Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Rethinking how DNA methylation patterns are maintained

Abstract

DNA methylation patterns are set up early in mammalian development and are then copied during the division of somatic cells. A long-established model for the maintenance of these patterns explains some, but not all, of the data that are now available. We propose a new model that suggests that the maintenance of DNA methylation relies not only on the recognition of hemimethylated DNA by DNA methyltransferase 1 (DNMT1) but also on the localization of the DNMT3A and DNMT3B enzymes to specific chromatin regions that contain methylated DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Current model for the establishment and inheritance of DNA methylation patterns.
Figure 2: Revised model for the maintenance of DNA methylation patterns.

Similar content being viewed by others

References

  1. Cedar, H. & Bergman, Y. Linking DNA methylation and histone modification: patterns and paradigms. Nature Rev. Genet. 10, 295–304 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Probst, A. V., Dunleavy, E. & Almouzni, G. Epigenetic inheritance during the cell cycle. Nature Rev. Mol. Cell Biol. 10, 192–206 (2009).

    Article  CAS  Google Scholar 

  3. Riggs, A. D. X inactivation, differentiation, and DNA methylation. Cytogenet. Cell Genet. 14, 9–25 (1975).

    Article  CAS  PubMed  Google Scholar 

  4. Holliday, R. & Pugh, J. E. DNA modification mechanisms and gene activity during development. Science 187, 226–232 (1975).

    Article  CAS  PubMed  Google Scholar 

  5. Smith, H. O. & Kelly, S. V. in DNA Methylation: Biochemistry and Biological Significance (eds Razin, A., Cedar, H. & Riggs, A. D.) 39–71 (Springer, New York, 1984).

    Book  Google Scholar 

  6. Chen, T., Ueda, Y., Dodge, J. E., Wang, Z. & Li, E. Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Mol. Cell. Biol. 23, 5594–5605 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liang, G. et al. Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Mol. Cell. Biol. 22, 480–491 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Okano, M., Bell, D. W., Haber, D. A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Hansen, R. S. et al. The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc. Natl Acad. Sci. USA 96, 14412–14417 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xu, G. L. et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402, 187–191 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Bestor, T., Laudano, A., Mattaliano, R. & Ingram, V. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzyme is related to bacterial restriction methyltransferases. J. Mol. Biol. 203, 971–983 (1988).

    Article  CAS  PubMed  Google Scholar 

  12. Bestor, T. H. & Ingram, V. M. Two DNA methyltransferases from murine erythroleukemia cells: purification, sequence specificity, and mode of interaction with DNA. Proc. Natl Acad. Sci. USA 80, 5559–5563 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hermann, A., Goyal, R. & Jeltsch, A. The Dnmt1 DNA-(cytosine-C5)-methyltransferase methylates DNA processively with high preference for hemimethylated target sites. J. Biol. Chem. 279, 48350–48359 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Pradhan, S., Bacolla, A., Wells, R. D. & Roberts, R. J. Recombinant human DNA (cytosine-5) methyltransferase. I. Expression, purification, and comparison of de novo and maintenance methylation. J. Biol. Chem. 274, 33002–33010 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Chuang, L. S. et al. Human DNA-(cytosine-5) methyltransferase–PCNA complex as a target for p21WAF1. Science 277, 1996–2000 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Arita, K., Ariyoshi, M., Tochio, H., Nakamura, Y. & Shirakawa, M. Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism. Nature 455, 818–821 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Avvakumov, G. V. et al. Structural basis for recognition of hemi-methylated DNA by the SRA domain of human UHRF1. Nature 455, 822–825 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Bostick, M. et al. UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317, 1760–1764 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Hashimoto, H. et al. The SRA domain of UHRF1 flips 5-methylcytosine out of the DNA helix. Nature 455, 826–829 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sharif, J. et al. The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450, 908–912 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Robertson, K. D., Keyomarsi, K., Gonzales, F. A., Velicescu, M. & Jones, P. A. Differential mRNA expression of the human DNA methyltransferases (DNMTs) 1, 3a and 3b during the G0/G1 to S phase transition in normal and tumor cells. Nucleic Acids Res. 28, 2108–2113 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li, E., Bestor, T. H. & Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Chen, T. et al. Complete inactivation of DNMT1 leads to mitotic catastrophe in human cancer cells. Nature Genet. 39, 391–396 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Bird, A. P. Use of restriction enzymes to study eukaryotic DNA methylation: II. The symmetry of methylated sites supports semi-conservative copying of the methylation pattern. J. Mol. Biol. 118, 49–60 (1978).

    Article  CAS  PubMed  Google Scholar 

  25. Turker, M. S., Swisshelm, K., Smith, A. C. & Martin, G. M. A partial methylation profile for a CpG site is stably maintained in mammalian tissues and cultured cell lines. J. Biol. Chem. 264, 11632–11636 (1989).

    CAS  PubMed  Google Scholar 

  26. Pfeifer, G. P., Steigerwald, S. D., Hansen, R. S., Gartler, S. M. & Riggs, A. D. Polymerase chain reaction-aided genomic sequencing of an X chromosome-linked CpG island: methylation patterns suggest clonal inheritance, CpG site autonomy, and an explanation of activity state stability. Proc. Natl Acad. Sci. USA 87, 8252–8256 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Riggs, A. D. & Xiong, Z. Methylation and epigenetic fidelity. Proc. Natl Acad. Sci. USA 101, 4–5 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Laird, C. D. et al. Hairpin-bisulfite PCR: assessing epigenetic methylation patterns on complementary strands of individual DNA molecules. Proc. Natl Acad. Sci. USA 101, 204–209 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Illingworth, R. S. & Bird, A. P. CpG islands — 'a rough guide'. FEBS Lett. 583, 1713–1720 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Fatemi, M. et al. Footprinting of mammalian promoters: use of a CpG DNA methyltransferase revealing nucleosome positions at a single molecule level. Nucleic Acids Res. 33, e176 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gal-Yam, E. N. et al. Constitutive nucleosome depletion and ordered factor assembly at the GRP78 promoter revealed by single molecule footprinting. PLoS Genet. 2, e160 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lin, J. C. et al. Role of nucleosomal occupancy in the epigenetic silencing of the MLH1 CpG island. Cancer Cell 12, 432–444 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ooi, S. K. & Bestor, T. H. The colorful history of active DNA demethylation. Cell 133, 1145–1148 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Kriaucionis, S. & Heintz, N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324, 929–930 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gonzalgo, M. L. et al. The role of DNA methylation in expression of the p19/p16 locus in human bladder cancer cell lines. Cancer Res. 58, 1245–1252 (1998).

    CAS  PubMed  Google Scholar 

  37. Jeong, S. et al. Selective anchoring of DNA methyltransferases 3A/3B to nucleosomes containing methylated DNA. Mol. Cell. Biol. 20 Jul 2009 (doi:10.1128/MCB.00484-09).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Egger, G. et al. Identification of DNMT1 (DNA methyltransferase 1) hypomorphs in somatic knockouts suggests an essential role for DNMT1 in cell survival. Proc. Natl Acad. Sci. USA 103, 14080–14085 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schermelleh, L. et al. Dynamics of Dnmt1 interaction with the replication machinery and its role in postreplicative maintenance of DNA methylation. Nucleic Acids Res. 35, 4301–4312 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bernstein, B. E., Meissner, A. & Lander, E. S. The mammalian epigenome. Cell 128, 669–681 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Zilberman, D., Coleman-Derr, D., Ballinger, T. & Henikoff, S. Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks. Nature 456, 125–129 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ooi, S. K. et al. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448, 714–717 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dong, K. B. et al. DNA methylation in ES cells requires the lysine methyltransferase G9a but not its catalytic activity. EMBO J. 27, 2691–2701 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Epsztejn-Litman, S. et al. De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes. Nature Struct. Mol. Biol. 15, 1176–1183 (2008).

    Article  CAS  Google Scholar 

  45. Smallwood, A., Esteve, P. O., Pradhan, S. & Carey, M. Functional cooperation between HP1 and DNMT1 mediates gene silencing. Genes Dev. 21, 1169–1178 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vire, E. et al. The polycomb group protein EZH2 directly controls DNA methylation. Nature 439, 871–874 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Kondo, Y. et al. Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nature Genet. 40, 741–750 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Fuks, F., Hurd, P. J., Deplus, R. & Kouzarides, T. The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. Nucleic Acids Res. 31, 2305–2312 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Honda, S. & Selker, E. U. Direct interaction between DNA methyltransferase DIM-2 and HP1 is required for DNA methylation in Neurospora crassa. Mol. Cell. Biol. 28, 6044–6055 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Robertson, K. D. et al. DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nature Genet. 25, 338–342 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Robertson, A. K., Geiman, T. M., Sankpal, U. T., Hager, G. L. & Robertson, K. D. Effects of chromatin structure on the enzymatic and DNA binding functions of DNA methyltransferases DNMT1 and Dnmt3a in vitro. Biochem. Biophys. Res. Commun. 322, 110–118 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Gowher, H. et al. De novo methylation of nucleosomal DNA by the mammalian Dnmt1 and Dnmt3A DNA methyltransferases. Biochemistry 44, 9899–9904 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Dennis, K., Fan, T., Geiman, T., Yan, Q. & Muegge, K. Lsh, a member of the SNF2 family, is required for genome-wide methylation. Genes Dev. 15, 2940–2944 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Walsh, C. P. & Bestor, T. H. Cytosine methylation and mammalian development. Genes Dev. 13, 26–34 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Spada, F. et al. DNMT1 but not its interaction with the replication machinery is required for maintenance of DNA methylation in human cells. J. Cell Biol. 176, 565–571 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schlesinger, Y. et al. Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nature Genet. 39, 232–236 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Felsenfeld, G. & Groudine, M. Controlling the double helix. Nature 421, 448–453 (2003).

    Article  PubMed  Google Scholar 

  58. Hansen, K. H. et al. A model for transmission of the H3K27me3 epigenetic mark. Nature Cell Biol. 10, 1291–1300 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Felsenfeld, G. in Epigenetics (eds Allis, C. D., Jenuwein, T. & Reinberg, D.) 15–22 (Cold Spring Harb. Lab. Press, New York, 2007).

    Google Scholar 

  60. Watson, J. D. & Crick, F. H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).

    Article  CAS  PubMed  Google Scholar 

  61. Berger, S. L., Kouzarides, T., Shiekhattar, R. & Shilatifard, A. An operational definition of epigenetics. Genes Dev. 23, 781–783 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Moving AHEAD with an international human epigenome project. Nature 454, 711–715 (2008).

  63. Kato, Y. et al. Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse. Hum. Mol. Genet. 16, 2272–2280 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. La Salle, S. et al. Loss of spermatogonia and wide-spread DNA methylation defects in newborn male mice deficient in DNMT3L. BMC Dev. Biol. 7, 104 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Jackson-Grusby, L. et al. Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation. Nature Genet. 27, 31–39 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Tsumura, A. et al. Maintenance of self-renewal ability of mouse embryonic stem cells in the absence of DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b. Genes Cells 11, 805–814 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Bourc'his, D., Xu, G. L., Lin, C. S., Bollman, B. & Bestor, T. H. Dnmt3L and the establishment of maternal genomic imprints. Science 294, 2536–2539 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Goll, M. G. et al. Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science 311, 395–398 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Okano, M., Xie, S. & Li, E. Dnmt2 is not required for de novo and maintenance methylation of viral DNA in embryonic stem cells. Nucleic Acids Res. 26, 2536–2540 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tachibana, M. et al. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev. 16, 1779–1791 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang, J. et al. The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nature Genet. 41, 125–129 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Chen, T. & Li, E. Establishment and maintenance of DNA methylation patterns in mammals. Curr. Top. Microbiol. Immunol. 301, 179–201 (2006).

    CAS  PubMed  Google Scholar 

  73. Rhee, I. et al. CpG methylation is maintained in human cancer cells lacking DNMT1. Nature 404, 1003–1007 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Rhee, I. et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 416, 552–556 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institutes of Health grants R37 CA082422 (P.A.J.), 5R01 CA083867 (P.A.J.) and 5R01 CA124518 (G.L.).

Author information

Authors and Affiliations

Authors

Glossary

Chromatin remodelling factor

A protein that has the capacity to remodel chromatin, often using the energy of ATP, so that gene transcription can be activated or silenced.

CpG island

A DNA sequence of at least 500 bp with a GC content greater than 55% and a higher CpG dinucleotide content than is average for the genome (that is, an observed/expected ratio of >0.65). These regions are typically undermethylated and are found upstream of many mammalian genes.

ICF syndrome

(Immunodeficiency, centromere instability and facial anomalies syndrome). A rare autosomal recessive disorder that is linked to mutations in the DNA methyltransferase 3B (DNMT3B) gene.

Imprinting

The differential expression of genes depending on whether they were inherited maternally or paternally.

Nucleosome

The basic unit of chromatin. A nucleosome contains approximately 146 bp of DNA wrapped around a histone octamer.

Polycomb complex

A complex of repressive chromatin proteins that maintain states of gene expression throughout development.

X chromosome inactivation

The process that occurs in female mammals by which gene expression from one of the pair of X chromosomes is downregulated to match the levels of gene expression from the single X chromosome that is present in males. The inactivation process involves a range of epigenetic mechanisms on the inactivated chromosome, including changes in DNA methylation and histone modifications.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, P., Liang, G. Rethinking how DNA methylation patterns are maintained. Nat Rev Genet 10, 805–811 (2009). https://doi.org/10.1038/nrg2651

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2651

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing