Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The genetics of quantitative traits: challenges and prospects

Key Points

  • Most phenotypic variation in natural populations is attributable to multiple interacting loci, with allelic effects that are sensitive to the exact environmental conditions each individual experiences. The underlying quantitative trait loci (QTLs) can be mapped by linkage to polymorphic marker loci with clear Mendelian segregation such as molecular polymorphisms.

  • QTLs can be mapped in families or segregating progeny of crosses between genetically divergent strains (linkage mapping) or in unrelated individuals from the same population (association mapping). In both cases, large numbers of individuals are needed to detect and localize QTLs; the number of individuals and genotypes per individual needed increases as the QTL effect size decreases and the precision of localization increases.

  • Positional cloning is the gold standard of identifying genes that correspond to QTLs. Corroborating evidence that a gene causes the variation in the trait of interest includes replication in independent studies, identifying potentially functional DNA polymorphisms between alternative alleles of one of the candidate genes, showing a difference in mRNA expression levels between genotypes, showing that mRNA or protein is expressed in tissues that are thought to be relevant to the trait, and showing that mutations in candidate genes affect the trait or fail to complement QTL alleles.

  • Results of QTL mapping efforts in many species over the past 20 years have showed that there are key common features of the genetic architecture of quantitative traits: many loci with small effects are responsible for most quantitative genetic variation, these loci are often unexpected based on prior knowledge of the trait or correspond to computationally predicted genes; the effects of QTL alleles are highly context-dependent and vary depending on genetic background, environment and sex; and pleiotropic QTL effects are widespread.

  • Despite 20 years of intensive effort, we have fallen short of our long-term goal of explaining genetic variation for quantitative traits in terms of the underlying genes, the effects of segregating alleles in different genetic backgrounds and in a range of ecologically relevant environments, as well as their effects on other traits, the molecular basis of functional allelic effects and the population frequency of causal variants. The challenge of dissecting quantitative traits into individual genes and their causal molecular polymorphisms will be solved in the near future by applying new sequencing and genotyping technologies to the problem, in combination with new community resources.

  • Understanding the biological context in which molecular polymorphisms elicit their effects on trait variation requires knowledge of the effects of the polymorphisms on complex networks of transcriptional, protein, metabolic and other molecular endophenotypes that lead to the organismal phenotype. This is the province of the emerging discipline of systems genetics.

  • Systems genetics integrates DNA sequence variation, variation in transcript abundance and other molecular phenotypes, and variation in organismal phenotypes in a linkage or association mapping population and enables us to interpret quantitative genetic variation in terms of biologically meaningful causal networks of correlated transcripts. The association of molecular variation with organismal phenotypes identifies QTLs, the association of molecular variation with gene expression traits identifies expression QTLs and correlations between gene expression and organismal level phenotypes identify quantitative trait transcripts.

  • Levels of expression of many transcripts covary between individuals in a mapping population; the correlated transcripts can be grouped statistically into modules, in which each module consists of transcripts with higher correlations to each other than to the rest of the transcriptome. The correlations between transcripts in a module can be visualized graphically as a network with nodes denoting transcripts and edges connecting nodes that are genetically correlated. Causal biological networks can be derived from coexpression transcriptional networks that are also correlated with the phenotype of an organism, using the statistical concept of conditional dependence. The statistical definition of the molecular interactions that govern phenotypic variation through natural genetic perturbations is a testable hypothesis that can be validated and refined by functional studies.

Abstract

A major challenge in current biology is to understand the genetic basis of variation for quantitative traits. We review the principles of quantitative trait locus mapping and summarize insights about the genetic architecture of quantitative traits that have been obtained over the past decades. We are currently in the midst of a genomic revolution, which enables us to incorporate genetic variation in transcript abundance and other intermediate molecular phenotypes into a quantitative trait locus mapping framework. This systems genetics approach enables us to understand the biology inside the 'black box' that lies between genotype and phenotype in terms of causal networks of interacting genes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Power to localize and detect quantitative trait loci.
Figure 2: Systems genetics integrative framework.
Figure 3: Coexpression gene networks.
Figure 4: Inside the black box between genotype and phenotype.

Similar content being viewed by others

References

  1. Falconer, D. S. & Mackay, T. F. C. Introduction to Quantitative Genetics (Addison Wesley Longman, Harlow, 1996).

    Google Scholar 

  2. Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits (Sinauer Associates, Sunderland, Massachusetts, 1998).

    Google Scholar 

  3. Sax, K. The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics 8, 522–560 (1923).

    Google Scholar 

  4. Thoday, J. M. in Quantitative Genetic Variation (eds Thompson, J. N. Jr & Thoday, J. M.) 219–233 (Academic, New York, 1979).

    Book  Google Scholar 

  5. Shrimpton, A. E. & Robertson, A. The isolation of polygenic factors controlling bristle score in Drosophila melanogaster. II. Distribution of third chromosome bristle effects within chromosome sections. Genetics 118, 445–459 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lander, E. S. & Botstein, D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121, 185–199 (1989). This seminal paper describes a statistical method for interval mapping of QTLs using molecular markers and provides the first power calculations for these studies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Altshuler, D., Daly, M. J. & Lander, E. S. Genetic mapping in human disease. Science 322, 881–888 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Donnelly, P. Progress and challenges in genome-wide association studies in humans. Nature 456, 728–731 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Frazer, K. A., Murray, S. S., Schork, N. J. & Topol, E. J. Human genetic variation and its contribution to complex traits. Nature Rev. Genet. 10, 241–251 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Mackay, T. F. C. The genetic architecture of quantitative traits. Annu. Rev. Genet. 35, 303–339 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Sieberts, S. K. & Schadt, E. E. Moving toward a system genetics view of disease. Mamm. Genome 18, 389–401 (2007). This is an excellent overview of systems genetics and the methods used to infer causal gene networks.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sutter, N. B. & Ostrander, E. A. Dog star rising: the canine genetic system. Nature Rev. Genet. 5, 900–910 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Carbone, M. A. et al. Phenotypic variation and natural selection at Catsup, a pleiotropic quantitative trait gene in Drosophila. Curr. Biol. 16, 912–919 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Steinmetz, L. M. & Davis, R. W. Maximizing the potential of functional genomics. Nature Rev. Genet. 5, 190–201 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Colosimo, P. F. et al. The genetic architecture of parallel armor plate reduction in threespine sticklebacks. PLoS Biol. 2, e109 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Shapiro, M. D. et al. Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks. Nature 428, 717–723 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Hoekstra, H. E., Hirschmann, R. J., Bundey, R. A., Insel, P. A. & Crossland, J. P. A single amino acid mutation contributes to adaptive beach mouse color pattern. Science 313, 101–104 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Mosher, D. S. et al. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genet. 3, e79 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Beavis, W. D. in 49th Annual Corn and Sorghum Research Conference 252–268 (American Seed Trade Association, Washington DC, 1994).

    Google Scholar 

  20. Flint, J. & and Mackay, T. F. C. Genetic architecture of quantitative traits in flies, mice and humans. Genome Res. 19, 723–733 (2009). This is a recent review of the results of studies mapping QTLs in humans and two genetic model organisms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kroymann, J. & Mitchell-Olds, T. Epistasis and balanced polymorphism influencing complex trait variation. Nature 435, 95–98 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Steinmetz, L. M. et al. Dissecting the architecture of a quantitative trait locus in yeast. Nature 416, 326–330 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Long, A. D. et al. High resolution mapping of genetic factors affecting abdominal bristle number in Drosophila melanogaster. Genetics 139, 1273–1291 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dilda, C. L. & Mackay, T. F. C. The genetic architecture of Drosophila sensory bristle number. Genetics 162, 1655–1674 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zimmerman, E., Palsson, A. & Gibson, G. Quantitative trait loci affecting components of wing shape in Drosophila melanogaster. Genetics 155, 671–683 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mezey, J. G., Houle, D. & Nuzhdin, S. V. Naturally segregating quantitative trait loci affecting wing shape of Drosophila melanogaster. Genetics 169, 2101–2113 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Long, A. D., Lyman, R. F., Langley, C. H. & Mackay, T. F. C. Two sites in the Delta gene region contribute to naturally occurring variation in bristle number in Drosophila melanogaster. Genetics 149, 999–1017 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Robin, C., Lyman, R. F., Long, A. D., Langley, C. H. & Mackay, T. F. C. hairy: a quantitative trait locus for Drosophila bristle number. Genetics 162, 155–164 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Palsson, A. & Gibson, G. Association between nucleotide variation in Egfr and wing shape in Drosophila melanogaster. Genetics 167, 1187–1198 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Macdonald, S. J. & Long, A. D. Joint estimates of quantitative trait locus effect and frequency using synthetic recombinant populations of Drosophila melanogaster. Genetics 176, 1261–1281 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pasyukova, E. G., Vieira, C. & Mackay, T. F. C. Deficiency mapping of quantitative trait loci affecting longevity in Drosophila melanogaster. Genetics 156, 1129–1146 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. De Luca, M. et al. Dopa decarboxylase(Ddc) affects variation in Drosophila longevity. Nature Genet. 34, 429–433 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Mackay, T. F. C., Roshina, N. V., Leips, J. W. & Pasyukova, E. G. in Handbook of the Biology of Aging 6th edn (eds Masaro, E. J. & Austad, S. N.) 181–216 (Academic, New York, 2006).

    Google Scholar 

  34. Harbison, S. T., Yamamoto, A. H., Fanara, J. J., Norga, K. K. & Mackay, T. F. C. Quantitative trait loci affecting starvation resistance in Drosophila melanogaster. Genetics 166, 1807–1823 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Moehring, A. J. & Mackay, T. F. C. The quantitative genetic basis of male mating behavior in Drosophila melanogaster. Genetics 167, 1249–1263 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fanara, J. J., Robinson, K. O., Rollmann, S., Anholt, R. R. H. & Mackay, T. F. C. Vanaso is a quantitative trait locus for Drosophila olfactory behavior. Genetics 162, 1321–1328 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jordan, K. W. & Mackay, T. F. C. Quantitative trait loci for locomotor behavior in Drosophila melanogaster. Genetics 174, 271–284 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Phillips, P. C. Epistasis — the essential role of gene interactions in the structure and evolution of genetic systems. Nature Rev. Genet. 9, 855–867 (2008). This is a comprehensive review of epistasis and its role in determining genetic pathways, effects on complex traits and diseases, and evolution.

    Article  CAS  PubMed  Google Scholar 

  39. Levene, H. Genetic equilibrium when more than one ecological niche is available. Am. Nat. 87, 331–333 (1953).

    Article  Google Scholar 

  40. Gillespie, J. H. & Turelli, M. Genotype–environment interactions and the maintenance of polygenic variation. Genetics 121, 129–138 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Clark, A. G. & Wang, L. Epistasis in measured genotypes: Drosophila P-element insertions. Genetics 147, 157–163 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fedorowicz, G. M., Fry, J. D., Anholt, R. R. H. & Mackay, T. F. C. Epistatic interactions between smell-impaired loci in Drosophila melanogaster. Genetics 148, 1885–1891 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sambandan, D., Yamamoto, A., Fanara, J. J., Mackay, T. F. C. & Anholt, R. R. H. Dynamic genetic interactions determine odor-guided behavior in Drosophila melanogaster. Genetics 174, 1349–1363 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. van Swinderen, B. & Greenspan, R. J. Flexibility in a gene network affecting a simple behavior in Drosophila melanogaster. Genetics 169, 2151–2163 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yamamoto, A. et al. Neurogenetic networks for startle-induced locomotion in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 105, 12393–12398 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mackay, T. F. C. & Anholt, R. R. H. Of flies and man: Drosophila as a model for human complex traits. Ann. Rev. Genomics Hum. Genet. 7, 339–367 (2006).

    Article  CAS  Google Scholar 

  47. Carlborg, O. et al. A global search reveals epistatic interaction between QTL for early growth in the chicken. Genome Res. 13, 413–421 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sinha, H. et al. Sequential elimination of major-effect contributors identifies additional quantitative trait loci conditioning high-temperature growth in yeast. Genetics 180, 1661–1670 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Stam, L. F. & Laurie, C. C. Molecular dissection of a major gene effect on a quantitative trait: the level of alcohol dehydrogenase expression in Drosophila melanogaster. Genetics 144, 1559–1564 (1996). This classic paper uses P2011 element transformation to show that three separate molecular polymorphisms in alcohol dehydrogenase affect the level of gene expression, that these polymorphisms interact epistatically and that the polymorphisms have opposite effects on expression.

  50. Valdar, W. et al. Genetic and environmental effects on complex traits in mice. Genetics 174, 959–984 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Crabbe, J. C. et al. Genetics of mouse behavior: interactions with laboratory environment. Science 284, 1670–1672 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Wahlsten, D. et al. Stability of inbred mouse strain differences in behavior and brain size between laboratories and across decades. Proc. Natl Acad. Sci. USA 103, 16364–16369 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Caspi, A. et al. Role of genotype in the cycle of violence in maltreated children. Science 297, 851–854 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Caspi, A. et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301, 386–389 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Nuzhdin, S. V., Pasyukova, E. G., Dilda, C. & Mackay, T. F. C. Sex-specific quantitative trait loci affecting longevity in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 94, 9734–9739 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kenney-Hunt, J. P. et al. Pleiotropic patterns of quantitative trait loci for 70 murine skeletal traits. Genetics 178, 2275–2288 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Farber, C. R. & Medrano, J. F. Fine mapping reveals sex bias in quantitative trait loci affecting growth, skeletal size and obesity-related traits on mouse chromosomes 2 and 11. Genetics 175, 349–360 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ober, C., Loisel, D. A. & Gilad, Y. Sex-specific genetic architecture of human disease. Nature Rev. Genet. 9, 911–922 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Barton, N. H. & Keightley, P. D. Understanding quantitative genetic variation. Nature Rev. Genet. 3, 11–21 (2002). This is an excellent review of QTL mapping principles and the evolutionary importance of QTLs.

    Article  CAS  PubMed  Google Scholar 

  60. Mitchell-Olds, T., Willis, J. H. & Goldstein, D. B. Which evolutionary processes influence natural genetic variation for phenotypic traits? Nature Rev. Genet. 8, 845–856 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Roff, D. A. & Fairbairn, D. J. The evolution of trade-offs: where are we? J. Evol. Biol. 20, 433–447 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Turelli, M. Heritable genetic variation via mutation–selection balance: Lerch's ζ meets the abdominal bristle. Theor. Popul. Biol. 25, 138–193 (1984).

    Article  CAS  PubMed  Google Scholar 

  63. Watterson, G. A. On the number of segregating sites in genetical models without recombination. Theor. Popul. Biol. 7, 256–276 (1975).

    Article  CAS  PubMed  Google Scholar 

  64. Wang, P., Lyman, R. F., Shabalina, S. A., Mackay, T. F. C. & Anholt, R. R. H. Functional evolution of odorant binding proteins in Drosophila melanogaster. Genetics 177, 1655–1665 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cohen, J. C. et al. Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science 305, 869–872 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Cohen, J. C. et al. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nature Genet. 37, 161–165 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Kotowski, I. K. et al. A spectrum of PCSK9 alleles contributes to plasma levels of low-density lipoprotein cholesterol. Am. J. Hum. Genet. 78, 410–422 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Romeo, S. et al. Population-based resequencing of ANGPTL4 uncovers variations that reduce triglycerides and increase HDL. Nature Genet. 39, 513–516 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Ji, W. et al. Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nature Genet. 40, 592–599 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Sebat, J. et al. Strong association of de novo copy number mutations with autism. Science 316, 445–449 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. International Schizophrenia Consortium. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 455, 237–241 (2008).

  72. King, M. C. & Wilson, A. C. Evolution at two levels in humans and chimpanzees. Science 188, 107–116 (1975).

    Article  CAS  PubMed  Google Scholar 

  73. Hoekstra, H. E. & Coyne, J. A. The locus of evolution: evo devo and the genetics of adaptation. Evolution 61, 995–1016 (2007).

    Article  PubMed  Google Scholar 

  74. Nackley, A. G. et al. Human catechol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science 314, 1930–1933 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Clark, R. M., Wagler, T. N., Quijada, P. & Doebley, J. A distant upstream enhancer at the maize domestication gene tb1 has pleiotropic effects on plant and inflorescent architecture. Nature Genet. 38, 594–597 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Buchanan, A. V., Sholtis, S., Richtsmeier, J. & Weiss, K. M. What are genes “for” or where are traits “from”? What is the question? Bioessays 31, 198–208 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  77. de Koning, D. J. & Haley, C. S. Genetical genomics in humans and model organisms. Trends Genet. 21, 377–381 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Rockman, M. V. & Kruglyak, L. Genetics of global gene expression. Nature Rev. Genet. 7, 862–872 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Jansen, R. C. & Nap, J. P. Genetical genomics: the added value from segregation. Trends Genet. 17, 388–391 (2001). This is the first paper to articulate the concept of eQTL mapping.

    Article  CAS  PubMed  Google Scholar 

  80. Hansen, B. G., Halkier, B. A. & Kliebenstein, D. J. Identifying the molecular basis of QTLs: eQTLs add a new dimension. Trends Plant Sci. 13, 72–77 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Gilad, Y., Rifkin, S. A. & Pritchard, J. K. Revealing the architecture of gene regulation: the promise of eQTL studies. Trends Genet. 24, 408–415 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cookson, W., Liang, L., Abecasis, G., Moffatt, M. & Lathrop, M. Mapping complex disease traits with global gene expression. Nature Rev. Genet. 10, 184–194 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Ayroles, J. F. et al. Systems genetics of complex traits in Drosophila melanogaster. Nature Genet. 41, 299–307 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Stone, E. A. & Ayroles, J. F. Modulated modularity clustering as an exploratory tool for functional genomic inference. PLoS Genet. 5, e1000479 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Miller, J. A., Oldham, M. C. & Geschwind, D. H. A systems level analysis of transcriptional changes in Alzheimer's disease and normal aging. J. Neurosci. 28, 1410–1420 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Swindell, W. R. Genes regulated by caloric restriction have unique roles within transcriptional networks. Mech. Ageing Dev. 129, 580–592 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tian, W. et al. Combining guilt-by-association and guilt-by-profiling to predict Saccharomyces cerevisiae gene function. Genome Biol. 9, S7 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Passador-Gurgel, G., Hsieh, W. P., Hunt, P., Deighton, N. & Gibson, G. Quantitative trait transcripts for nicotine resistance in Drosophila melanogaster. Nature Genet. 39, 264–268 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Harbison, S. T. et al. Co-regulated transcriptional networks contribute to natural genetic variation in Drosophila sleep. Nature Genet. 41, 371–375 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Keller, M. P. Choi, Y. & Wang, P. A gene expression network model of type 2 diabetes links cell cycle regulation in islets with diabetes susceptibility. Genome Res. 18, 706–716 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chen, Y. et al. Variations in DNA elucidate molecular networks that cause disease. Nature 452, 429–435 (2008). This paper uses systems genetics to identify gene networks in mice that are statistically causally related to disease traits associated with metabolic syndrome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rockman, M. V. Reverse engineering the genotype–phenotype map with natural genetic variation. Nature 456, 738–744 (2008). This is an excellent exposition of systems genetics and the methods for inferring causal transcriptional networks associated with organismal phenotypes.

    Article  CAS  PubMed  Google Scholar 

  94. Zhu, J. et al. An integrative genomics approach to the reconstruction of gene networks in segregating populations. Cytogenet. Genome Res. 105, 363–374 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Aten, J. E., Fuller, T. F., Lusis, A. J. & Horvath, S. Using genetic markers to orient the edges in quantitative trait networks: the NEO software. BMC Syst. Biol. 2, 34 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Chen, L. S., Emmert-Streib, F. & Storey, J. D. Harnessing naturally randomized transcription to infer regulatory relationships among genes. Genome Biol. 8, R219 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Emilsson, V. et al. Genetics of gene expression and its effect on disease. Nature 452, 423–428 (2008). This paper uses systems genetics to identify a genetic network associated with human obesity; this network included a module enriched for genes involved in the inflammatory and immune response that was also found in the mouse study described in Reference 92.

    Article  CAS  PubMed  Google Scholar 

  98. Brem, R. B., Yvert, G., Clinton, R. & Kruglyak, L. Genetic dissection of transcriptional regulation in budding yeast. Science 296, 752–755 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Yang, X. et al. Validation of candidate causal genes for obesity that affect shared metabolic pathways and networks. Nature Genet. 41, 415–423 (2005).

    Article  CAS  Google Scholar 

  100. Fu, J., et. al. System-wide molecular evidence for phenotypic buffering in Arabidopsis. Nature Genet. 41, 166–167 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Barton, N. H. & Turelli, M. Evolutionary quantitative genetics: how little do we know? Annu. Rev. Genet. 23, 337–370 (1989).

    Article  CAS  PubMed  Google Scholar 

  102. Via, S. et al. Adaptive phenotypic plasticity: consensus and controversy. Trends Ecol. Evol. 10, 212–217 (1995).

    Article  CAS  PubMed  Google Scholar 

  103. Clayton, G. A. & Robertson, A. An experimental check on quantitative genetical theory. II. The long term effects of selection. J. Genet. 55, 152–170 (1957).

    Article  Google Scholar 

  104. Waddington, C. H. Canalization of development and genetic assimilation of acquired characters. Nature 183, 1654–1655 (1959).

    Article  CAS  PubMed  Google Scholar 

  105. Zeng, Z. B., Kao, C. H. & Basten, C. J. Estimating the genetic architecture of quantitative traits. Genet. Res. 74, 279–289 (1999).

    Article  CAS  PubMed  Google Scholar 

  106. Zou, W. & Zeng, Z. B. Statistical methods for mapping multiple QTL. Int. J. Plant Genomics 2008, 286561 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Ossowski, S. et al. Sequencing of natural strains of Arabidopsis thaliana with short reads. Genome Res. 18, 2024–2033 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. The International HapMap Consortium. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861 (2007).

  109. Gilad, Y. & Borevitz, J. Using DNA microarrays to study natural variation. Curr. Opin. Genet. Dev. 16, 553–558 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Darvasi, A. & Soller, M. Selective genotyping for determination of linkage between a marker locus and a quantitative trait locus. Theor. Appl. Genet. 85, 353–359 (1992).

    Article  CAS  PubMed  Google Scholar 

  111. Lai, C. Q. et al. Speed-mapping quantitative trait loci using microarrays. Nature Methods 10, 839–841 (2007).

    Article  CAS  Google Scholar 

  112. Albert, T. J. et al. Direct selection of human genomic loci by microarray hybridization. Nature Methods 4, 903–905 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Porreca, G. J. et al. Multiplex amplification of large sets of human exons. Nature Methods 4, 931–936 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Okou, D. T. et al. Microarray-based genomic selection for high-throughput resequencing. Nature Methods 4, 907–909 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Turner, E. H., Lee, C., Ng, S. B., Nickerson, D. A. & Shendure, J. Massively parallel exon capture and library-free resequencing across 16 genomes. Nature Methods 6 Apr 2009 (doi: 10.1038/nmeth.f.248).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Nejentsev, S., Walker, N., Riches, D., Egholm, M. & Todd, J. A. Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science 324, 387–389 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Williams, R. W., Gu, J., Qi, S. &, Lu, L. The genetic structure of recombinant inbred mice: high-resolution consensus maps for complex trait analysis. Genome Biol. 2, research0046.1–research0046.18 (2001).

  118. Lister, C. & Dean, C. Recombinant inbred lines for mapping RFLP and phenotypic markers in A. thaliana. Plant J. 4, 745–750 (1993).

    Article  CAS  Google Scholar 

  119. Churchill, G. A. et al. The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nature Genet. 36, 1133–1137 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. Canaran, P. et al. Panzea: an update on new content and features. Nucleic Acids Res. 36, D1041–D1043 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Gibson, G. The environmental contribution to gene expression profiles. Nature Rev. Genet. 9, 575–581 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Dankert, H., Wang, L., Hoopfer, E. D., Anderson, D. J. & Peron, P. Automated monitoring and analysis of social behavior in Drosophila. Nature Methods 6, 297–303 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Lipkind, D. et al. New replicable anxiety-related measures of wall vs. center behavior of mice in the open field. J. App. Physiol. 97, 347–352 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grants GM45146, GM076083 and AA016560.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trudy F. C. Mackay.

Supplementary information

Supplementary Table

Technologies enabling systems genetics (XLS 681 kb)

Related links

Related links

FURTHER INFORMATION

Mackay laboratory homepage

1000 Genomes Project

1001 Genomes Project

Framingham Heart Study

Human Genome Sequencing Center at the Baylor College of Medicine

Mouse Genome Informatics at the Jackson Laboratories

UK Biobank

Glossary

Quantitative trait locus

A region of the genome containing one or more genes that affect variation in a quantitative trait, which is identified by its linkage to polymorphic marker loci.

Linkage disequilibrium

(LD). The correlation (non-random association) of alleles at two or more polymorphic loci. Alleles that are in LD co-occur in individuals more often than the random expectation from the product of their allele frequencies in the population.

Epistasis

This occurs when the homozygous or heterozygous effects at one locus differ depending on the genotype of the interacting locus.

Genotype-by-environment interaction

This occurs when the homozygous and heterozygous effects of a locus change in magnitude or direction in different environments.

Quantitative trait nucleotide

A causal molecular variant (allele) that affects variation in a quantitative trait.

Endophenotype

An intermediate molecular phenotype associated with an organismal level quantitative trait. Variation in the endophenotype affects variation in the organismal trait.

Expression quantitative trait locus

A region of the genome containing one or more genes that affect variation in gene expression, which is identified by linkage to polymorphic marker loci.

Quantitative trait transcript

A transcript for which variation in its expression is correlated with variation in an organismal level quantitative trait phenotype.

Gene ontology

A widely used classification system of gene functions and other gene attributes that uses a controlled vocabulary.

KEGG pathway

The Kyoto Encyclopedia of Genes and Genomes (KEGG) is a database comprising a collection of graphical pathway maps for metabolism, regulatory processes and other biological processes.

Bayesian network

A graph with directed edges that connect nodes. The nodes represent assertions about relationships between the nodes; for example, a node A is related to a node B by an edge that represents that A is a cause of B with a certain probability. Bayesian networks with many interconnected nodes can be constructed.

Partial correlation analysis

This quantifies the association between a pair of variables after controlling for the effect of a set of potential confounders.

Empirical Bayes procedure

A hierarchical model in which the hyperparameter is not a random variable but is estimated by some other (often classical) means.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mackay, T., Stone, E. & Ayroles, J. The genetics of quantitative traits: challenges and prospects. Nat Rev Genet 10, 565–577 (2009). https://doi.org/10.1038/nrg2612

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2612

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing