Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Towards a better bowl of rice: assigning function to tens of thousands of rice genes

Key Points

  • Rice, one of the most important food crops for humans, is the first crop plant to have its genome sequenced.

  • This article describes the availability and application of functional genomic tools for rice, including a discussion of rice whole-genome microarrays, genome tiling arrays, genome-wide gene-indexed mutant collections, gene-silencing tools, transient assay systems, integration of gene-expression profiling, insertional mutant analyses and phylogenomics.

  • With the availability of these resources, discovery of the function of the estimated 41,000 rice genes is now within reach.

  • Such discoveries have broad practical implications for understanding the biological processes of rice and other economically important grasses such as cereals and bioenergy crops.

Abstract

Rice, one of the most important food crops for humans, is the first crop plant to have its genome sequenced. Rice whole-genome microarrays, genome tiling arrays and genome-wide gene-indexed mutant collections have recently been generated. With the availability of these resources, discovering the function of the estimated 41,000 rice genes is now within reach. Such discoveries have broad practical implications for understanding the biological processes of rice and other economically important grasses such as cereals and bioenergy crops.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A combination of whole-genome transcriptome and predicted-pathway analysis can be used to efficiently determine gene function.
Figure 2: Elucidation of the function of candidate genes using publicly available transcriptomics data in combination with insertion-mutant collections.

Similar content being viewed by others

References

  1. Poehlman, J. M. Genetics and plant breeding (AVI Publishing Company, Westport, 1983).

    Google Scholar 

  2. IRGSP. The map-based sequence of the rice genome. Nature 436, 793–800 (2005). This paper reports that the map-based sequence of the whole rice genome provides more detailed features of the rice genome compared to previous draft sequences.

    Google Scholar 

  3. Hoshikawa, K. in Science of the Rice Plant. (eds Matsuo, T. & Hoshikawa, K.) 91–132 (Food and Agriculture Policy Research Center, 1993).

    Google Scholar 

  4. Paterson, A. H., Bowers, J. E., Peterson, D. G., Estill, J. C. & Chapman, B. A. Structure and evolution of cereal genomes. Curr. Opin. Genet. Dev. 13, 644–650 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Devos, K. M. & Gale, M. D. Genome relationships: the grass model in current research. Plant Cell 12, 637–646 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hiei, Y., Komari, T. & Kubo, T. Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol. Biol. 35, 205–218 (1997). This is the first report detailing the use of the A. tumefaciens - mediated T-DNA transformation method in rice.

    Article  CAS  PubMed  Google Scholar 

  7. Gale, M. D. & Devos, K. M. Comparative genetics in the grasses. Proc. Natl Acad. Sci. USA 95, 1971–1974 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Goff, S. A. Rice as a model for cereal genomics. Curr. Opin. Plant Biol. 2, 86–89 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Hiei, Y., Ohta, S., Komari, T. & Kumashiro, T. Efficient transformation of rice (Oryza sativa, L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6, 271–282 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Shimamoto, K. & Kyozuka, J. Rice as a model for comparative genomics of plants. Annu. Rev. Plant Biol. 53, 399–419 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Kellogg, E. A. Evolutionary history of the grasses. Plant Physiol. 125, 1198–1205 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Londo, J. P., Chiang, Y. C., Hung., K. H., Chiang, T. Y. & Schaal, B. A. Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa. Proc. Natl Acad. Sci. USA 103, 9578–9583 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Khush, G. S. Origin, dispersal, cultivation and variation of rice. Plant Mol. Biol. 35, 25–34 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Ouyang, S. et al. The TIGR Rice Genome Annotation Resource: improvements and new features. Nucleic Acids Res. 35, D883–887 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Sasaki, T. et al. The genome sequence and structure of rice chromosome 1. Nature 420, 312–316 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Yuan, Q. et al. The Institute for Genomic Research Osa1 rice genome annotation database. Plant Physiol. 138, 18–26 (2005). This paper describes a rice genome annotation database (Osa1), which provides structural and functional annotation using O. sativa ssp. japonica cv. Nipponbare from the International Rice Genome Sequencing Project.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Itoh, T. et al. Curated genome annotation of Oryza sativa ssp. japonica and comparative genome analysis with Arabidopsis thaliana. Genome Res. 17, 175–183 (2007). This paper describes a set of 32,127 FL-cDNA clones corresponding to approximately 21,000 transcription units of the japonica rice genome that are available from the Knowledge-based Oryza Molecular Biological Encyclopedia .

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ohyanagi, H. et al. The Rice Annotation Project Database (RAP-DB): hub for Oryza sativa ssp. japonica genome information. Nucleic Acids Res. 34, D741–D744 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. The map-based sequence of the rice genome. Nature 436, 793–800 (2005).

    Article  CAS  Google Scholar 

  20. Kikuchi, S. et al. Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science 301, 376–379 (2003).

    Article  PubMed  Google Scholar 

  21. Juretic, N., Bureau, T. E. & Bruskiewich, R. M. Transposable element annotation of the rice genome. Bioinformatics 20, 155–160 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Lukowitz, W., Gillmor, C. S. & Scheible, W. R. Positional cloning in Arabidopsis. Why it feels good to have a genome initiative working for you. Plant Physiol. 123, 795–805 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yu, J. et al. The genomes of Oryza sativa: a history of duplications. PLoS Biol. 3, e38 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shiu, S. H. et al. Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 16, 1220–1234 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tian, C., Wan, P., Sun, S., Li, J. & Chen, M. Genome-wide analysis of the GRAS gene family in rice and Arabidopsis. Plant Mol. Biol. 54, 519–532 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Rohila, J. S. et al. Protein–protein interactions of tandem affinity purification-tagged protein kinases in rice. Plant J. 46, 1–13 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Jiang, J., Birchler, J. A., Parrott, W. A. & Dawe, R. K. A molecular view of plant centromeres. Trends Plant Sci. 8, 570–575 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Rensink, W. A. & Buell, C. R. Microarray expression profiling resources for plant genomics. Trends Plant Sci. 10, 603–609 (2005). This Review focuses on recent advances in the application of microarrays in plant genomic research and in gene-expression databases available for plants.

    Article  CAS  PubMed  Google Scholar 

  29. Alonso, J. M. & Ecker, J. R. Moving forward in reverse: genetic technologies to enable genome-wide phenomic screens in Arabidopsis. Nature Rev. Genet. 7, 524–536 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Wing, R. A. et al. The Oryza map alignment project: the golden path to unlocking the genetic potential of wild rice species. Plant Mol. Biol. 59, 53–62 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Lipshutz, R. J., Fodor, S. P., Gingeras, T. R. & Lockhart, D. J. High density synthetic oligonucleotide arrays. Nature Genet. 21, 20–24 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Ramsay, G. DNA chips: state-of-the-art. Nature Biotechnol. 16, 40–44 (1998).

    Article  CAS  Google Scholar 

  33. Borevitz, J. O. et al. Genome-wide patterns of single-feature polymorphism in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 104, 12057–12062 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shimono, M. et al. Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance. Plant Cell 19, 2064–2076 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mockler, T. C. et al. Applications of DNA tiling arrays for whole-genome analysis. Genomics 85, 1–15 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Johnson, J. M., Edwards, S., Shoemaker, D. & Schadt, E. E. Dark matter in the genome: evidence of widespread transcription detected by microarray tiling experiments. Trends Genet. 21, 93–102 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Li, L. et al. Genome-wide transcription analyses in rice using tiling microarrays. Nature Genet. 38, 124–129 (2006). This paper describes a full-genome transcription analysis of the indica rice subspecies using high-density oligonucleotide tiling microarrays.

    Article  CAS  PubMed  Google Scholar 

  38. Li, L. et al. Global identification and characterization of transcriptionally active regions in the rice genome. PLoS ONE 2, e294 (2007). This paper describes TILLING of the rice genome and newly identified transcription units.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nakano, M. et al. Plant MPSS databases: signature-based transcriptional resources for analyses of mRNA and small RNA. Nucleic Acids Res. 34, D731–D735 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Nobuta, K. et al. An expression atlas of rice mRNAs and small RNAs. Nature Biotechnol. 25, 473–477 (2007). This paper describes the first deep sequence data for small RNAs in a crop plant.

    Article  CAS  Google Scholar 

  41. Kumar, C. S., Wing, R. A. & Sundaresan, V. Efficient insertional mutagenesis in rice using the maize En/Spm elements. Plant J. 44, 879–892 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Jeong, D. H. et al. Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice. Plant J. 45, 123–132 (2006). This paper reports the generation of 47,932 T-DNA tag lines in japonica rice using activation-tagging vectors that contain tetramerized 35S enhancer sequences.

    Article  CAS  PubMed  Google Scholar 

  43. Miyao, A. et al. Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome. Plant Cell 15, 1771–1780 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  44. An, G., Lee, S., Kim, S. H. & Kim, S. R. Molecular genetics using T-DNA in rice. Plant Cell Physiol. 46, 14–22 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Sallaud, C. et al. High throughput T-DNA insertion mutagenesis in rice: a first step towards in silico reverse genetics. Plant J. 39, 450–464 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Hsing, Y. I. et al. A rice gene activation/knockout mutant resource for high throughput functional genomics. Plant Mol. Biol. 63, 351–364 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Nakamura, H. et al. A genome-wide gain-of-function analysis of rice genes using the FOX-hunting system. Plant Mol. Biol. (2007).

  48. Wu, Z. et al. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol. 145, 29–40 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wu, J. L. et al. Chemical- and irradiation-induced mutants of indica rice IR64 for forward and reverse genetics. Plant Mol. Biol. 59, 85–97 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. McCallum, C. M., Comai, L., Greene, E. A. & Henikoff, S. Targeted screening for induced mutations. Nature Biotechnol. 18, 455–457 (2000).

    Article  CAS  Google Scholar 

  51. Comai, L. & Henikoff, S. TILLING: practical single-nucleotide mutation discovery. Plant J. 45, 684–694 (2006). This paper describes TILLING,which provides targeted inactivation of rice genes identified by sequence analysis.

    Article  CAS  PubMed  Google Scholar 

  52. Till, B. J. et al. Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol. 7, 19 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Xu, K. et al. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442, 705–708 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Gong, J. M. et al. Microarray-based rapid cloning of an ion accumulation deletion mutant in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 101, 15404–15409 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang, S., Sim, T. B., Kim, Y. S. & Chang, Y. T. Tools for target identification and validation. Curr. Opin. Chem. Biol. 8, 371–377 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Levy, J. et al. A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science 303, 1361–1364 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Mitra, R. M. et al. A Ca2+/calmodulin-dependent protein kinase required for symbiotic nodule development: gene identification by transcript-based cloning. Proc. Natl Acad. Sci. USA 101, 4701–4705 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang, G. L. et al. Isolation and characterization of rice mutants compromised in Xa21-mediated resistance to X. oryzae pv. oryzae. Theor. Appl. Genet. 108, 379–384 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Eckardt, N. A. Good things come in threes: a trio of triple kinases essential for cell division in Arabidopsis. Plant Cell 14, 965–967 (2002). This paper shows that RNA silencing is a useful method for the functional analysis of gene families in rice. Each of the seven members of the OsRac gene family was specifically suppressed by its respective inverted-repeat construct. In addition, the expression of all members of the gene family was suppressed with variable efficiencies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Miki, D., Itoh, R. & Shimamoto, K. RNA silencing of single and multiple members in a gene family of rice. Plant Physiol. 138, 1903–1913 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schwab, R., Ossowski, S., Riester, M., Warthmann, N. & Weigel, D. Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18, 1121–1133 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sunkar, R., Girke, T., Jain, P. K. & Zhu, J. K. Cloning and characterization of microRNAs from rice. Plant Cell 17, 1397–1411 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sheen, J. Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiol. 127, 1466–1475 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bart, R., Chern, M., Park, C. J., Bartley, L. & Ronald, P. C. A novel system for gene silencing using siRNAs in rice leaf and stem-derived protoplasts. Plant Methods 2, 13 (2006). This paper describes a system for isolation, transformation and gene silencing of etiolated rice leaf and stem-derived protoplasts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen, S. et al. A highly efficient transient protoplast system for analyzing defence gene expression and protein–protein interactions in rice. Mol. Plant Pathol. 7, 417–427 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Kawasaki, T. et al. The small GTP-binding protein rac is a regulator of cell death in plants. Proc. Natl Acad. Sci. USA 96, 10922–10926 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Isshiki, M., Tsumoto, A. & Shimamoto, K. The serine/arginine-rich protein family in rice plays important roles in constitutive and alternative splicing of pre-mRNA. Plant Cell 18, 146–158 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. AbuQamar, S. et al. Expression profiling and mutant analysis reveals complex regulatory networks involved in Arabidopsis response to Botrytis infection. Plant J. 48, 28–44 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Brazhnik, P., de la Fuente, A. & Mendes, P. Gene networks: how to put the function in genomics. Trends Biotechnol. 20, 467–472 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Voll, L. M. et al. The photorespiratory Arabidopsis shm1 mutant is deficient in SHM1. Plant Physiol. 140, 59–66 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jung, K. H. et al. Rice Undeveloped tapetum1 is a major regulator of early tapetum development. Plant Cell 17, 2705–2722 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jiao, Y., Ma, L., Strickland, E. & Deng, X. W. Conservation and divergence of light-regulated genome expression patterns during seedling development in rice and Arabidopsis. Plant Cell 17, 3239–3256 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Su, N. et al. Distinct reorganization of the genome transcription associates with organogenesis of somatic embryo, shoots and roots in rice. Plant Mol. Biol. 63, 337–349 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Li, M., Xu, W., Yang, W., Kong, Z. & Xue, Y. Genome-wide gene expression profiling reveals conserved and novel molecular functions of the stigma in rice (Oryza sativa, L.). Plant Physiol. 144, 1797–1812 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Walia, H. et al. Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage. Plant Physiol. 139, 822–835 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Eisen, M. B., Spellman, P. T., Brown, P. O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA 95, 14863–14868 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Takai, R., Kaneda, T., Isogai, A., Takayama, S. & Che, F. S. A new method of defense response analysis using a transient expression system in rice protoplasts. Biosci. Biotechnol. Biochem. 71, 590–593 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Causier, B. & Davies, B. Analysing protein–protein interactions with the yeast two-hybrid system. Plant Mol. Biol. 50, 855–870 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Wang, Y. S. et al. Rice XA21 binding protein 3 is a ubiquitin ligase required for full Xa21-mediated disease resistance. Plant Cell 18, 3635–3646 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jiao, Y. & Deng, X. W. A genome-wide transcriptional activity survey of rice transposable element-related genes. Genome Biol. 8, R28 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dardick, C. & Ronald, P. Plant and animal pathogen recognition receptors signal through non-RD kinases. PLoS Pathog. 2, e2 (2006). This paper describes a phylogenomic database, the RKD, to facilitate functional analysis of the rice protein kinase gene family.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Dardick, C., Chen, J., Richter, T., Ouyang, S. & Ronald, P. The rice kinase database. A phylogenomic database for the rice kinome. Plant Physiol. 143, 579–586 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Meinke, D. W. et al. A sequence-based map of Arabidopsis genes with mutant phenotypes. Plant Physiol. 131, 409–418 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kim, S. et al. Recombination and linkage disequilibrium in Arabidopsis thaliana. Nature Genet. 39, 1151–1155 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. McNally, K. L. et al. Sequencing multiple and diverse rice varieties. Connecting whole-genome variation with phenotypes. Plant Physiol. 141, 26–31 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Song, W. Y. et al. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270, 1804–1806 (1995).

    Article  CAS  PubMed  Google Scholar 

  87. Li, X. et al. Control of tillering in rice. Nature 422, 618–621 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Qu, S. et al. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics 172, 1901–1914 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhou, B. et al. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol. Plant Microbe Interact. 19, 1216–1228 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Ueguchi-Tanaka, M. et al. Gibberellin insensitive dwarf1 encodes a soluble receptor for gibberellin. Nature 437, 693–698 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Ikeda, A. et al. Slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell 13, 999–1010 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sasaki, A. et al. Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science 299, 1896–1898 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Sasaki, A. et al. Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416, 701–702 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Ma, J. F. et al. A silicon transporter in rice. Nature 440, 688–691 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Konishi, S. et al. An SNP caused loss of seed shattering during rice domestication. Science 312, 1392–1396 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Mori, M. et al. Isolation and molecular characterization of a Spotted leaf 18 mutant by modified activation-tagging in rice. Plant Mol. Biol. 63, 847–860 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Moon, S. et al. The rice FON1 gene controls vegetative and reproductive development by regulating shoot apical meristem size. Mol. Cells 21, 147–152 (2006).

    CAS  PubMed  Google Scholar 

  98. Jeon, J. S. et al. Leafy hull sterile1 is a homeotic mutation in a rice MADS box gene affecting rice flower development. Plant Cell 12, 871–884 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Chern, M., Fitzgerald, H. A., Canlas, P. E., Navarre, D. A. & Ronald, P. C. Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. Mol. Plant Microbe Interact. 18, 511–520 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Jeon, J. S. et al. T-DNA insertional mutagenesis for functional genomics in rice. Plant J. 22, 561–570 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. An, G., Jeong, D. H., Jung, K. H. & Lee, S. Reverse genetic approaches for functional genomics of rice. Plant Mol. Biol. 59, 111–123 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. van Enckevort, L. J. et al. EU-OSTID: a collection of transposon insertional mutants for functional genomics in rice. Plant Mol. Biol. 59, 99–110 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Jeong, D. H. et al. Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice. Plant J. 45, 123–132 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Miyao, A. et al. A large-scale collection of phenotypic data describing an insertional mutant population to facilitate functional analysis of rice genes. Plant Mol. Biol. 63, 625–635 (2007). This paper reports the phenotypes of 50,000 Tos 17 insertion lines in the M 2 generation which were observed in the field.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. C. Meyers, L. Bartley, C. Dardick, L. Comai, D. Neale, J. Schroeder, J. Leach, G. L. Wang, K. Shimamoto, V. Sundaresan and R. C. Buell for comments and discussions. We also thank S. Ouyang, Y. S. Lee and P. Cao for helping to generate tables and figures. This work was supported by National Institutes of Health grants 5R01GM055962-0 United States Department of Agriculture grant 2004-63560416640 and National Science Foundation grants DBI-0313887 to P. R., the 21st Century Frontier Program CG1111 and Biogreen 21 Program to G. A, Korea Research Foundation grant 2005-C00155 to K. H. J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela C. Ronald.

Related links

Related links

DATABASES

Entrez Genome Project

Arabidopsis thaliana

Oryza sativa

GRAMENE

LOC_Os03g47610

LOC_Os03g52840

Udt1

NCBI gene expression omnibus

GPL4105

GPL4106

FURTHER INFORMATION

Pamela Ronald's homepage

Agilent Rice Oligo Microarray Kit

CSIRO Ac/Ds in Australia

Current TIGR rice genome pseudomolecules release

DNA Data Bank of Japan

European Molecular Biology Laboratory

Genoplante Oryza tag lines

GRAMENE pathway module

International Rice Functional Genomics Consortium

International Rice Genome Sequencing Project

Knowledge-based Oryza Molecular Biological Encyclopedia

Magnaporthe grisea–Oryza sativa Interaction Database

NCBI Gene Expression Omnibus

NCBI map viewer

NIAS Tos17 insertion mutant database

NSF Rice Oligonucleotide Array Project

Oryza Map Alignment Project

OryGenesDB, France

POSTECH Laboratory

POSTECH rice T-DNA insertion sequence database

Rice Annotation Project database

Rice Functional Genomic Express Database

RiceGE: database sources, details and summary

Rice Kinase Database

Rice Multi-Platform Microarray Search tool

Rice Mutant Database, Huazhong Agricultural University, China

Rice MPSS

Rice Tilling Database

Shanghai T-DNA Insertion Population

Taiwan Rice Insertional Mutants Database

TIGR multiexperiment viewer 4.0

TIGR Rice Genome Annotation

University of California, Davis Rice Functional Genomics Databases

Zhejiang University, China rice T-DNA tags

Glossary

Pseudomolecules

Virtual contiguous sets of clones constructed by resolving discrepancies between overlapping F-factor-based bacterial artificial chromosome (BAC) and P1-derived artificial chromosome (PAC) clones, trimming the overlapping regions at junction points in which the phase 3 BAC–PAC sequences are preferably used, and linking the unique sequences to form a contiguous sequence.

Map-based cloning

A process of identifying the gene responsible for a mutant phenotype by defining a small physical interval through linkage analysis and then systematically testing all candidate genes residing in the interval.

Allelic series

An allele is one or more alternative forms of a DNA sequence. To create an allelic series, molecular geneticists create mutations in a gene of interest and analyse the resulting phenotypes. Such allelic series are useful for determining gene function.

Cosegregation

The tendency for closely linked genes and genetic markers to segregate together.

Protoplast

A plant cell with the cell wall removed. Transient assays using protoplasts are effective for processing large quantities of genetic data coming out of high-throughput assays.

Somaclonal variation

Describes the genetic variation sometimes observed in plants that have passed through plant tissue culture. Chromosomal rearrangements are an important source of this variation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, KH., An, G. & Ronald, P. Towards a better bowl of rice: assigning function to tens of thousands of rice genes. Nat Rev Genet 9, 91–101 (2008). https://doi.org/10.1038/nrg2286

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2286

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing