Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Genetic susceptibility to SLE: new insights from fine mapping and genome-wide association studies

Abstract

Genome-wide association studies and fine mapping of candidate regions have rapidly advanced our understanding of the genetic basis of systemic lupus erythematosus (SLE). More than 20 robust associations have now been identified and confirmed, providing insights at the molecular level that refine our understanding of the involvement of host immune response processes. In addition, genes with unknown roles in SLE pathophysiology have been identified. These findings may provide new routes towards improved clinical management of this complex disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathways that contain established candidate systemic lupus erythematosus (SLE) susceptibility loci.
Figure 2: Pathways in which identified systemic lupus erythematosus (SLE) risk alleles operate.

Similar content being viewed by others

References

  1. Lau, C. S., Yin, G. & Mok, M. Y. Ethnic and geographical differences in systemic lupus erythematosus: an overview. Lupus 15, 713–714 (2006).

    Article  Google Scholar 

  2. Lockshin, M. D. Sex differences in autoimmune disease. Lupus 15, 753–756 (2006).

    Article  CAS  Google Scholar 

  3. Uribe, A. G., McGwin, G. Jr, Reveille, J. D. & Alarcon, G. S. What have we learned from a 10-year experience with the LUMINA (Lupus in Minorities; nature vs. Nurture) cohort? Where are we heading? Autoimmun. Rev. 3, 321–329 (2004).

    Article  Google Scholar 

  4. Hochberg, M. C. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 40, 1725 (1997).

    Article  CAS  Google Scholar 

  5. Tan, E. M. et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 25, 1271–1277 (1982).

    Article  CAS  Google Scholar 

  6. Alarcon-Segovia, D. et al. Familial aggregation of systemic lupus erythematosus, rheumatoid arthritis, and other autoimmune diseases in 1,177 lupus patients from the GLADEL cohort. Arthritis Rheum. 52, 1138–1147 (2005).

    Article  Google Scholar 

  7. Deapen, D. et al. A revised estimate of twin concordance in systemic lupus erythematosus. Arthritis Rheum. 35, 311–318 (1992).

    Article  CAS  Google Scholar 

  8. Moser, K. L. et al. Genome scan of human systemic lupus erythematosus: evidence for linkage on chromosome 1q in African-American pedigrees. Proc. Natl Acad. Sci. USA 95, 14869–14874 (1998).

    Article  CAS  Google Scholar 

  9. Edberg, J. C. et al. Genetic linkage and association of Fcγ receptor IIIA (CD16A) on chromosome 1q23 with human systemic lupus erythematosus. Arthritis Rheum. 46, 2132–2140 (2002).

    Article  CAS  Google Scholar 

  10. Prokunina, L. et al. A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nature Genet. 32, 666–669 (2002).

    Article  CAS  Google Scholar 

  11. The International HapMap Consoritum. The International HapMap Project. Nature 426, 789–796 (2003).

  12. M. I. McCarthy et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nature Rev. Genet. 9, 356–369 (2008).

    Article  Google Scholar 

  13. Cervino, A. C., Tsinoremas, N. F. & Hoffman, R. W. A genome-wide study of lupus: preliminary analysis and data release. Ann. N. Y Acad. Sci. 1110, 131–139 (2007).

    Article  CAS  Google Scholar 

  14. International Consortium for Systemic Lupus Erythematosus Genetics (SLEGEN) et al. Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nature Genet. 40, 204–210 (2008).

  15. Hom, G. et al. Association of systemic lupus erythematosus with C8orf13–BLK and ITGAM–ITGAX. N. Engl. J. Med. 358, 900–909 (2008).

    Article  CAS  Google Scholar 

  16. Kozyrev, S. V. et al. Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus. Nature Genet. 40, 211–216 (2008).

    Article  CAS  Google Scholar 

  17. Graham, R. R. et al. Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus. Nature Genet. 40, 1059–1061 (2008).

    Article  CAS  Google Scholar 

  18. Nath, S. K. et al. A nonsynonymous functional variant in integrinαM (encoded by ITGAM) is associated with systemic lupus erythematosus. Nature Genet. 40, 152–154 (2008).

    Article  CAS  Google Scholar 

  19. Sachs, U. J. H. et al. Human alloantibody anti-Mart interferes with Mac 1-dependent leukocyte adhesion. Blood 104, 727–734 (2004).

    Article  CAS  Google Scholar 

  20. Hooks, J. J. et al. Immune interferon in the circulation of patients with autoimmune disease. N. Engl. J. Med. 301, 5–8 (1979).

    Article  CAS  Google Scholar 

  21. Niewold, T. B., Hua, J., Lehman, T. J., Harley, J. B. & Crow, M. K. High serum IFN-α activity is a heritable risk factor for systemic lupus erythematosus. Genes Immun. 8, 492–502 (2007).

    Article  CAS  Google Scholar 

  22. Baechler, E. C. et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl Acad. Sci. USA 100, 2610–2615 (2003).

    Article  CAS  Google Scholar 

  23. Lee-Kirsch, M. A. et al. Mutations in the gene encoding the 3′–5′ DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nature Genet. 39, 1065–1067 (2007).

    Article  CAS  Google Scholar 

  24. Musone, S. L. et al. Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus. Nature Genet. 40, 1062–1064 (2008).

    Article  CAS  Google Scholar 

  25. Sigurdsson, S. et al. Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus. Am. J. Hum. Genet. 76, 528–537 (2005).

    Article  CAS  Google Scholar 

  26. Graham, R. R. et al. Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus. Proc. Natl. Acad. Sci. USA 104, 6758–6763 (2007).

    Article  CAS  Google Scholar 

  27. Cunninghame Graham, D. S. et al. Association of IRF5 in UK SLE families identifies a variant involved in polyadenylation. Hum. Mol. Genet. 16, 579–591 (2007).

    Article  CAS  Google Scholar 

  28. Jacob, C. O. et al. Identification of novel susceptibility genes in childhood-onset systemic lupus erythematosus using a uniquely designed candidate gene pathway platform. Arthritis Rheum. 56, 4164–4173 (2007).

    Article  CAS  Google Scholar 

  29. Ardoin, S. P. & Pisetsky, D. S. Developments of the scientific understanding of lupus. Arthritis Res. Ther. 10, 218 (2008).

    Article  Google Scholar 

  30. Vang, T. et al. Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nature Genet. 37, 1317–1317 (2005).

    Article  CAS  Google Scholar 

  31. Chung, S. A. & Criswell, L. A. PTPN22: its role in SLE and autoimmunity. Autoimmunity 40, 582–590 (2007).

    Article  CAS  Google Scholar 

  32. Gregersen, P. K., Lee, H.-S., Batliwalla, F. & Begovich, A. B. PTPN22: Setting thresholds for autoimmunity. Sem. Immunol. 18, 214–223 (2006).

    Article  CAS  Google Scholar 

  33. Orru, V. et al. A loss-of-function variant of PTPN22 is associated with reduced risk of systemic lupus erythematosus. Hum. Mol. Genet. 18, 569–579 (2009).

    Article  CAS  Google Scholar 

  34. Giallourakis C. et al. A molecular-properties-based approach to understanding PDZ domain proteins and PDZ ligands. Genome Res. 16, 1056–1072 (2006).

    Article  CAS  Google Scholar 

  35. Lawrie, C. H. et al. MicroRNA expression in lymphocyte development and malignancy. Leukemia 22, 1440–1446 (2008).

    Article  CAS  Google Scholar 

  36. Deng L. et al. An unusual haplotype polymorphism on human chromosome 8p23 derived from the inversion polymorphism. Hum. Mutat. 10, 1209–1216 (2008).

    Article  Google Scholar 

  37. Fernando, M. M. et al. Identification of two independent risk factors for lupus within the MHC in United Kingdom Families. PLoS Genet. 3, e192 (2007).

    Article  Google Scholar 

  38. Stetson, D. B., Ko, J. S., Heidmann, T. & Medzhitov, R. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134, 587–598 (2008).

    Article  CAS  Google Scholar 

  39. Thompson, I. M. et al. Operating characteristics of prostate-specific antigen in men with an initial PSA level of 3.0 ng/ml or lower. JAMA 294, 66–70 (2005).

    Article  CAS  Google Scholar 

  40. Botto, M. & Walport, M. J. C1q, autoimmunity and apoptosis. Immunobiology 205, 395–406 (2002).

    Article  CAS  Google Scholar 

  41. Fielder, A. H. et al. Family study of the major histocompatibility complex in patients with systemic lupus erythematosus: importance of null alleles of C4A and C4B in determining disease susceptibility. BMJ 286, 425–428 (1983).

    Article  CAS  Google Scholar 

  42. Yang, Y. et al. Gene copy-number variation and associated polymorphisms of complement component C4 in human systemic lupus erythematosus (SLE): low copy number is a risk factor for and high copy number is a protective factor against SLE susceptibility in European Americans. Am. J. Hum. Genet. 80, 1037–1054 (2007).

    Article  CAS  Google Scholar 

  43. Sullivan, K. E. et al. Prevalence of a mutation causing C2 deficiency in systemic lupus erythematosus. J. Rheumatol. 21, 1128–1133 (1994).

    CAS  PubMed  Google Scholar 

  44. Taylor, K. E. et al. Specificity of the STAT4 genetic association for severe disease manifestations of systemic lupus erythematosus. PLoS Genet. 30, e1000084 (2008).

    Article  Google Scholar 

  45. Kyogoku, C. et al. Genetic association of the R620W polymorphism of protein tyrosine phosphatase PTPN22 with human SLE. Am. J. Hum. Genet. 75, 504–507 (2004).

    Article  CAS  Google Scholar 

  46. Edberg, J. C. et al. Genetic variation in the CRP promoter: association with systemic lupus erythematosus. Hum. Mol. Genet. 17, 1147–1155 (2008).

    Article  CAS  Google Scholar 

  47. Graham, D. S. et al. Polymorphism at the TNF superfamily gene TNFSF4 confers susceptibility to systemic lupus erythematosus. Nature Genet. 40, 83–89 (2008).

    Article  Google Scholar 

  48. Sawalha, A. H. et al. Common variants within MECP2 confer risk of systemic lupus erythematosus. PLoS ONE 3, e1727 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Institutes of Health (grants AI24717, AR62277, AR42460, AR49084, HD07463 and GM063483), the Mary Kirkland Scholarship, the Alliance for Lupus Research and the US Department of Veterans Affairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer A. Kelly.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

Systemic lupus erythematosus

FURTHER INFORMATION

Lupus Family Registry and Repository (LFRR)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harley, I., Kaufman, K., Langefeld, C. et al. Genetic susceptibility to SLE: new insights from fine mapping and genome-wide association studies. Nat Rev Genet 10, 285–290 (2009). https://doi.org/10.1038/nrg2571

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2571

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing