to demonstrate that ELAV/Hu, EIF4E and PolyA-binding proteins associate with discrete mRNA subsets that changed coordinately following induction of neuronal differentiation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lai, W. S. et al. Evidence that tristetraprolin binds to AU-rich elements and promotes the deadenylation and destabilization of tumor necrosis factor alpha mRNA. Mol. Cell. Biol. 19, 4311–4323 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Levine, T. D., Gao, F., King, P. H., Andrews, L. G. & Keene, J. D. Hel-N1: an autoimmune RNA-binding protein with specificity for 3′ uridylate-rich untranslated regions of growth factor mRNAs. Mol. Cell. Biol. 13, 3494–3504 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Brennan, C. M. & Steitz, J. A. HuR and mRNA stability. Cell Mol. Life Sci. 58, 266–277 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Antic, D. & Keene, J. D. Embryonic lethal abnormal visual RNA-binding proteins involved in growth, differentiation, and posttranscriptional gene expression. Am. J. Hum. Genet. 61, 273–278 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cheadle, C. et al. Control of gene expression during T cell activation: alternate regulation of mRNA transcription and mRNA stability. BMC Genomics 6, 75 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lykke-Andersen, J. & Wagner, E. Recruitment and activation of mRNA decay enzymes by two ARE-mediated decay activation domains in the proteins TTP and BRF-1. Genes Dev. 19, 351–361 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lam, L. T. et al. Genomic-scale measurement of mRNA turnover and the mechanisms of action of the anti-cancer drug flavopiridol. Genome Biol. 2, RESEARCH0041 (2001).

  53. Yang, E. et al. Decay rates of human mRNAs: correlation with functional characteristics and sequence attributes. Genome Res. 13, 1863–1872 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Raghavan, A. et al. Patterns of coordinate down-regulation of ARE-containing transcripts following immune cell activation. Genomics 84, 1002–1013 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Vlasova, I. A. et al. Coordinate stabilization of growth-regulatory transcripts in T cell malignancies. Genomics 86, 159–171 (2005). References 52–55 demonstrate that mRNA decay in immune cells can be classified into functional groups that change coordinately with cell activation or drug treatments.

    Article  CAS  PubMed  Google Scholar 

  56. Raghavan, A. et al. HuA and tristetraprolin are induced following T cell activation and display distinct but overlapping RNA binding specificities. J. Biol. Chem. 276, 47958–47965 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Marzluff, W. F. Metazoan replication-dependent histone mRNAs: a distinct set of RNA polymerase II transcripts. Curr. Opin. Cell Biol. 17, 274–280 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Townley-Tilson, W. H., Pendergrass, S. A., Marzluff, W. F. & Whitfield, M. L. Genome-wide analysis of mRNAs bound to the histone stem-loop binding protein. RNA 12, 1853–1867 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang, Y. et al. Precision and functional specificity in mRNA decay. Proc. Natl Acad. Sci. USA 99, 5860–5865 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Grigull, J., Mnaimneh, S., Pootoolal, J., Robinson, M. D. & Hughes, T. R. Genome-wide analysis of mRNA stability using transcription inhibitors and microarrays reveals posttranscriptional control of ribosome biogenesis factors. Mol. Cell. Biol. 24, 5534–5547 (2004). References 59 and 60 demonstrate the existence of mRNA stability modules or post-transcriptional operons in yeast that can change coordinately following perturbations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Duttagupta, R. et al. Global analysis of Pub1p targets reveals a coordinate control of gene expression through modulation of binding and stability. Mol. Cell. Biol. 25, 5499–5513 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lai, W. S., Carballo, E., Thorn, J. M., Kennington, E. A. & Blackshear, P. J. Interactions of CCCH zinc finger proteins with mRNA. Binding of tristetraprolin-related zinc finger proteins to AU-rich elements and destabilization of mRNA. J. Biol. Chem. 275, 17827–17837 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Puig, S., Askeland, E. & Thiele, D. J. Coordinated remodeling of cellular metabolism during iron deficiency through targeted mRNA degradation. Cell 120, 99–110 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Bell-Pedersen, D. et al. Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nature Rev. Genet. 6, 544–556 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Benjamin, D., Schmidlin, M., Min, L., Gross, B. & Moroni, C. BRF1 protein turnover and mRNA decay activity are regulated by protein kinase B at the same phosphorylation sites. Mol. Cell. Biol. 26, 9497–9507 (2006). The authors note that BRF1 RNA-binding protein undergoes diurnal circadian pulses in peripheral organs, and might use phosphorylation to regulate a post-transcriptional operon that coordinates the degradation of immediate-early-gene transcripts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lowrey, P. L. & Takahashi, J. S. Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu. Rev. Genomics Hum. Genet. 5, 407–441 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Storch, K. F. et al. Extensive and divergent circadian gene expression in liver and heart. Nature 417, 78–83 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Panda, S. et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109, 307–320 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Lidder, P., Gutierrez, R. A., Salome, P. A., McClung, C. R. & Green, P. J. Circadian control of messenger RNA stability. Association with a sequence-specific messenger RNA decay pathway. Plant Physiol. 138, 2374–2385 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kojima, S. et al. LARK activates posttranscriptional expression of an essential mammalian clock protein, PERIOD1. Proc. Natl Acad. Sci. USA 104, 1859–1864 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fan, J. et al. Global analysis of stress-regulated mRNA turnover by using cDNA arrays. Proc. Natl Acad. Sci. USA 99, 10611–10616 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fan, J. et al. En masse nascent transcription analysis to elucidate regulatory transcription factors. Nucleic Acids Res. 34, 1492–1500 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tenenbaum, S. A., Carson, C. C., Atasoy, U. & Keene, J. D. Genome-wide regulatory analysis using en masse nuclear run-ons and ribonomic profiling with autoimmune sera. Gene 317, 79–87 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Eberwine, J., Miyashiro, K., Kacharmina, J. E. & Job, C. Local translation of classes of mRNAs that are targeted to neuronal dendrites. Proc. Natl Acad. Sci. USA 98, 7080–7085 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Huang, Y. S. & Richter, J. D. Regulation of local mRNA translation. Curr. Opin. Cell Biol. 16, 308–313 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Racki, W. J. & Richter, J. D. CPEB controls oocyte growth and follicle development in the mouse. Development 133, 4527–4537 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Richter, J. D. & Lorenz, L. J. Selective translation of mRNAs at synapses. Curr. Opin. Neurobiol. 12, 300–304 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Ashley, C. T. Jr, Wilkinson, K. D., Reines, D. & Warren, S. T. FMR1 protein: conserved RNP family domains and selective RNA binding. Science 262, 563–566 (1993).

    Article  CAS  PubMed  Google Scholar 

  79. Gao, F. B., Carson, C. C., Levine, T. & Keene, J. D. Selection of a subset of mRNAs from combinatorial 3′ untranslated region libraries using neuronal RNA-binding protein Hel-N1. Proc. Natl Acad. Sci. USA 91, 11207–11211 (1994). This paper describes multitargeting of subsets of mRNAs that contain a similar binding sequence for an ELAV/Hu RNA-binding protein and suggests that their expression is coordinated.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jain, R. G., Andrews, L. G., McGowan, K. M., Pekala, P. H. & Keene, J. D. Ectopic expression of Hel-N1, an RNA-binding protein, increases glucose transporter (GLUT1) expression in 3T3-L1 adipocytes. Mol. Cell. Biol. 17, 954–962 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Brown, V. et al. Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell 107, 477–487 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Eystathioy, T. et al. A phosphorylated cytoplasmic autoantigen, GW182, associates with a unique population of human mRNAs within novel cytoplasmic speckles. Mol. Biol. Cell 13, 1338–1351 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Waggoner, S. A. & Liebhaber, S. A. Identification of mRNAs associated with αCP2-containing RNP complexes. Mol. Cell. Biol. 23, 7055–7067 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lopez de Silanes, I., Zhan, M., Lal, A., Yang, X. & Gorospe, M. Identification of a target RNA motif for RNA-binding protein HuR. Proc. Natl Acad. Sci. USA 101, 2987–2992 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Culjkovic, B., Topisirovic, I., Skrabanek, L., Ruiz-Gutierrez, M. & Borden, K. L. EIF4E is a central node of an RNA regulon that governs cellular proliferation. J. Cell. Biol. 175, 415–426 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Larsson, O. et al. Apoptosis resistance downstream of EIF4E: posttranscriptional activation of an anti-apoptotic transcript carrying a consensus hairpin structure. Nucleic Acids Res. 34, 4375–4386 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Agnes, F. & Perron, M. RNA-binding proteins and neural development: a matter of targets and complexes. Neuroreport 15, 2567–2570 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Fan, J., Heller, N. M., Gorospe, M., Atasoy, U. & Stellato, C. The role of post-transcriptional regulation in chemokine gene expression in inflammation and allergy. Eur. Respir. J. 26, 933–947 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Mata, J., Marguerat, S. & Bahler, J. Post-transcriptional control of gene expression: a genome-wide perspective. Trends Biochem. Sci. 30, 506–514 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Vanderklish, P. W. & Edelman, G. M. Differential translation and fragile X syndrome. Genes Brain Behav. 4, 360–384 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Vemuri, G. N. & Aristidou, A. A. Metabolic engineering in the omics era: elucidating and modulating regulatory networks. Microbiol. Mol. Biol. Rev. 69, 197–216 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wilusz, C. J. & Wilusz, J. Bringing the role of mRNA decay in the control of gene expression into focus. Trends Genet. 20, 491–497 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Gerber, A. P., Herschlag, D. & Brown, P. O. Extensive association of functionally and cytotopically related mRNAs with Puf family RNA-binding proteins in yeast. PLoS Biol. 2, E79 (2004). A definitive demonstration that five RNA-binding proteins in S. cerevisiae associate with discrete subsets of mRNAs that encode functionally related proteins. It provides a confirmation of modular RNPs that is consistent with the post-transcriptional operon model.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Wickens, M., Bernstein, D. S., Kimble, J. & Parker, R. A PUF family portrait: 3′UTR regulation as a way of life. Trends Genet. 18, 150–157 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Garcia-Rodriguez, L. J., Gay, A. C. & Pon, L. A. Puf3p, a Pumilio family RNA binding protein, localizes to mitochondria and regulates mitochondrial biogenesis and motility in budding yeast. J. Cell Biol. 176, 197–207 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mesarovic, M. D., Sreenath, S. N. & Keene, J. D. Search for organising principles: understanding in systems biology. Syst. Biol. (Stevenage) 1, 19–27 (2004).

    Article  CAS  Google Scholar 

  97. Gerber, A. P., Luschnig, S., Krasnow, M. A., Brown, P. O. & Herschlag, D. Genome-wide identification of mRNAs associated with the translational regulator PUMILIO in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 103, 4487–4492 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Culjkovic, B., Topisirovic, I. & Borden, K. L. Controlling gene expression through RNA regulons: the role of the eukaryotic translation initiation factor EIF4E. Cell Cycle 6, 65–69 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Mamane, Y. et al. Epigenetic activation of a subset of mRNAs by EIF4E explains its effects on cell proliferation. PLoS ONE 2, e242 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lu, X., de la Pena, L., Barker, C., Camphausen, K. & Tofilon, P. J. Radiation-induced changes in gene expression involve recruitment of existing messenger RNAs to and away from polysomes. Cancer Res. 66, 1052–161 (2006).

    Article  PubMed  Google Scholar 

  101. Mazan-Mamczarz, K. et al. RNA-binding protein HuR enhances p53 translation in response to ultraviolet light irradiation. Proc. Natl Acad. Sci. USA 100, 8354–8359 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gorospe, M. HuR in the mammalian genotoxic response: post-transcriptional multitasking. Cell Cycle 2, 412–414 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Lopez de Silanes, I. et al. Global analysis of HuR-regulated gene expression in colon cancer systems of reducing complexity. Gene Expr. 12, 49–59 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Lopez de Silanes, I. et al. Identification and functional outcome of mRNAs associated with RNA-binding protein TIA-1. Mol. Cell. Biol. 25, 9520–9531 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Penalva, L. O., Burdick, M. D., Lin, S. M., Sutterluety, H. & Keene, J. D. RNA-binding proteins to assess gene expression states of co-cultivated cells in response to tumor cells. Mol. Cancer 3, 24 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kedersha, N. et al. Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J. Cell Biol. 169, 871–884 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Casciola-Rosen, L., Rosen, A., Petri, M. & Schlissel, M. Surface blebs on apoptotic cells are sites of enhanced procoagulant activity: implications for coagulation events and antigenic spread in systemic lupus erythematosus. Proc. Natl Acad. Sci. USA 93, 1624–1629 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Gould, S. J., Booth, A. M. & Hildreth, J. E. The Trojan exosome hypothesis. Proc. Natl Acad. Sci. USA 100, 10592–10597 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biol. 7 May 2007 (doi: 10.1038/ncb1596).

    Article  CAS  PubMed  Google Scholar 

  110. Lawrence, J. G. Selfish operons and speciation by gene transfer. Trends Microbiol. 5, 355–359 (1997).

    Article  CAS  PubMed  Google Scholar 

  111. Lawrence, J. G. Shared strategies in gene organization among prokaryotes and eukaryotes. Cell 110, 407–413 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Carballo, E., Lai, W. S. & Blackshear, P. J. Evidence that tristetraprolin is a physiological regulator of granulocyte–macrophage colony-stimulating factor messenger RNA deadenylation and stability. Blood 95, 1891–1899 (2000).

    CAS  PubMed  Google Scholar 

  113. Musunuru, K. Cell-specific RNA-binding proteins in human disease. Trends Cardiovasc. Med. 13, 188–195 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Ruggero, D. et al. Dyskeratosis congenita and cancer in mice deficient in ribosomal RNA modification. Science 299, 259–262 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Verheesen, P. et al. Prevention of oculopharyngeal muscular dystrophy-associated aggregation of nuclear polyA-binding protein with a single-domain intracellular antibody. Hum. Mol. Genet. 15, 105–111 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Parsa, A. T. & Holland, E. C. Cooperative translational control of gene expression by Ras and Akt in cancer. Trends Mol. Med. 10, 607–613 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Polunovsky, V. A. & Bitterman, P. B. The cap-dependent translation apparatus integrates and amplifies cancer pathways. RNA Biol. 3, 10–17 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Taylor, G. A. et al. A pathogenetic role for TNFa in the syndrome of cachexia, arthritis, and autoimmunity resulting from tristetraprolin (TTP) deficiency. Immunity 4, 445–454 (1996).

    Article  CAS  PubMed  Google Scholar 

  119. van der Walt, J. M. et al. Fibroblast growth factor 20 polymorphisms and haplotypes strongly influence risk of Parkinson disease. Am. J. Hum. Genet. 74, 1121–1127 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hollams, E. M., Giles, K. M., Thomson, A. M. & Leedman, P. J. mRNA stability and the control of gene expression: implications for human disease. Neurochem. Res. 27, 957–980 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. Audic, Y. & Hartley, R. S. Post-transcriptional regulation in cancer. Biol. Cell 96, 479–498 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Niehrs, C. & Pollet, N. Synexpression groups in eukaryotes. Nature 402, 483–487 (1999).

    Article  CAS  PubMed  Google Scholar 

  123. Inada, M. & Guthrie, C. Identification of Lhp1p-associated RNAs by microarray analysis in Saccharomyces cerevisiae reveals association with coding and noncoding RNAs. Proc. Natl Acad. Sci. USA 101, 434–439 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Darnell, R. B. & Posner, J. B. Paraneoplastic syndromes affecting the nervous system. Semin. Oncol. 33, 270–298 (2006).

    Article  PubMed  Google Scholar 

  125. Lasker, A. G., Mazzocco, M. M. & Zee, D. S. Ocular motor indicators of executive dysfunction in fragile X and Turner syndromes. Brain. Cogn. 63, 203–220 (2006).

    Article  PubMed  Google Scholar 

  126. Wong, J. M. & Collins, K. Telomerase RNA level limits telomere maintenance in X-linked dyskeratosis congenita. Genes Dev. 20, 2848–2858 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Robinson, D. O., Hammans, S. R., Read, S. P. & Sillibourne, J. Oculopharyngeal muscular dystrophy (OPMD): analysis of the PABPN1 gene expansion sequence in 86 patients reveals 13 different expansion types and further evidence for unequal recombination as the mutational mechanism. Hum. Genet. 116, 267–271 (2005).

    Article  CAS  PubMed  Google Scholar 

  128. Carrel, T. L. et al. Survival motor neuron function in motor axons is independent of functions required for small nuclear ribonucleoprotein biogenesis. J. Neurosci. 26, 11014–11022 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ranum, L. P. & Cooper, T. A. RNA-mediated neuromuscular disorders. Annu. Rev. Neurosci. 29, 259–277 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Shiffman, D. et al. Gene variants of VAMP8 and HNRPUL1 are associated with early-onset myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 26, 1613–1618 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Artandi, S. E. Telomeres, telomerase, and human disease. N. Engl. J. Med. 355, 1195–1197 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Siddall, N. A., McLaughlin, E. A., Marriner, N. L. & Hime, G. R. The RNA-binding protein Musashi is required intrinsically to maintain stem cell identity. Proc. Natl Acad. Sci. USA 103, 8402–8407 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

RNA regulons: coordination of post-transcriptional events. Nature Reviews Genetics 8, 533–543 (2007); doi:10.1038/nrg2111

J.D.K. holds stock in Ribonomics, Inc., a company that owns patents for the RIP-chip technology.

Related links

Related links

DATABASES

OMIM

fragile X mental retardation

Parkinson disease

FURTHER INFORMATION

Jack Keene's homepage

Glossary

RNA operon

A ribonucleoprotein structure in which multiple mRNAs are coordinately regulated by RNA-binding proteins and small non-coding RNAs. The combination of multiple mRNAs in an RNA operon can change dynamically following biological perturbations.

Gene-expression neighbourhoods

Chromosomal domains containing 15–30 tandem genes that are expressed together owing to localized chromatin modifications.

RIP–chip

A method that involves immunoprecipitation of an endogenous or tagged RNA-binding protein followed by a microarray analysis or sequencing to identify its associated RNAs.

En masse nuclear run-on assay

A method in which newly synthesized mRNAs are dynamically radiolabelled in isolated nuclei before they are post-transcriptionally processed. The transcript levels are then measured by microarray analysis.

Spindle body

A microtubule-organizing region, found in yeasts and other fungi, that is thought to be homologous to the centrosome of mammals.

Polysome gradients

A method in which velocity centrifugation on sucrose gradients is used to separate ribonucleoprotein complexes from ribosomes and ribosomal subunits from assembled polysomes that have initiated protein synthesis on an mRNA.

GW(P) bodies

Ribonucleoprotein particles that are thought to be the sites of RNA processing (P bodies) in yeast. The GW RNA-binding protein is a major component of these bodies in mammalian cells, in which they were discovered using an autoantibody. The exact functions of GW(P) bodies remain unclear.

Stress granules

Dynamic pleomorphic structures that are found in the cytoplasm of mammalian cells following physical and chemical perturbations such as oxidative stress. The mRNAs that are present in stress granules are translationally silent.

Lupus

An autoimmune disease in which autoantibodies are generated against normal human proteins, including small nuclear ribonucleoproteins (snRNPs). Autoantibodies can be used to identify RNA-binding proteins and small RNAs contained in snRNPs.

Exosomes

Membrane-bound vesicles that are involved in cell-to-cell exchange of proteins and lipids. Recent evidence indicates that retroviruses use exosomes to augment their infectivity and that mRNAs and microRNAs associate with exosomes for cell-to-cell exchange.

Selfish DNA operons

In bacterial DNA operons, the genes are located in close proximity to each other and this organization increases the probability that they are passaged together during horizontal transfer to other cells. A cell that acquires an entire functioning set of genes is likely to gain an adaptive advantage.

Synexpression

Synchronous temporal or spatial expression of groups of genes during development.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keene, J. RNA regulons: coordination of post-transcriptional events. Nat Rev Genet 8, 533–543 (2007). https://doi.org/10.1038/nrg2111

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2111

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing