Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

MicroRNAs in the Hox network: an apparent link to posterior prevalence

Key Points

  • Within Hox gene clusters are loci that encode microRNAs (miRNAs). These include: miR-10, found throughout Bilateria; miR-196, found in vertebrates; and miR-iab4, found in insects.

  • Hox miRNAs preferentially target the mRNA of Hox transcription factors, with a strong propensity to target those from loci situated on the 3′ side of each Hox miRNA locus.

  • These targeting preferences suggest that Hox miRNAs help repress more anterior programmes, thereby reinforcing posterior prevalence, which is the hierarchical control of posterior over anterior Hox gene function.

Abstract

Homeobox (Hox) transcription factors confer anterior–posterior (AP) axial coordinates to vertebrate embryos. Hox genes are found in clusters that also contain genes for microRNAs (miRNAs). Our analysis of predicted miRNA targets indicates that Hox cluster-embedded miRNAs preferentially target Hox mRNAs. Moreover, the presumed Hox target genes are predominantly situated on the 3′ side of each Hox miRNA locus. These results suggest that Hox miRNAs help repress more anterior programmes, thereby reinforcing posterior prevalence, which is the hierarchical dominance of posterior over anterior Hox gene function that is observed in bilaterians. In this way, miRNA-mediated regulation seems to recapitulate interactions at other levels of gene expression, some more ancestral, within a network under stabilizing selection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Predicted repression of Hox genes by Hox microRNAs.

Similar content being viewed by others

References

  1. Duboule, D. The rise and fall of Hox gene clusters. Development 134, 2549–2560 (2007). This paper presents a synthesis of the current understanding of the structure, and the developmental and evolutionary significance, of the organization of the Hox clusters.

    Article  CAS  PubMed  Google Scholar 

  2. Krumlauf, R. Hox genes in vertebrate development. Cell 78, 191–201 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Nei, M. The new mutation theory of phenotypic evolution. Proc. Natl Acad. Sci. USA 104, 12235–12242 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cameron, R. A. et al. Unusual gene order and organization of the sea urchin hox cluster. J. Exp. Zool. B Mol. Dev. Evol. 306, 45–58 (2006).

    Article  PubMed  Google Scholar 

  5. Spagnuolo, A. et al. Unusual number and genomic organization of Hox genes in the tunicate Ciona intestinalis. Gene 309, 71–79 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Seo, H. C. et al. Hox cluster disintegration with persistent anteroposterior order of expression in Oikopleura dioica. Nature 431, 67–71 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Shubin, N., Tabin, C. & Carroll, S. Fossils, genes and the evolution of animal limbs. Nature 388, 639–648 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Spitz, F. et al. Large scale transgenic and cluster deletion analysis of the HoxD complex separate an ancestral regulatory module from evolutionary innovations. Genes Dev. 15, 2209–2214 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Chourrout, D. et al. Minimal ProtoHox cluster inferred from bilaterian and cnidarian Hox complements. Nature 442, 684–687 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Garcia-Fernandez, J. & Holland, P. W. Archetypal organization of the amphioxus Hox gene cluster. Nature 370, 563–566 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Powers, T. P. & Amemiya, C. T. Evidence for a Hox14 paralog group in vertebrates. Curr. Biol. 14, R183–R184 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Morata, G. Homeotic genes of Drosophila. Curr. Opin. Genet. Dev. 3, 606–614 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Duboule, D. The vertebrate limb: a model system to study the Hox/HOM gene network during development and evolution. Bioessays 14, 375–384 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Maconochie, M., Nonchev, S., Morrison, A. & Krumlauf, R. Paralogous Hox genes: function and regulation. Annu. Rev. Genet. 30, 529–556 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Chen, F. & Capecchi, M. R. Targeted mutations in hoxa-9 and hoxb-9 reveal synergistic interactions. Dev. Biol. 181, 186–196 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Krumlauf, R. Mouse Hox genetic functions. Curr. Opin. Genet. Dev. 3, 621–625 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Heard, E. & Bickmore, W. The ins and outs of gene regulation and chromosome territory organisation. Curr. Opin. Cell Biol. 19, 311–316 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Deschamps, J. Ancestral and recently recruited global control of the Hox genes in development. Curr. Opin. Genet. Dev. 17, 422–427 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Nelson, C. E. et al. Analysis of Hox gene expression in the chick limb bud. Development 122, 1449–1466 (1996).

    CAS  PubMed  Google Scholar 

  20. Brend, T., Gilthorpe, J., Summerbell, D. & Rigby, P. W. Multiple levels of transcriptional and post-transcriptional regulation are required to define the domain of Hoxb4 expression. Development 130, 2717–2728 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P. & Burge, C. B. Prediction of mammalian microRNA targets. Cell 115, 787–798 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005). References 22 and 23 use comparative sequence analyses to develop seed-based target-prediction methods, uncover key features of mammalian miRNA-target recognition and reveal the widespread scope of targeting in vertebrates.

    Article  CAS  PubMed  Google Scholar 

  24. Brennecke, J., Stark, A., Russell, R. B. & Cohen, S. M. Principles of microRNA-target recognition. PLoS Biol. 3, e85 (2005). This paper uses comparative sequence analyses and reporter assays to reveal widespread targeting and important features of target recognition in flies.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Krek, A. et al. Combinatorial microRNA target predictions. Nature Genet. 37, 495–500 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Yekta, S., Shih, I. H. & Bartel, D. P. MicroRNA-directed cleavage of HOXB8 mRNA. Science 304, 594–596 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Mansfield, J. H. et al. MicroRNA-responsive 'sensor' transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression. Nature Genet. 36, 1079–1083 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Hornstein, E. et al. The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development. Nature 438, 671–674 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Ma, L., Teruya-Feldstein, J. & Weinberg, R. A. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449, 682–688 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Woltering, J. M. & Durston, A. J. miR-10 represses HoxB1a and HoxB3a in zebrafish. PLoS ONE 3, e1396 (2008).

    Article  PubMed Central  PubMed  Google Scholar 

  31. Bender, W. MicroRNAs in the Drosophila Bithorax complex. Genes Dev. 22, 14–19 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Ronshaugen, M., Biemar, F., Piel, J., Levine, M. & Lai, E. C. The Drosophila microRNA iab-4 causes a dominant homeotic transformation of halteres to wings. Genes Dev. 19, 2947–2952 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Ruby, J. G. et al. Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. Genome Res. 17, 1850–1864 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Tyler, D. M. et al. Functionally distinct regulatory RNAs generated by bidirectional transcription and processing of microRNA loci. Genes Dev. 22, 26–36 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Grimson, A. et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27, 91–105 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Krutzfeldt, J. et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature 438, 685–689 (2005).

    Article  PubMed  Google Scholar 

  37. Farh, K. K. et al. The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science 310, 1817–1821 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Lim, L. P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769–773 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Giraldez, A. J. et al. Zebrafish miR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312, 75–79 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Wienholds, E. et al. MicroRNA expression in zebrafish embryonic development. Science 309, 310–311 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Kloosterman, W. P., Wienholds, E., de Bruijn, E., Kauppinen, S. & Plasterk, R. H. In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nature Methods 3, 27–29 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science 294, 853–858 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Lau, N. C., Lim, L. P., Weinstein, E. G. & Bartel, D. P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858–862 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Palakodeti, D., Smielewska, M. & Graveley, B. R. MicroRNAs from the planarian Schmidtea mediterranea, a model system for stem cell biology. RNA 12, 1640–1649 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Sempere, L. F., Cole, C. N., McPeek, M. A. & Peterson, K. J. The phylogenetic distribution of metazoan microRNAs: insights into evolutionary complexity and constraint. J. Exp. Zool. B Mol. Dev. Evol. 306, 575–588 (2006).

    Article  PubMed  Google Scholar 

  46. Stark, A. et al. Systematic discovery and characterization of fly microRNAs using 12 Drosophila genomes. Genome Res. 17, 1865–1879 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Lagos-Quintana, M., Rauhut, R., Meyer, J., Borkhardt, A. & Tuschl, T. New microRNAs from mouse and human. RNA 9, 175–179 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Stark, A. et al. A single Hox locus in Drosophila produces functional microRNAs from opposite DNA strands. Genes Dev. 22, 8–13 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Duboule, D. & Morata, G. Colinearity and functional hierarchy among genes of the homeotic complexes. Trends Genet. 10, 358–364 (1994). This paper develops the concept of posterior prevalence between genes of the Hox clusters.

    Article  CAS  PubMed  Google Scholar 

  50. Struhl, G. Role of the esc+ gene product in ensuring the selective expression of segment-specific homeotic genes in Drosophila. J. Embryol. Exp. Morphol. 76, 297–331 (1983). This paper is the original source for the concept of hierarchical activity among Hox genes, which was deduced from classical genetics experiments in flies.

    CAS  PubMed  Google Scholar 

  51. Gibson, G. & Gehring, W. Head and thoracic transformations caused by ectopic expression of Antennapedia during Drosophila development. Development 102, 657–675 (1988).

    Google Scholar 

  52. Lufkin, T. et al. Homeotic transformation of the occipital bones of the skull by ectopic expression of a homeobox gene. Nature 359, 835–841 (1992).

    Article  CAS  PubMed  Google Scholar 

  53. Pollock, R. A., Sreenath, T., Ngo, L. & Bieberich, C. J. Gain of function mutations for paralogous Hox genes: implications for the evolution of Hox gene function. Proc. Natl Acad. Sci. USA 92, 4492–4496 (1995).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Burglin, T. R. & Ruvkun, G. The Caenorhabditis elegans homeobox gene cluster. Curr. Opin. Genet. Dev. 3, 615–620 (1993).

    Article  CAS  PubMed  Google Scholar 

  55. Martindale, M. Q. The evolution of metazoan axial properties. Nature Rev. Genet. 6, 917–927 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Davis, G. K. & Patel, N. H. The origin and evolution of segmentation. Trends Cell Biol. 9, M68–M72 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Waskiewicz, A. J., Rikhof, H. A. & Moens, C. B. Eliminating zebrafish pbx proteins reveals a hindbrain ground state. Dev. Cell 3, 723–733 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Williams, M. E., Lehoczky, J. A. & Innis, J. W. A group 13 homeodomain is neither necessary nor sufficient for posterior prevalence in the mouse limb. Dev. Biol. 297, 493–507 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Bartel, D. P. & Chen, C. Z. Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nature Rev. Genet. 5, 396–400 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank laboratory members and collegues for helpful discussions. Supported by grants from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David P. Bartel.

Related links

Related links

FURTHER INFORMATION

The Bartel laboratory

The Tabin laboratory

MicroRNA target predictions

RefSeq

Glossary

Bilateria

Members of the animal clade that have bilateral symmetry — the property of having two similar sides, with definite upper and lower surfaces, and anterior and posterior ends. Bilaterians include chordates, arthropods, nematodes, annelids and molluscs, among other groups.

Non-synonymous mutation

A change in nucleotide sequence that alters the encoded amino acid.

Paralogous

The homology between two genomic segments in the same organism that arose from a duplication event.

Neofunctionalization

The process whereby a pair of duplicated genes becomes permanently preserved as one copy acquires mutations, conferring a new function.

Rhombomere

Each of seven neuroepithelial segments found in the embryonic hindbrain that adopt distinct molecular and cellular properties, restrictions in cell mixing, and ordered domains of gene expression.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yekta, S., Tabin, C. & Bartel, D. MicroRNAs in the Hox network: an apparent link to posterior prevalence. Nat Rev Genet 9, 789–796 (2008). https://doi.org/10.1038/nrg2400

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2400

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing