Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Translation matters: protein synthesis defects in inherited disease

Key Points

  • Many genetic diseases are now known to arise from defects that affect the protein synthesis machinery or its control.

  • Given the essential role that protein synthesis is thought to have in all cell types and tissues, the observed tissue specificity of many of the diseases that are associated with defects in translation is surprising. Elucidation of the disrupted processes in affected cells indicates that several factors involved in protein synthesis, often regarded as mere housekeeping proteins, have additional non-canonical functions.

  • Some diseases are due to mutations that affect the translation of specific mRNAs. Such mutations are outside the coding region of the mRNA, and do not affect the sequence of the protein, but instead impair the sophisticated control mechanisms that govern how much of the protein is synthesized.

  • Translation factors are non-ribosomal proteins that assist the ribosome during mRNA translation. Mutations in them can cause disease, such as the neurodegeneration that results from mutations in the initiation factor eIF2B ('vanishing white matter').

  • Translation factors are regulated by protein kinases, which allow translation to be rapidly fine-tuned. Mutations in one of them (pancreatic endoplasmic reticulum-resident kinase (PERK)) give rise to Wolcott–Rallison disease, which is characterized by infantile-onset diabetes.

  • Mutations in proteins of the ribosome itself also cause disease, probably by interfering with ribosome biogenesis. Examples include Diamond–Blackfan anaemia and bone marrow failure (X-linked dyskeratosis congenita).

  • Amino-acyl-tRNA synthetases ensure that the right amino acid is attached to the relevant tRNA. Mutations that affect their accuracy or localization lead to neurological disorders such as Charcot–Marie–Tooth (CMT) disease.

  • Mitochondria have their own distinct protein synthesis machinery, several components of which are encoded by mitochondrial DNA (mtDNA). The small mitochondrial genome is well studied and a range of conditions are known to arise from mutations in mitochondrial genes that encode tRNAs. Heteroplasmy has a key role in determining the exact phenotype and the severity of these disorders

  • All the proteins involved in mitochondrial translation are encoded by nuclear genes. Mutations in genes for mitochondrial amino-acyl-tRNA synthetases, ribosome proteins, and mitochondrial elongation factors lead to different diseases.

Abstract

The list of genetic diseases caused by mutations that affect mRNA translation is rapidly growing. Although protein synthesis is a fundamental process in all cells, the disease phenotypes show a surprising degree of heterogeneity. Studies of some of these diseases have provided intriguing new insights into the functions of proteins involved in the process of translation; for example, evidence suggests that several have other functions in addition to their roles in translation. Given the numerous proteins involved in mRNA translation, it is likely that further inherited diseases will turn out to be caused by mutations in genes that are involved in this complex process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protein synthesis.
Figure 2: Translation initiation.
Figure 3: Mutations in 5′ untranslated (5′ UTR) regions.

Similar content being viewed by others

References

  1. Jackson, R. J. Alternative mechanisms of initiating translation of mammalian mRNAs. Biochem. Soc. Trans. 33, 1231–1241 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Mangus, D. A., Evans, M. C. & Jacobson, A. Poly(A)-binding proteins: multifunctional scaffolds for the post-transcriptional control of gene expression. Genome Biol. 4, 223 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  3. de Moor, C. H., Meijer, H. & Lissenden, S. Mechanisms of translational control by the 3′ UTR in development and differentiation. Semin. Cell Dev. Biol. 16, 49–58 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Cazzola, M. & Skoda, R. C. Translational pathophysiology: a novel molecular mechanism of human disease. Blood 95, 3280–3288 (2000).

    CAS  PubMed  Google Scholar 

  5. Kozak, M. Emerging links between initiation of translation and human diseases. Mamm. Genome 13, 401–410 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Pickering, B. M. & Willis, A. E. The implications of structured 5′ untranslated regions on translation and disease. Semin. Cell Dev. Biol. 16, 39–47 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Stoneley, M. et al. c-Myc protein synthesis is initiated from the internal ribosome entry segment during apoptosis. Mol. Cell. Biol. 20, 1162–1169 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stoneley, M., Paulin, F. E. M., Le Quesne, J. P. C., Chappell, S. A. & Willis, A. E. c-myc 5′ untranslated region contains an internal ribosome entry segment. Oncogene 16, 423–428 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Paulin, F. E. M., Chappell, S. A. & Willis, A. E. A single nucleotide change in the c-myc internal ribosome entry segment leads to enhanced binding of a group of protein factors. Nucl. Acids Res. 26, 3097–3103 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Evans, J. R. et al. Members of the poly (rC) binding protein family stimulate the activity of the c-myc internal ribosome entry segment in vitro and in vivo. Oncogene 22, 8012–8020 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Hudder, A. & Werner, R. Analysis of a Charcot–Marie–Tooth disease mutation reveals an essential internal ribosome entry site element in the connexin-32 gene. J. Biol. Chem. 275, 34586–34591 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Yoon, A. et al. Impaired control of IRES-mediated translation in X-linked dyskeratosis congenita. Science 312, 902–906 (2006). A mouse model for X-linked dyskeratosis congenita shows a defect in IRES-mediated translation initiation. Together with reference 14, this paper outlines the discussion about the role of translation in this disease.

    Article  CAS  PubMed  Google Scholar 

  13. Liu, J. M. & Ellis, S. R. Ribosomes and marrow failure: coincidental association or molecular paradigm? Blood 107, 4583–4588 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Wong, J. M. & Collins, K. Telomerase RNA level limits telomere maintenance in X-linked dyskeratosis congenita. Genes Dev. 20, 2848–2858 (2006). This paper shows that telomere defects are the primary cause of X-linked dyskeratosis congenita in patients' cells, while normal levels of rRNA pseudouridine modification and normal kinetics of rRNA precursor processing were observed.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dokal, I. Severe aplastic anemia including Fanconi's anemia and dyskeratosis congenita. Curr. Opin. Hematol. 3, 453–460 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Vulliamy, T. & Dokal, I. Dyskeratosis congenita. Semin. Hematol. 43, 157–166 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Liu, L. et al. Mutation of the CDKN2A 5′ UTR creates an aberrant initiation codon and predisposes to melanoma. Nature Genet. 21, 128–132 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Choi, B. Y. et al. The tumor suppressor p16(INK4a) prevents cell transformation through inhibition of c-Jun phosphorylation and AP-1 activity. Nature Struct. Mol. Biol. 12, 699–707 (2005).

    Article  CAS  Google Scholar 

  19. Hinnebusch, A. G. in Translational Control of Gene Expression (eds Sonenberg, N., Hershey, J. W. B. & Mathews, M. B.) 185–243 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2000).

    Google Scholar 

  20. Proud, C. G. eIF2 and the control of cell physiology. Semin. Cell Dev. Biol. 16, 3–12 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Van der Knaap, M. S. et al. Mutations of each of the five subunits of translation initiation factor eIF2B can cause leukoencephalopathy with vanishing white matter. Ann. Neurol. 51, 264–270 (2002). eIF2B is the first cytosolic translation initiation factor to be identified as being related to human disease. Despite it essential role in protein synthesis, mutations lead to a severe childhood white matter disorder.

    Article  CAS  PubMed  Google Scholar 

  22. Fogli, A. et al. A severe variant of childhood ataxia with central hypomyelination/vanishing white matter leukoencephalopathy related to eIF21B5 mutation. Neurology 59, 1966–1968 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Van der Knaap, M. S. et al. eIF2B-related disorders: antenatal onset and involvement of multiple organs. Am. J. Hum. Genet. 73, 1199–1207 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fogli, A. et al. The effect of genotype on the natural history of eIF2B-related leukodystrophies. Neurology 62, 1509–1517 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Van der Knaap, M. S. et al. Arg113His mutation in eIF2Bepsilon as cause of leukoencephalopathy in adults. Neurology 62, 1598–1600 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Prass, K. et al. Adult-onset leukoencephalopathy with vanishing white matter presenting with dementia. Ann. Neurol. 50, 665–668 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Fogli, A. et al. Decreased guanine nucleotide exchange factor activity in eIF2B-mutated patients. Eur. J. Hum. Genet. 12, 561–566 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. van Kollenburg. B. et al. Regulation of protein synthesis in lymphoblasts from vanishing white matter patients. Neurobiol. Dis. 21, 496–504 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Kantor, L. et al. Heightened stress response in primary fibroblasts expressing mutant eIF2B genes from CACH/VWM leukodystrophy patients. Hum. Genet. 118, 99–106 (2005).

    Article  PubMed  Google Scholar 

  30. Van der Voorn, J. P. et al. The unfolded protein response in vanishing white matter disease. J. Neuropathol. Exp. Neurol. 64, 770–775 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. van Kollenburg, B. et al. Glia-specific activation of all pathways of the unfolded protein response in vanishing white matter disease. J. Neuropathol. Exp. Neurol. 65, 707–715 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. McCullough, K. D., Martindale, J. L., Klotz, L. O., Aw, T. Y. & Holbrook, N. J. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating BCL2 and perturbing the cellular redox state. Mol. Cell. Biol. 21, 1249–1259 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Scheper, G. C., Proud, C. G. & Van der Knaap, M. S. Defective translation initiation causes vanishing of cerebral white matter. Trends Mol. Med. 12, 159–166 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Schiffmann, R. & Elroy-Stein, O. Childhood ataxia with CNS hypomyelination/vanishing white matter disease — a common leukodystrophy caused by abnormal control of protein synthesis. Mol. Genet. Metab. 88, 7–15 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Senee, V. et al. Wolcott–Rallison syndrome: clinical, genetic, and functional study of EIF2AK3 mutations and suggestion of genetic heterogeneity. Diabetes 53, 1876–1883 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Scheuner, D. et al. Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol. Cell 7, 1165–1176 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, P. et al. The PERK eukaryotic initiation factor 2α kinase is required for the development of the skeletal system, postnatal growth, and the function and viability of the pancreas. Mol. Cell. Biol. 22, 3864–3874 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang, W. et al. PERK EIF2AK3 control of pancreatic β cell differentiation and proliferation is required for postnatal glucose homeostasis. Cell Metab. 4, 491–497 (2006). This paper shows that PERK is specifically required in the insulin-secreting β-cells during the fetal and early neonatal period, and not during adult stages, for postnatal glucose homeostasis.

    Article  CAS  PubMed  Google Scholar 

  39. Chambers, D. M., Peters, J. & Abbott, C. M. The lethal mutation of the mouse wasted (wst) is a deletion that abolishes expression of a tissue-specific isoform of translation elongation factor 1α, encoded by the Eef1a2 gene. Proc. Natl Acad. Sci. USA 95, 4463–4468 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Khalyfa, A. et al. Characterization of elongation factor-1A (eEF1A-1) and eEF1A-2/S1 protein expression in normal and wasted mice. J. Biol. Chem. 276, 22915–22922 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Chang, R. & Wang, E. Mouse translation elongation factor eEF1A-2 interacts with Prdx-I to protect cells against apoptotic death induced by oxidative stress. J. Cell Biochem. 100, 267–278 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Brito, M. et al. Polyglycine expansions in eRF3/GSPT1 are associated with gastric cancer susceptibility. Carcinogenesis 26, 2046–2049 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Malta-Vacas, J. et al. Differential expression of the eukaryotic release factor 3 (eRF3/GSPT1) according to gastric cancer histological types. J. Clin. Pathol. 58, 621–625 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kerem, E. Pharmacologic therapy for stop mutations: how much CFTR activity is enough? Curr. Opin. Pulm. Med. 10, 547–552 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Welch, E. M. et al. PTC124 targets genetic disorders caused by nonsense mutations. Nature 447, 87–91 (2007). The development of PTC124 as a possible treatment for diseases caused by nonsense mutations shows the important benefits of fundamental research on protein synthesis.

    Article  CAS  PubMed  Google Scholar 

  46. Draptchinskaia, N. et al. The gene encoding ribosomal protein S19 is mutated in Diamond–Blackfan anaemia. Nature Genet. 21, 169–175 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Gazda, H. T. et al. Defective ribosomal protein gene expression alters transcription, translation, apoptosis, and oncogenic pathways in Diamond–Blackfan anemia. Stem Cells 24, 2034–2044 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Flygare, J. et al. Human RPS19, the gene mutated in Diamond–Blackfan anemia, encodes a ribosomal protein required for the maturation of 40S ribosomal subunits. Blood 109, 980–986 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Choesmel, V. et al. Impaired ribosome biogenesis in Diamond–Blackfan anemia. Blood 109, 1275–1283 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Koga, Y., Ohga, S., Nomura, A., Takada, H. & Hara, T. Reduced gene expression of clustered ribosomal proteins in Diamond–Blackfan anemia patients without RPS19 gene mutations. J. Pediatr. Hematol. Oncol. 28, 355–361 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Bommer, U. A., Stahl, J., Henske, A., Lutsch, G. & Bielka, H. Identification of proteins of the 40S ribosomal subunit involved in interaction with initiation factor eIF-2 in the quaternary initiation complex by means of monospecific antibodies. FEBS Lett. 233, 114–118 (1988).

    Article  CAS  PubMed  Google Scholar 

  52. Menne, T. F. et al. The Shwachman–Bodian–Diamond syndrome protein mediates translational activation of ribosomes in yeast. Nature Genet. 39, 486–495 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Thiel, C. T. et al. Severely incapacitating mutations in patients with extreme short stature identify RNA-processing endoribonuclease RMRP as an essential cell growth regulator. Am. J. Hum. Genet. 77, 795–806 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vulliamy, T. et al. The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature 413, 432–435 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Walne, A. J. et al. Genetic heterogeneity in autosomal recessive dyskeratosis congenita with one subtype due to mutations in the telomerase-associated protein NOP10. Hum. Mol. Genet. 16, 1619–1629 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Morimoto, K., Lin, S. & Sakamoto, K. The functions of RPS19 and their relationship to Diamond–Blackfan anemia: a review. Mol. Genet. Metab. 90, 538–562 (2006). A review describing the functions of RPS19, the first ribosomal protein to be found to be related to human disease.

    Google Scholar 

  57. 't Hart, L. M. et al. Evidence that the mitochondrial leucyl tRNA synthetase (LARS2) gene represents a novel type 2 diabetes susceptibility gene. Diabetes 54, 1892–1895 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Jordanova, A. et al. Disrupted function and axonal distribution of mutant tyrosyl-tRNA synthetase in dominant intermediate Charcot–Marie–Tooth neuropathy. Nature Genet. 38, 197–202 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Dubourg, O. et al. The G526R glycyl-tRNA synthetase gene mutation in distal hereditary motor neuropathy type V. Neurology 66, 1721–1726 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Antonellis, A. et al. Glycyl tRNA synthetase mutations in Charcot–Marie–Tooth disease type 2D and distal spinal muscular atrophy type V. Am. J. Hum. Genet. 72, 1293–1299 (2003). The first report of a link between mutations in amino-acyl-tRNA synthetase genes and human disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Seburn, K. L., Nangle, L. A., Cox, G. A., Schimmel, P. & Burgess, R. W. An active dominant mutation of glycyl-tRNA synthetase causes neuropathy in a Charcot–Marie–Tooth 2D mouse model. Neuron 51, 715–726 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Lee, J. W. et al. Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration. Nature 443, 50–55 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Dobson, C. M. Protein folding and its links with human disease. Biochem. Soc. Symp. 68, 1–26 (2001).

    Article  CAS  Google Scholar 

  64. Gatchel, J. R. & Zoghbi, H. Y. Diseases of unstable repeat expansion: mechanisms and common principles. Nature Rev. Genet. 6, 743–755 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Park, S. G., Ewalt, K. L. & Kim, S. Functional expansion of aminoacyl-tRNA synthetases and their interacting factors: new perspectives on housekeepers. Trends Biochem. Sci. 30, 569–574 (2005). A review describing additional roles of amino-acyl-tRNA synthetases in a wide variety of functions different from amino acylation, illustrating the additional roles of translation factors.

    Article  CAS  PubMed  Google Scholar 

  66. Taylor, R. W. & Turnbull, D. M. Mitochondrial DNA mutations in human disease. Nature Rev. Genet. 6, 389–402 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Shoubridge, E. A. & Sasarman, F. in Translational Control in Biology and Medicine (eds Mathews, M. B., Sonenberg, N. & Hershey, J. W. B.) 775–801 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2006).

    Google Scholar 

  68. Schapira, A. H. Mitochondrial disease. Lancet 368, 70–82 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Robinson, B. H. Lactic acidemia and mitochondrial disease. Mol. Genet. Metab. 89, 3–13 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Finsterer, J. Central nervous system manifestations of mitochondrial disorders. Acta Neurol. Scand. 114, 217–238 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. DiMauro, S. Mitochondrial myopathies. Curr. Opin. Rheumatol. 18, 636–641 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Jacobs, H. T. & Turnbull, D. M. Nuclear genes and mitochondrial translation: a new class of genetic disease. Trends Genet. 21, 312–314 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Kirino, Y. et al. Codon-specific translational defect caused by a wobble modification deficiency in mutant tRNA from a human mitochondrial disease. Proc. Natl Acad. Sci. USA 101, 15070–15075 (2004). This study uses a molecular surgery technique to examine the importance of taurine modification of the wobble position of the mitochondrial tRNALeu(UUR).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Park, H., Davidson, E. & King, M. P. The pathogenic A3243G mutation in human mitochondrial tRNALeu(UUR) decreases the efficiency of aminoacylation. Biochemistry 42, 958–964 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Suzuki, T., Suzuki, T., Wada, T., Saigo, K. & Watanabe, K. Taurine as a constituent of mitochondrial tRNAs: new insights into the functions of taurine and human mitochondrial diseases. EMBO J. 21, 6581–6589 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Borner, G. V. et al. Decreased aminoacylation of mutant tRNAs in MELAS but not in MERRF patients. Hum. Mol. Genet. 9, 467–475 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Shoffner, J. M. et al. Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA(Lys) mutation. Cell 61, 931–937 (1990).

    Article  CAS  PubMed  Google Scholar 

  78. Enriquez, J. A., Chomyn, A. & Attardi, G. mtDNA mutation in MERRF syndrome causes defective aminoacylation of tRNA(Lys) and premature translation termination. Nature Genet. 10, 47–55 (1995).

    Article  CAS  PubMed  Google Scholar 

  79. Ravn, K. et al. An mtDNA mutation, 14453G>A, in the NADH dehydrogenase subunit 6 associated with severe MELAS syndrome. Eur. J. Hum. Genet. 9, 805–809 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Davis, D. R., Veltri, C. A. & Nielsen, L. An RNA model system for investigation of pseudouridine stabilization of the codon–anticodon interaction in tRNALys, tRNAHisand tRNATyr. J. Biomol. Struct. Dyn. 15, 1121–1132 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Bykhovskaya, Y., Casas, K., Mengesha, E., Inbal, A. & Fischel-Ghodsian, N. Missense mutation in pseudouridine synthase 1 (PUS1) causes mitochondrial myopathy and sideroblastic anemia (MLASA). Am. J. Hum. Genet. 74, 1303–1308 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Van der Knaap, M. S. et al. A new leukoencephalopathy with brainstem and spinal cord involvement and high lactate. Ann. Neurol. 53, 252–258 (2003).

    Article  PubMed  Google Scholar 

  83. Scheper, G. C. et al. Mitochondrial aspartyl-tRNA synthetase deficiency causes leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation. Nature Genet. 39, 534–539 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Seneca, S. et al. A mitochondrial tRNA aspartate mutation causing isolated mitochondrial myopathy. Am. J. Med. Genet. A 137, 170–175 (2005).

    Article  PubMed  Google Scholar 

  85. Miller, C. et al. Defective mitochondrial translation caused by a ribosomal protein (MRPS16) mutation. Ann. Neurol. 56, 734–738 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. O'Brien, T. W., O'Brien, B. J. & Norman, R. A. Nuclear MRP genes and mitochondrial disease. Gene 354, 147–151 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Nolden, M. et al. The m-AAA protease defective in hereditary spastic paraplegia controls ribosome assembly in mitochondria. Cell 123, 277–289 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Koppen, M., Metodiev, M. D., Casari, G., Rugarli, E. I. & Langer, T. Variable and tissue-specific subunit composition of mitochondrial m-AAA protease complexes linked to hereditary spastic paraplegia. Mol. Cell. Biol. 27, 758–767 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Valente, L. et al. Infantile encephalopathy and defective mitochondrial DNA translation in patients with mutations of mitochondrial elongation factors EFG1 and EFTu. Am. J. Hum. Genet. 80, 44–58 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Smeitink, J. A. et al. Distinct clinical phenotypes associated with a mutation in the mitochondrial translation elongation factor EFTs. Am. J. Hum. Genet. 79, 869–877 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Coenen, M. J. et al. Mutant mitochondrial elongation factor G1 and combined oxidative phosphorylation deficiency. N. Engl. J. Med. 351, 2080–2086 (2004). This elegant study, which used complementation of the mitochondrial defect in patient fibroblasts, led to the discovery of the first nuclear-encoded translation factor known to be involved in mitochondrial disease.

    Article  CAS  PubMed  Google Scholar 

  92. Antonicka, H., Sasarman, F., Kennaway, N. G. & Shoubridge, E. A. The molecular basis for tissue specificity of the oxidative phosphorylation deficiencies in patients with mutations in the mitochondrial translation factor EFG1. Hum. Mol. Genet. 15, 1835–1846 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. DiMauro, S. & Schon, E. A. Mitochondrial respiratory-chain diseases. N. Engl. J. Med. 348, 2656–2668 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Shoubridge, E. A. Nuclear genetic defects of oxidative phosphorylation. Hum. Mol. Genet. 10, 2277–2284 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Papapetropoulos, S. et al. Multiregional gene expression profiling identifies MRPS6 as a possible candidate gene for Parkinson's disease. Gene Expr. 13, 205–215 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Grazina, M. et al. Genetic basis of Alzheimer's dementia: role of mtDNA mutations. Genes Brain Behav. 5, S92–S107 (2006).

    Article  CAS  Google Scholar 

  97. Liu, C. Y., Wong, H. N., Schauerte, J. A. & Kaufman, R. J. The protein kinase/endoribonuclease IRE1α that signals the unfolded protein response has a luminal N-terminal ligand-independent dimerization domain. J. Biol. Chem. 277, 18346–18356 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Wek, R. C., Jiang, H. Y. & Anthony, T. G. Coping with stress: eIF2 kinases and translational control. Biochem. Soc. Trans. 34, 7–11 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Harding, H. P. et al. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol. Cell 6, 1099–1108 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Jeppesen, T. D. et al. Muscle phenotype and mutation load in 51 persons with the 3243A>G mitochondrial DNA mutation. Arch. Neurol. 63, 1701–1706 (2006). This study, involving 51 patients with the same mutation but a wide spectrum of clinical severity, establishes the correlation between muscle genotype and clinical phenotype in MELAS.

    Article  PubMed  Google Scholar 

  101. Ehrenberg, M., Hauryliuk, V., Crist, C. G. & Nakamura, Y. in Translational Control in Biology and Medicine (eds Mathews, M. B., Sonenberg, N. & Hershey, J. W. B.) 173–196 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2006).

    Google Scholar 

  102. Leegwater, P. A. J. et al. Subunits of the translation initiation factor eIF2B are mutated in leukoencephaly with vanishing white matter. Nature Genetics 29, 383–388 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Delepine, M. et al. eIF2AK3, encoding translation initiation factor 2-α kinase 3, is mutated in patients with Wolcott–Rallison syndrome. Nature Genet. 25, 406–409 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Inbal, A. et al. Myopathy, lactic acidosis, and sideroblastic anemia: a new syndrome. Am. J. Med. Genet. 55, 372–378 (1995).

    Article  CAS  PubMed  Google Scholar 

  105. Heiss, N. S. et al. X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nature Genet. 19, 32–38 (1998).

    Article  CAS  PubMed  Google Scholar 

  106. Boocock, G. R. et al. Mutations in SBDS are associated with Shwachman–Diamond syndrome. Nature Genet. 33, 97–101 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Ridanpaa, M. et al. Mutations in the RNA component of RNase MRP cause a pleiotropic human disease, cartilage-hair hypoplasia. Cell 104, 195–203 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Casari, G. et al. Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell 93, 973–983 (1998).

    Article  CAS  PubMed  Google Scholar 

  109. Harding, H. P. et al. Diabetes mellitus and exocrine pancreatic dysfunction in Perk−/− mice reveals a role for translational control in secretory cell survival. Mol. Cell 7, 1153–1163 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Guo, F. & Cavener, D. R. The GCN2 eIF2α kinase regulates fatty-acid homeostasis in the liver during deprivation of an essential amino acid. Cell Metab. 5, 103–114 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Han, A. P. et al. Heme-regulated eIF2α kinase (HRI) is required for translational regulation and survival of erythroid precursors in iron deficiency. EMBO J. 20, 6909–6918 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Le Bacquer, O. et al. Elevated sensitivity to diet-induced obesity and insulin resistance in mice lacking 4E-BP1 and 4E-BP2. J. Clin. Invest. 117, 387–396 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Scheuner, D. et al. Control of mRNA translation preserves endoplasmic reticulum function in β cells and maintains glucose homeostasis. Nature Med. 11, 757–764 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Zhang, S., Shi, M., Hui, C. C. & Rommens, J. M. Loss of the mouse ortholog of the Shwachman–Diamond syndrome gene (Sbds) results in early embryonic lethality. Mol. Cell. Biol. 26, 6656–6663 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Matsson, H. et al. Erythropoiesis in the Rps19 disrupted mouse: analysis of erythropoietin response and biochemical markers for Diamond–Blackfan anemia. Blood Cells Mol. Dis. 36, 259–264 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. He, J. et al. Targeted disruption of Dkc1, the gene mutated in X-linked dyskeratosis congenita, causes embryonic lethality in mice. Oncogene 21, 7740–7744 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Uusimaa, J. et al. Molecular epidemiology of childhood mitochondrial encephalomyopathies in a Finnish population: sequence analysis of entire mtDNA of 17 children reveals heteroplasmic mutations in tRNAArg, tRNAGlu, and tRNALeu(UUR) genes. Pediatrics 114, 443–450 (2004).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Jan for his careful reading of this manuscript. Work in the authors' laboratories on mRNA translation and human health is supported by the Canadian Institutes for Health Research, The Multiple Sclerosis Research Society of Canada and the Heart & Stroke Foundation of British Columbia and the Yukon (CGP), and by the Dutch Organization for Scientific Research, W. M. Phelps Stichting and the Optimix Foundation for Scientific Research (GCS, MSvdK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher G. Proud.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

Alzheimer disease

anauxetic dysplasia

cartilage-hair hypoplasia

Diamond–Blackfan anaemia

LBSL

leukoencephalopathy with vanishing white matter

MELAS

MLASA

Parkinson disease

Shwachman–Diamond disease

Wolcott–Rallison syndrome

X-linked Charcot–Marie–Tooth disease

X-linked dyskeratosis congenita

FURTHER INFORMATION

Christopher G. Proud's homepage

GeneTests

Mitomap

Office of Rare Diseases

Orphanet

Glossary

A-site

One of three binding sites for tRNAs on the ribosome, the acceptor site (A-site) is the one into which amino-acyl-tRNAs are recruited to decode the next codon of the mRNA.

5′ cap structure

A modified nucleotide attached to the 5′ end of precursor mRNA within the nucleus. It has key roles in the function of the mRNA, for example, in its translation.

Methionyl-tRNA

A tRNA to which a methionine residue is attached: a specific 'initiator' methionyl-tRNA recognizes the AUG start codon and provides the first amino acid of the new polypeptide.

Eukaryotic initiation factors

Proteins involved in the first stage of mRNA translation.

Telomerase

An enzyme that modifies the ends of eukaryotic chromosomes.

Telomere erosion

A decrease in the number of repeat sequences at the ends of chromosomes.

Kozak consensus sequence

gccgcc(A/G)ccAUGG: the most favourable sequence to serve as translational start site (AUG, underlined). The purine at position −3 from the AUG start codon and the 'G' at +1 are the most important determinants.

Pseudouridylation

A post-transcriptional nucleotide modification found in RNAs.

Trans-acting factors

RNA-binding proteins that regulate translation of specific mRNAs.

Ribosomal proof reading

Accurate recognition of the codons that enter the ribosomal A-site to prevent misincorporation errors during polypeptide synthesis.

Taurine

An amino-sulphonic acid that can modify the wobble position of mitochondrial tRNAs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheper, G., van der Knaap, M. & Proud, C. Translation matters: protein synthesis defects in inherited disease. Nat Rev Genet 8, 711–723 (2007). https://doi.org/10.1038/nrg2142

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2142

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing