Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The many roles of histone deacetylases in development and physiology: implications for disease and therapy

Key Points

  • Mammalian genomes encode eleven proteins of the classical histone deacetylase (HDAC) family. They are numbered HDAC1 to HDAC11 and can be classified into four distinct groups (class I, IIa, IIb and IV), which differ in structure, enzymatic function, subcellular localization and expression patterns.

  • Class I HDACs (HDAC1, 2, 3 and 8) are ubiquitously expressed highly active enzymes which localize predominantly to the nucleus. Genetic deletion is lethal in all cases with phenotypes ranging from gastrulation defects to cardiovascular malformation.

  • Class IIa HDACs (HDAC4, 5, 7 and 9) are signal-responsive transcriptional repressors that interact with the transcription factor myocyte enhancer factor 2 (MEF2) and have minimal enzymatic activity towards classical histone substrates, owing to a conserved amino-acid change in the catalytic pocket. Genetic deletion leads to superactivation of MEF2 with resulting phenotypes in the heart, skeleton and endothelial cells.

  • HDAC6 and HDAC10 form the class IIb HDAC family, with HDAC6 being the main cytoplasmic deacetylase in mammalian cells. HDAC6 has numerous targets, including tubulin and intracellular chaperones. Genetic deletion of HDAC6 does not lead to an overt phenotype.

  • HDAC11 is the sole member of the class IV HDACs. Little is known about its function.

  • Genetic deletion of individual HDACs leads to surprisingly specific phenotypes. Analysis of the resulting mutants has shown that HDACs control specific gene expression programmes.

  • One major challenge for the future will be to decipher the role of individual HDACs in specific disease processes and to develop isoform-specific inhibitors. It is expected that this will lead to a broader therapeutic window of HDAC inhibitors, and possibly to a clinical application in non-oncological disease states.

Abstract

Histone deacetylases (HDACs) are part of a vast family of enzymes that have crucial roles in numerous biological processes, largely through their repressive influence on transcription. The expression of many HDAC isoforms in eukaryotic cells raises questions about their possible specificity or redundancy, and whether they control global or specific programmes of gene expression. Recent analyses of HDAC knockout mice have revealed highly specific functions of individual HDACs in development and disease. Mutant mice lacking individual HDACs are a powerful tool for defining the functions of HDACs in vivo and the molecular targets of HDAC inhibitors in disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The histone deacetylase (HDAC) superfamily, showing protein domains, loss-of-function phenotypes in mice and time point of lethality of the knockouts.
Figure 2: Control of heart development by histone deacetylase 1 (HDAC1) and HDAC2.
Figure 3: Control of chondrocyte hypertrophy by histone deacetylase 4 (HDAC4).
Figure 4: Control of pathological cardiac hypertrophy by class IIa histone deacetylases (HDACs).
Figure 5: Control of slow myofibre gene expression by class IIa histone deacetylases (HDACs).
Figure 6: Control of endothelial integrity by histone deacetylase 7 (HDAC7).

Similar content being viewed by others

References

  1. Cheung, W. L., Briggs, S. D. & Allis, C. D. Acetylation and chromosomal functions. Curr. Opin. Cell Biol. 12, 326–333 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Grunstein, M. Histone acetylation in chromatin structure and transcription. Nature 389, 349–352 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Clayton, A. L., Hazzalin, C. A. & Mahadevan, L. C. Enhanced histone acetylation and transcription: a dynamic perspective. Mol. Cell 23, 289–296 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Shahbazian, M. D. & Grunstein, M. Functions of site-specific histone acetylation and deacetylation. Annu. Rev. Biochem. 76, 75–100 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Ruthenburg, A. J., Li, H., Patel, D. J. & Allis, C. D. Multivalent engagement of chromatin modifications by linked binding modules. Nature Rev. Mol. Cell Biol. 8, 983–994 (2007).

    Article  CAS  Google Scholar 

  6. Kouzarides, T. Acetylation: a regulatory modification to rival phosphorylation? EMBO J. 19, 1176–1179 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rundlett, S. E. et al. HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription. Proc. Natl Acad. Sci. USA 93, 14503–14508 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang, A., Kurdistani, S. K. & Grunstein, M. Requirement of Hos2 histone deacetylase for gene activity in yeast. Science 298, 1412–1414 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. De Nadal, E. et al. The MAPK Hog1 recruits Rpd3 histone deacetylase to activate osmoresponsive genes. Nature 427, 370–374 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Nusinzon, I. & Horvath, C. M. Histone deacetylases as transcriptional activators? Role reversal in inducible gene regulation. Sci. STKE 296, re11 (2005).

    Google Scholar 

  11. Glaser, K. B. et al. Gene expression profiling of multiple histone deacetylase (HDAC) inhibitors: defining a common gene set produced by HDAC inhibition in T24 and MDA carcinoma cell lines. Mol. Cancer Ther. 2, 151–163 (2003).

    CAS  PubMed  Google Scholar 

  12. Montgomery, R. L. et al. Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev. 21, 1790–1802 (2007). Reports the first conditional knockout of a class I HDAC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lahm, A. et al. Unraveling the hidden catalytic activity of vertebrate class IIa histone deacetylases. Proc. Natl Acad. Sci. USA 104, 17335–17340 (2007). Describes the mechanism for the loss of enzymatic activity in class IIa HDACs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schwer, B. & Verdin, E. Conserved metabolic regulatory functions of sirtuins. Cell. Metab. 7, 104–112 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Longo, V. D. & Kennedy, B. K. Sirtuins in aging and age-related disease. Cell 126, 257–268 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Guarente, L. Sirtuins as potential targets for metabolic syndrome. Nature 444, 868–874 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Bordone, L. & Guarente, L. Calorie restriction, SIRT1 and metabolism: understanding longevity. Nature Rev. Mol. Cell Biol. 6, 298–305 (2005).

    Article  CAS  Google Scholar 

  18. Taunton, J., Hassig, C. A. & Schreiber, S. L. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272, 408–411 (1996). A seminal paper describing the cloning of the first mammalian HDAC.

    Article  CAS  PubMed  Google Scholar 

  19. Yang, X. J. & Seto, E. The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nature Rev. Mol. Cell Biol. 9, 206–218 (2008). An elegant review about the classical HDAC family.

    Article  CAS  Google Scholar 

  20. Kurdistani, S. K. & Grunstein, M. Histone acetylation and deacetylation in yeast. Nature Rev. Mol. Cell Biol. 4, 276–284 (2003).

    Article  CAS  Google Scholar 

  21. Yang, X. J. & Seto, E. Collaborative spirit of histone deacetylases in regulating chromatin structure and gene expression. Curr. Opin. Genet. Dev. 13, 143–153 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Vega, R. B. et al. Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Mol. Cell Biol. 24, 8374–8385 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. McKinsey, T. A., Zhang, C. L., Lu, J. & Olson, E. N. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 408, 106–111 (2000). The first study to show that class IIa HDACs are signal-responsive modulators of gene expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lu, J., McKinsey, T. A., Nicol, R. L. & Olson, E. N. Signal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases. Proc. Natl Acad. Sci. USA 97, 4070–4075 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Passier, R. et al. CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo. J. Clin. Invest. 105, 1395–1406 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lu, J., McKinsey, T. A., Zhang, C. L. & Olson, E. N. Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases. Mol. Cell 6, 233–244 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Youn, H. D., Grozinger, C. M. & Liu, J. O. Calcium regulates transcriptional repression of myocyte enhancer factor 2 by histone deacetylase 4. J. Biol. Chem. 275, 22563–22567 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Wang, A. H. et al. HDAC4, a human histone deacetylase related to yeast HDA1, is a transcriptional corepressor. Mol. Cell Biol. 19, 7816–7827 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Miska, E. A. et al. HDAC4 deacetylase associates with and represses the MEF2 transcription factor. EMBO J. 18, 5099–5107 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sparrow, D. B. et al. MEF-2 function is modified by a novel co-repressor, MITR. EMBO J. 18, 5085–5098 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang, C. L. et al. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 110, 479–488 (2002). Describes the first knockout of a class IIa HDAC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chang, S. et al. Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol. Cell Biol. 24, 8467–8476 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vega, R. B. et al. Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell 119, 555–566 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Chang, S. et al. Histone deacetylase 7 maintains vascular integrity by repressing matrix metalloproteinase 10. Cell 126, 321–334 (2006). Reports the first conditional class IIa HDAC knockout.

    Article  CAS  PubMed  Google Scholar 

  35. Fischle, W. et al. Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol. Cell 9, 45–57 (2002). The first definitive report showing that class IIa HDAC enzymatic activity is due to the copurification of class I HDACs.

    Article  CAS  PubMed  Google Scholar 

  36. Jones, P. et al. Probing the elusive catalytic activity of vertebrate class IIa histone deacetylases. Bioorg. Med. Chem. Lett. 18, 1814–1819 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, C. L., McKinsey, T. A., Lu, J. R. & Olson, E. N. Association of COOH-terminal-binding protein (CtBP) and MEF2-interacting transcription repressor (MITR) contributes to transcriptional repression of the MEF2 transcription factor. J. Biol. Chem. 276, 35–39 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, C. L., McKinsey, T. A. & Olson, E. N. Association of class II histone deacetylases with heterochromatin protein 1: potential role for histone methylation in control of muscle differentiation. Mol. Cell Biol. 22, 7302–7312 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, C. L., McKinsey, T. A. & Olson, E. N. The transcriptional corepressor MITR is a signal-responsive inhibitor of myogenesis. Proc. Natl Acad. Sci. USA 98, 7354–7359 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dressel, U. et al. A dynamic role for HDAC7 in MEF2-mediated muscle differentiation. J. Biol. Chem. 276, 17007–17013 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Bottomley, M. J. et al. Structural and functional analysis of the human HDAC4 catalytic domain reveals a regulatory structural zinc-binding domain. J. Biol. Chem. 283, 26694–26704 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schuetz, A. et al. Human HDAC7 harbors a class IIa histone deacetylase-specific zinc binding motif and cryptic deacetylase activity. J. Biol. Chem. 283, 11355–11363 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang, Y. et al. Mice lacking histone deacetylase 6 have hyperacetylated tubulin but are viable and develop normally. Mol. Cell Biol. 28, 1688–1701 (2008). Describes the first knockout of a class IIb HDAC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fischer, D. D. et al. Isolation and characterization of a novel class II histone deacetylase, HDAC10. J. Biol. Chem. 277, 6656–6666 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Guardiola, A. R. & Yao, T. P. Molecular cloning and characterization of a novel histone deacetylase HDAC10. J. Biol. Chem. 277, 3350–3356 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Tang, X. et al. Acetylation-dependent signal transduction for type I interferon receptor. Cell 131, 93–105 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Zhang, X. et al. HDAC6 modulates cell motility by altering the acetylation level of cortactin. Mol. Cell 27, 197–213 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kovacs, J. J. et al. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol. Cell 18, 601–607 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Matsuyama, A. et al. In vivo destabilization of dynamic microtubules by HDAC6-mediated deacetylation. EMBO J. 21, 6820–6831 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hubbert, C. et al. HDAC6 is a microtubule-associated deacetylase. Nature 417, 455–458 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Gao, L., Cueto, M. A., Asselbergs, F. & Atadja, P. Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J. Biol. Chem. 277, 25748–25755 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Liu, H., Hu, Q., Kaufman, A., D'Ercole, A. J. & Ye, P. Developmental expression of histone deacetylase 11 in the murine brain. J. Neurosci. Res. 86, 537–543 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lagger, G. et al. Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J. 21, 2672–2681 (2002). Reports the first knockout of a class I HDAC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zupkovitz, G. et al. Negative and positive regulation of gene expression by mouse histone deacetylase 1. Mol. Cell Biol. 26, 7913–7928 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yamaguchi, M. et al. Histone deacetylase 1 regulates retinal neurogenesis in zebrafish by suppressing Wnt and Notch signaling pathways. Development 132, 3027–3043 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Cunliffe, V. T. Histone deacetylase 1 is required to repress Notch target gene expression during zebrafish neurogenesis and to maintain the production of motoneurones in response to hedgehog signalling. Development 131, 2983–2995 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Cunliffe, V. T. & Casaccia-Bonnefil, P. Histone deacetylase 1 is essential for oligodendrocyte specification in the zebrafish CNS. Mech. Dev. 123, 24–30 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Pillai, R., Coverdale, L. E., Dubey, G. & Martin, C. C. Histone deacetylase 1 (HDAC-1) required for the normal formation of craniofacial cartilage and pectoral fins of the zebrafish. Dev. Dyn. 231, 647–654 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Nambiar, R. M., Ignatius, M. S. & Henion, P. D. Zebrafish colgate/hdac1 functions in the non-canonical Wnt pathway during axial extension and in Wnt-independent branchiomotor neuron migration. Mech. Dev. 124, 682–698 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Farooq, M. et al. Histone deacetylase 3 (hdac3) is specifically required for liver development in zebrafish. Dev. Biol. 317, 336–353 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Trivedi, C. M. et al. Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity. Nature Med. 13, 324–331 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Voss, A. K., Thomas, T. & Gruss, P. Efficiency assessment of the gene trap approach. Dev. Dyn. 212, 171–180 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Chen, F. et al. Hop is an unusual homeobox gene that modulates cardiac development. Cell 110, 713–723 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Kook, H. et al. Cardiac hypertrophy and histone deacetylase-dependent transcriptional repression mediated by the atypical homeodomain protein Hop. J. Clin. Invest. 112, 863–871 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shin, C. H. et al. Modulation of cardiac growth and development by HOP, an unusual homeodomain protein. Cell 110, 725–735 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Kuwahara, K. et al. The neuron-restrictive silencer element-neuron-restrictive silencer factor system regulates basal and endothelin 1-inducible atrial natriuretic peptide gene expression in ventricular myocytes. Mol. Cell Biol. 21, 2085–2097 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nakagawa, Y. et al. Class II HDACs mediate CaMK-dependent signaling to NRSF in ventricular myocytes. J. Mol. Cell Cardiol. 41, 1010–1022 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Kuwahara, K. et al. NRSF regulates the fetal cardiac gene program and maintains normal cardiac structure and function. EMBO J. 22, 6310–6321 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Montgomery, R. L. et al. Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice. J. Clin. Invest. 118, 3588–3597 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bhaskara, S. et al. Deletion of histone deacetylase 3 reveals critical roles in S phase progression and DNA damage control. Mol. Cell 30, 61–72 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Knutson, S. K. et al. Liver-specific deletion of histone deacetylase 3 disrupts metabolic transcriptional networks. EMBO J. 27, 1017–1028 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Trivedi, C. M., Lu, M. M., Wang, Q. & Epstein, J. A. Transgenic over-expression of Hdac3 in the heart produces increased postnatal cardiac myocyte proliferation but does not induce hypertrophy. J. Biol. Chem. 283, 26484–26489 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Karsenty, G. The complexities of skeletal biology. Nature 423, 316–318 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Cohen, M. M. Jr. The new bone biology: pathologic, molecular, and clinical correlates. Am. J. Med. Genet. A 140, 2646–2706 (2006).

    Article  PubMed  CAS  Google Scholar 

  75. Arnold, M. A. et al. MEF2C transcription factor controls chondrocyte hypertrophy and bone development. Dev. Cell 12, 377–89 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Kronenberg, H. M. PTHrP and skeletal development. Ann. NY Acad. Sci. 1068, 1–13 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Song, K. et al. The transcriptional coactivator CAMTA2 stimulates cardiac growth by opposing class II histone deacetylases. Cell 125, 453–466 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. McKinsey, T. A. & Olson, E. N. Toward transcriptional therapies for the failing heart: chemical screens to modulate genes. J. Clin. Invest. 115, 538–546 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Backs, J. & Olson, E. N. Control of cardiac growth by histone acetylation/deacetylation. Circ. Res. 98, 15–24 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Hill, J. A. & Olson, E. N. Cardiac plasticity. N. Engl. J. Med. 358, 1370–1380 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Kim, Y. et al. The MEF2D transcription factor mediates stress-dependent cardiac remodeling in mice. J. Clin. Invest. 118, 124–32 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Backs, J., Song, K., Bezprozvannaya, S., Chang, S. & Olson, E. N. CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy. J. Clin. Invest. 116, 1853–1864 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bassel-Duby, R. & Olson, E. N. Signaling pathways in skeletal muscle remodeling. Annu. Rev. Biochem. 75,19-37 (2006).

  84. Kim, M. S. et al. Protein kinase D1 stimulates MEF2 activity in skeletal muscle and enhances muscle performance. Mol. Cell Biol. 28, 3600–3609 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Potthoff, M. J. et al. Histone deacetylase degradation and MEF2 activation promote the formation of slow-twitch myofibers. J. Clin. Invest. 117, 2459–2467 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mejat, A. et al. Histone deacetylase 9 couples neuronal activity to muscle chromatin acetylation and gene expression. Nature Neurosci. 8, 313–321 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Haberland, M. et al. Regulation of HDAC9 gene expression by MEF2 establishes a negative-feedback loop in the transcriptional circuitry of muscle differentiation. Mol. Cell Biol. 27, 518–525 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Lindsey, M. L., Mann, D. L., Entman, M. L. & Spinale, F. G. Extracellular matrix remodeling following myocardial injury. Ann. Med. 35, 316–326 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Jiang, Y., Goldberg, I. D. & Shi, Y. E. Complex roles of tissue inhibitors of metalloproteinases in cancer. Oncogene 21, 2245–2252 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Lee, A. Y. et al. Quantitative analysis of histone deacetylase-1 selective histone modifications by differential mass spectrometry. J. Proteome Res. 31 Oct 2008 (doi:10.1021/pr800510p).

    Article  CAS  PubMed  Google Scholar 

  91. Jones, P. et al. 2-Trifluoroacetylthiophenes, a novel series of potent and selective class II histone deacetylase inhibitors. Bioorg. Med. Chem. Lett. 18, 3456–3461 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Bolden, J. E., Peart, M. J. & Johnstone, R. W. Anticancer activities of histone deacetylase inhibitors. Nature Rev. Drug Discov. 5, 769–784 (2006).

    Article  CAS  Google Scholar 

  93. Duvic, M. et al. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood 109, 31–39 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Xu, W. S., Parmigiani, R. B. & Marks, P. A. Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 26, 5541–5552 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Marks, P. A. Discovery and development of SAHA as an anticancer agent. Oncogene 26, 1351–1356 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Marks, P. A. & Breslow, R. Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nature Biotechnol. 25, 84–90 (2007).

    Article  CAS  Google Scholar 

  97. Karagiannis, T. C. & El-Osta, A. Modulation of cellular radiation responses by histone deacetylase inhibitors. Oncogene 25, 3885–3893 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Zimmermann, S. et al. Reduced body size and decreased intestinal tumor rates in HDAC2-mutant mice. Cancer Res. 67, 9047–9054 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Lehrman, G. et al. Depletion of latent HIV-1 infection in vivo: a proof-of-concept study. Lancet 366, 549–555 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Fischer, A., Sananbenesi, F., Wang, X., Dobbin, M. & Tsai, L. H. Recovery of learning and memory is associated with chromatin remodelling. Nature 447, 178–182 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Reddy, P. et al. Histone deacetylase inhibition modulates indoleamine 2,3-dioxygenase-dependent DC functions and regulates experimental graft-versus-host disease in mice. J. Clin. Invest. 118, 2562–2573 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Kong, Y. et al. Suppression of class I and II histone deacetylases blunts pressure-overload cardiac hypertrophy. Circulation 113, 2579–2588 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Granger, A. et al. Histone deacetylase inhibition reduces myocardial ischemia-reperfusion injury in mice. FASEB J. 22, 3549–3560 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhang, B. et al. HDAC inhibitor increases histone H3 acetylation and reduces microglia inflammatory response following traumatic brain injury in rats. Brain Res. 1226, 181–191 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Williams, J. A. et al. Valproic acid prevents brain injury in a canine model of hypothermic circulatory arrest: a promising new approach to neuroprotection during cardiac surgery. Ann. Thorac. Surg. 81, 2235–2241; discussion 2241–2242 (2006).

    Article  PubMed  Google Scholar 

  106. Almeida, A. M. et al. Targeted therapy for inherited GPI deficiency. N. Engl. J. Med. 356, 1641–1647 (2007). Describes the 'cure' of an inherited genetic disorder using an HDAC inhibitor.

    Article  CAS  PubMed  Google Scholar 

  107. Kim, S. C. et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol. Cell 23, 607–618 (2006). An elegant screen for the 'acetylome'.

    Article  CAS  PubMed  Google Scholar 

  108. Mann, B. S., Johnson, J. R., Cohen, M. H., Justice, R. & Pazdur, R. FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist 12, 1247–1252 (2007). This study highlights the first US Food and Drug Administration (FDA) approval of an HDAC inhibitor.

    Article  CAS  PubMed  Google Scholar 

  109. Olsen, E. A. et al. Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J. Clin. Oncol. 25, 3109–3115 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Luhrs, H. et al. Butyrate inhibits NF-kappaB activation in lamina propria macrophages of patients with ulcerative colitis. Scand. J. Gastroenterol. 37, 458–466 (2002).

    Article  CAS  PubMed  Google Scholar 

  111. Atweh, G. F. et al. Sustained induction of fetal hemoglobin by pulse butyrate therapy in sickle cell disease. Blood 93, 1790–1797 (1999).

    CAS  PubMed  Google Scholar 

  112. Chung, Y. L., Lee, M. Y., Wang, A. J. & Yao, L. F. A therapeutic strategy uses histone deacetylase inhibitors to modulate the expression of genes involved in the pathogenesis of rheumatoid arthritis. Mol. Ther. 8, 707–717 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Choi, J. H. et al. Trichostatin A attenuates airway inflammation in mouse asthma model. Clin. Exp. Allergy 35, 89–96 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Camelo, S. et al. Transcriptional therapy with the histone deacetylase inhibitor trichostatin A ameliorates experimental autoimmune encephalomyelitis. J. Neuroimmunol. 164, 10–21 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Glauben, R. et al. Histone hyperacetylation is associated with amelioration of experimental colitis in mice. J. Immunol. 176, 5015–5022 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Antos, C. L. et al. Dose-dependent blockade to cardiomyocyte hypertrophy by histone deacetylase inhibitors. J. Biol. Chem. 278, 28930–28937 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Reddy, P. et al. Histone deacetylase inhibitor suberoylanilide hydroxamic acid reduces acute graft-versus-host disease and preserves graft-versus-leukemia effect. Proc. Natl Acad. Sci. USA 101, 3921–3926 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Leoni, F. et al. The histone deacetylase inhibitor ITF2357 reduces production of pro-inflammatory cytokines in vitro and systemic inflammation in vivo. Mol. Med. 11, 1–15 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Minetti, G. C. et al. Functional and morphological recovery of dystrophic muscles in mice treated with deacetylase inhibitors. Nature Med. 12, 1147–1150 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Mishra, N., Reilly, C. M., Brown, D. R., Ruiz, P. & Gilkeson, G. S. Histone deacetylase inhibitors modulate renal disease in the MRL-lpr/lpr mouse. J. Clin. Invest. 111, 539–552 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Avila, A. M. et al. Trichostatin A increases SMN expression and survival in a mouse model of spinal muscular atrophy. J. Clin. Invest. 117, 659–671 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sailhamer, E. A. et al. Acetylation: a novel method for modulation of the immune response following trauma/hemorrhage and inflammatory second hit in animals and humans. Surgery 144, 204–216 (2008).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to the many authors in the field whose work we were not able to cite because of space constraints. Research in the Olson laboratory has been supported by grants from the National Institutes of Health, the D.W. Reynolds Clinical Cardiovascular Research Center, the Robert A. Welch Foundation and the Sandler Foundation for Asthma Research. M.H was supported by a grant from the Deutsche Forschungsgemeinschaft (DFG, HA 3335/2-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric N. Olson.

Ethics declarations

Competing interests

Eric Olson is a consultant for Gilead Therapeutics.

Related links

Related links

FURTHER INFORMATION

http://www4.utsouthwestern.edu/olsonlab

Glossary

Transition state

A particular state corresponding to the highest energy in a chemical reaction.

Morpholino

A stable antisense oligonucleotide that is commonly used in zebrafish and Xenopus laevis to inhibit either the translation or splicing of mRNAs.

Gene trap

A mutation strategy that uses insertion vectors to trap or isolate transcripts from flanking genes.

Gastrulation

The process in animal embryos in which the endoderm and mesoderm move from the outer surface of the embryo to the inside, where they give rise to the internal organs.

Interstitial fibrosis

Proliferation of fibroblasts resulting in increased collagen production and consequent organ dysfunction.

Chondrocyte

The type of cell that produces and maintains the cartilaginous matrix.

Osteoblast

The type of cell that is responsible for bone formation by secreting and mineralizing the bone matrix.

Ossification

The process of bone formation in which soft connective tissue is converted into mineralized tissue.

Endochondral bone

The parts of the skeleton which form by endochondral ossification, a process in which cartilage is replaced by bone.

Rheostat

A module for fine tuning a molecular circuit.

IC50

Inhibition concentration 50%. The concentration of inhibitor that is required to inhibit 50% of the activity of an enzyme compared with an uninhibited control.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haberland, M., Montgomery, R. & Olson, E. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10, 32–42 (2009). https://doi.org/10.1038/nrg2485

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2485

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing