Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea

Key Points

  • Recently, arrays of clustered, regularly interspaced short palindromic repeats (CRISPRs) have been implicated in a novel genetic interference pathway that limits phage infection and plasmid conjugation. CRISPR loci keep a record of past infections to provide bacteria and archaea with a 'genetic memory' that directs the rejection of invader DNA molecules; therefore these loci constitute an adaptive immune system.

  • CRISPRs (which are approximately 25–50 nucleotides long) are separated by similarly short sequences called spacers that match bacteriophage or plasmid sequences and specify the targets of interference. CRISPR-associated (cas) genes, a set of conserved genes that are associated with these loci, are usually present on one or the other side of the array.

  • CRISPR loci are transcribed as a long precursor that is processed by Cas proteins within the repeat sequences to generate small CRISPR RNAs (crRNAs). The crRNAs serve as guides for target recognition during CRISPR interference. crRNA–Cas ribonucleoprotein complexes seem to generally target invading DNA sequences during interference but may also target RNAs in some species.

  • Upon bacteriophage challenge of a CRISPR-containing bacterial population, mutants resistant to the infection arise through the incorporation of additional spacer sequences derived from the challenging phage. This allows the bacteria to evolve rapidly and adapt to the viruses in the environment.

  • Bacteriophages and plasmids can mobilize foreign genetic material between cells, a process known as horizontal gene transfer (HGT), which is a fundamental source of genetic variability for the evolution of bacteria and archaea. CRISPR interference prevents phage infection and plasmid conjugation and therefore constitutes a natural barrier to HGT. In addition, bacteriophages constantly mutate to evade CRISPR defence. Therefore, CRISPR interference has an important role in the evolution of microbial communities.

Abstract

Sequence-directed genetic interference pathways control gene expression and preserve genome integrity in all kingdoms of life. The importance of such pathways is highlighted by the extensive study of RNA interference (RNAi) and related processes in eukaryotes. In many bacteria and most archaea, clustered, regularly interspaced short palindromic repeats (CRISPRs) are involved in a more recently discovered interference pathway that protects cells from bacteriophages and conjugative plasmids. CRISPR sequences provide an adaptive, heritable record of past infections and express CRISPR RNAs — small RNAs that target invasive nucleic acids. Here, we review the mechanisms of CRISPR interference and its roles in microbial physiology and evolution. We also discuss potential applications of this novel interference pathway.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Features of CRISPR loci.
Figure 2: Acquisition of new repeat-spacer units.
Figure 3: CRISPR interference.
Figure 4: Self versus non-self discrimination during CRISPR immunity.

Similar content being viewed by others

References

  1. Nakamura, Y., Itoh, T., Matsuda, H. & Gojobori, T. Biased biological functions of horizontally transferred genes in prokaryotic genomes. Nature Genet. 36, 760–766 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Thomas, C. M. & Nielsen, K. M. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nature Rev. Microbiol. 3, 711–721 (2005).

    Article  CAS  Google Scholar 

  3. Ishino, Y., Shinagawa, H., Makino, K., Amemura, M. & Nakata, A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 169, 5429–5433 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nakata, A., Amemura, M. & Makino, K. Unusual nucleotide arrangement with repeated sequences in the Escherichia coli K-12 chromosome. J. Bacteriol. 171, 3553–3556 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hermans, P. W. et al. Insertion element IS987 from Mycobacterium bovis BCG is located in a hot-spot integration region for insertion elements in Mycobacterium tuberculosis complex strains. Infect. Immun. 59, 2695–2705 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mojica, F. J., Ferrer, C., Juez, G. & Rodriguez-Valera, F. Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning. Mol. Microbiol. 17, 85–93 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Masepohl, B., Gorlitz, K. & Bohme, H. Long tandemly repeated repetitive (LTRR) sequences in the filamentous cyanobacterium Anabaena sp. PCC 7120. Biochim. Biophys. Acta 1307, 26–30 (1996).

    Article  PubMed  Google Scholar 

  8. Hoe, N. et al. Rapid molecular genetic subtyping of serotype M1 group A Streptococcus strains. Emerg. Infect. Dis. 5, 254–263 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bult, C. J. et al. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273, 1058–1073 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Klenk, H. P. et al. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390, 364–370 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Nelson, K. E. et al. Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima. Nature 399, 323–329 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Sensen, C. W. et al. Completing the sequence of the Sulfolobus solfataricus P2 genome. Extremophiles 2, 305–312 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Kawarabayasi, Y. et al. Complete genome sequence of an aerobic hyper-thermophilic crenarchaeon, Aeropyrum pernix K1. DNA Res. 6, 83–101 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Kawarabayasi, Y. et al. Complete sequence and gene organization of the genome of a hyper-thermophilic archaebacterium, Pyrococcus horikoshii OT3. DNA Res. 5, 55–76 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Mojica, F. J., Diez-Villasenor, C., Soria, E. & Juez, G. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol. Microbiol. 36, 244–246 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Jansen, R., Embden, J. D., Gaastra, W. & Schouls, L. M. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 43, 1565–1575 (2002). This paper noted the existence of cas protein-coding genes associated with CRISPR loci.

    Article  CAS  PubMed  Google Scholar 

  17. Bolotin, A., Quinquis, B., Sorokin, A. & Ehrlich, S. D. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151, 2551–2561 (2005). This paper, along with references 18 and 19, documented the sequence matches between CRISPR spacers and phage or plasmid sequences, thereby suggesting a role for CRISPR loci in defence against invasive DNA.

    Article  CAS  PubMed  Google Scholar 

  18. Mojica, F. J., Diez-Villasenor, C., Garcia-Martinez, J. & Soria, E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 60, 174–182 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Pourcel, C., Salvignol, G. & Vergnaud, G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151, 653–663 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Lillestøl, R. K., Redder, P., Garrett, R. A. & Brugger, K. A putative viral defence mechanism in archaeal cells. Archaea 2, 59–72 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Makarova, K. S., Grishin, N. V., Shabalina, S. A., Wolf, Y. I. & Koonin, E. V. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct 1, 7 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007). This study provided the first experimental demonstration of CRISPR interference, documented the acquisition of novel spacers in response to phage infection and showed that cas gene function is essential for CRISPR function in defence.

    Article  CAS  PubMed  Google Scholar 

  23. Marraffini, L. A. & Sontheimer, E. J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322, 1843–1845 (2008). This paper showed that CRISPR interference also blocks conjugation, and demonstrated that DNA rather than RNA is the molecular target of the pathway in S. epidermidis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Grissa, I., Vergnaud, G. & Pourcel, C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics 8, 172 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Kunin, V., Sorek, R. & Hugenholtz, P. Evolutionary conservation of sequence and secondary structures in CRISPR repeats. Genome Biol. 8, R61 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Andersson, A. F. & Banfield, J. F. Virus population dynamics and acquired virus resistance in natural microbial communities. Science 320, 1047–1050 (2008). This study used metagenomics to profile CRISPR spacer composition and phage sequences in a spatially and temporally resolved fashion to analyse host–pathogen interactions in a natural microbial population.

    Article  CAS  PubMed  Google Scholar 

  27. Heidelberg, J. F., Nelson, W. C., Schoenfeld, T. & Bhaya, D. Germ warfare in a microbial mat community: CRISPRs provide insights into the co-evolution of host and viral genomes. PLoS ONE 4, e4169 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Haft, D. H., Selengut, J., Mongodin, E. F. & Nelson, K. E. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput. Biol. 1, e60 (2005). This work, along with reference 21, examined CRISPR and cas phylogenetics and established the existence of distinct subtypes of CRISPR– cas loci and multiple families of Cas proteins.

  29. Shah, S. A., Hansen, N. R. & Garrett, R. A. Distribution of CRISPR spacer matches in viruses and plasmids of crenarchaeal acidothermophiles and implications for their inhibitory mechanism. Biochem. Soc. Trans. 37, 23–28 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Godde, J. S. & Bickerton, A. The repetitive DNA elements called CRISPRs and their associated genes: evidence of horizontal transfer among prokaryotes. J. Mol. Evol. 62, 718–729 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Makarova, K. S., Aravind, L., Grishin, N. V., Rogozin, I. B. & Koonin, E. V. A DNA repair system specific for thermophilic Archaea and Bacteria predicted by genomic context analysis. Nucleic Acids Res. 30, 482–496 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Portillo, M. C. & Gonzalez, J. M. CRISPR elements in the Thermococcales: evidence for associated horizontal gene transfer in Pyrococcus furiosus. J. Appl. Genet. 50, 421–430 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. van der Oost, J., Jore, M. M., Westra, E. R., Lundgren, M. & Brouns, S. J. CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem. Sci. 34, 401–407 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. van der Ploeg, J. R. Analysis of CRISPR in Streptococcus mutans suggests frequent occurrence of acquired immunity against infection by M102-like bacteriophages. Microbiology 155, 1966–1976 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Deveau, H. et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J. Bacteriol. 190, 1390–1400 (2008). This paper, along with reference 40, reported the existence of short, conserved 'CRISPR motifs' or 'protospacer-adjacent motifs' that flank target protospacers.

    Article  CAS  PubMed  Google Scholar 

  36. Horvath, P. et al. Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J. Bacteriol. 190, 1401–1412 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Tyson, G. W. & Banfield, J. F. Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses. Environ. Microbiol. 10, 200–207 (2007).

    PubMed  Google Scholar 

  38. Brouns, S. J. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960–964 (2008). This report, along with reference 49, documented and characterized the crRNA processing pathway; Brouns et al . also proved that crRNAs are essential for CRISPR interference in E. coli , implicated Cas3 as an effector protein in this process and pointed towards DNA as a likely target.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wiedenheft, B. et al. Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense. Structure 17, 904–912 (2009). This study reported the first crystal structure of a protein (Cas1) that is universal among CRISPR– cas loci and documented its nuclease activity.

    Article  CAS  PubMed  Google Scholar 

  40. Mojica, F. J., Diez-Villasenor, C., Garcia-Martinez, J. & Almendros, C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155, 733–740 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Semenova, E., Nagornykh, M., Pyatnitskiy, M., Artamonova, I. I. & Severinov, K. Analysis of CRISPR system function in plant pathogen Xanthomonas oryzae. FEMS Microbiol. Lett. 296, 110–116 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Tang, T. H. et al. Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus. Proc. Natl Acad. Sci. USA 99, 7536–7541 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tang, T. H. et al. Identification of novel non-coding RNAs as potential antisense regulators in the archaeon Sulfolobus solfataricus. Mol. Microbiol. 55, 469–481 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Hale, C., Kleppe, K., Terns, R. M. & Terns, M. P. Prokaryotic silencing (psi)RNAs in Pyrococcus furiosus. RNA 14, 2572–2579 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lillestøl, R. K. et al. CRISPR families of the crenarchaeal genus Sulfolobus: bidirectional transcription and dynamic properties. Mol. Microbiol. 72, 259–272 (2009).

    Article  PubMed  CAS  Google Scholar 

  46. Agari, Y. et al. Transcription profile of Thermus thermophilus CRISPR systems after phage infection. J. Mol. Biol. 395, 270–281 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Shinkai, A. et al. Transcription activation mediated by a cyclic AMP receptor protein from Thermus thermophilus HB8. J. Bacteriol. 189, 3891–3901 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chattoraj, P., Banerjee, A., Biswas, S. & Biswas, I. ClpP of Streptococcus mutans differentially regulates expression of genomic islands, mutacin production and antibiotics tolerance. J. Bacteriol.28 Dec 2009 (doi:10.1128/JB.01350-09).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Carte, J., Wang, R., Li, H., Terns, R. M. & Terns, M. P. Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev. 22, 3489–3496 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hale, C. R. et al. RNA-guided RNA cleavage by a CRISPR RNA–Cas protein complex. Cell 139, 945–956 (2009). This paper characterized P. furiosus crRNP components, reported the first high-throughput profiling of a crRNA population and demonstrated crRNA-directed RNA cleavage by a crRNP complex in vitro.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ebihara, A. et al. Crystal structure of hypothetical protein TTHB192 from Thermus thermophilus HB8 reveals a new protein family with an RNA recognition motif-like domain. Protein Sci. 15, 1494–1499 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Redder, P. et al. Four newly isolated fuselloviruses from extreme geothermal environments reveal unusual morphologies and a possible interviral recombination mechanism. Environ. Microbiol. 11, 2849–2862 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Cui, Y. et al. Insight into microevolution of Yersinia pestis by clustered regularly interspaced short palindromic repeats. PLoS ONE 3, e2652 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Miller, E. S. et al. Bacteriophage T4 genome. Microbiol. Mol. Biol. Rev. 67, 86–156 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gill, S. R. et al. Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. J. Bacteriol. 187, 2426–2438 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Climo, M. W., Sharma, V. K. & Archer, G. L. Identification and characterization of the origin of conjugative transfer (oriT) and a gene (nes) encoding a single-stranded endonuclease on the staphylococcal plasmid pGO1. J. Bacteriol. 178, 4975–4983 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Marraffini, L. A. & Sontheimer, E. J. Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature13 Jan 2010 (doi:10.1038/nature08703).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Han, D. & Krauss, G. Characterization of the endonuclease SSO2001 from Sulfolobus solfataricus P2. FEBS Lett. 583, 771–776 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Furuya, E. Y. & Lowy, F. D. Antimicrobial-resistant bacteria in the community setting. Nature Rev. Microbiol. 4, 36–45 (2006).

    Article  CAS  Google Scholar 

  60. Weigel, L. M. et al. Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science 302, 1569–1571 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Diep, B. A. et al. Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. Lancet 367, 731–739 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Lim, S. M. & Webb, S. A. Nosocomial bacterial infections in intensive care units. I: Organisms and mechanisms of antibiotic resistance. Anaesthesia 60, 887–902 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Lowy, F. D. Staphylococcus aureus infections. N. Engl. J. Med. 339, 520–532 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. von Eiff, C., Peters, G. & Heilmann, C. Pathogenesis of infections due to coagulase-negative staphylococci. Lancet Infect. Dis. 2, 677–685 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Brussow, H., Canchaya, C. & Hardt, W. D. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol. Mol. Biol. Rev. 68, 560–602 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Banks, D. J., Beres, S. B. & Musser, J. M. The fundamental contribution of phages to GAS evolution, genome diversification and strain emergence. Trends Microbiol. 10, 515–521 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Hu, X., Van der Auwera, G., Timmery, S., Zhu, L. & Mahillon, J. Distribution, diversity, and potential mobility of extrachromosomal elements related to the Bacillus anthracis pXO1 and pXO2 virulence plasmids. Appl. Environ. Microbiol. 75, 3016–3028 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hacker, J. & Kaper, J. B. Pathogenicity islands and the evolution of microbes. Annu. Rev. Microbiol. 54, 641–679 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Sturino, J. M. & Klaenhammer, T. R. Bacteriophage defense systems and strategies for lactic acid bacteria. Adv. Appl. Microbiol. 56, 331–378 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Peng, X., Kessler, A., Phan, H., Garrett, R. A. & Prangishvili, D. Multiple variants of the archaeal DNA rudivirus SIRV1 in a single host and a novel mechanism of genomic variation. Mol. Microbiol. 54, 366–375 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Vestergaard, G. et al. Stygiolobus rod-shaped virus and the interplay of crenarchaeal rudiviruses with the CRISPR antiviral system. J. Bacteriol. 190, 6837–6845 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sorek, R., Kunin, V. & Hugenholtz, P. CRISPR — a widespread system that provides acquired resistance against phages in bacteria and archaea. Nature Rev. Microbiol. 6, 181–186 (2008).

    Article  CAS  Google Scholar 

  73. Kamerbeek, J. et al. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J. Clin. Microbiol. 35, 907–914 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Driscoll, J. R. Spoligotyping for molecular epidemiology of the Mycobacterium tuberculosis complex. Methods Mol. Biol. 551, 117–128 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Mokrousov, I., Limeschenko, E., Vyazovaya, A. & Narvskaya, O. Corynebacterium diphtheriae spoligotyping based on combined use of two CRISPR loci. Biotechnol. J. 2, 901–906 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Vergnaud, G. et al. Analysis of the three Yersinia pestis CRISPR loci provides new tools for phylogenetic studies and possibly for the investigation of ancient DNA. Adv. Exp. Med. Biol. 603, 327–338 (2007).

    Article  PubMed  Google Scholar 

  77. Mills, S. et al. CRISPR analysis of bacteriophage-insensitive mutants (BIMs) of industrial Streptococcus thermophilus — implications for starter design. J. Appl. Microbiol.20 Jul 2009 (doi:10.1111/j.1365-2672.2009.04486.x).

    Article  CAS  PubMed  Google Scholar 

  78. Mc Grath, S., Fitzgerald, G. F. & van Sinderen, D. Bacteriophages in dairy products: pros and cons. Biotechnol. J. 2, 450–455 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Zegans, M. E. et al. Interaction between bacteriophage DMS3 and host CRISPR region inhibits group behaviors of Pseudomonas aeruginosa. J. Bacteriol. 191, 210–219 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Viswanathan, P., Murphy, K., Julien, B., Garza, A. G. & Kroos, L. Regulation of dev, an operon that includes genes essential for Myxococcus xanthus development and CRISPR-associated genes and repeats. J. Bacteriol. 189, 3738–3750 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Carthew, R. W. & Sontheimer, E. J. Origins and mechanisms of miRNAs and siRNAs. Cell 136, 642–655 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Malone, C. D. & Hannon, G. J. Small RNAs as guardians of the genome. Cell 136, 656–668 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Moazed, D. Small RNAs in transcriptional gene silencing and genome defence. Nature 457, 413–420 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Siomi, H. & Siomi, M. C. On the road to reading the RNA-interference code. Nature 457, 396–404 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Han, D., Lehmann, K. & Krauss, G. SSO1450 — a CAS1 protein from Sulfolobus solfataricus P2 with high affinity for RNA and DNA. FEBS Lett. 583, 1928–1932 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Beloglazova, N. et al. A novel family of sequence-specific endoribonucleases associated with the clustered regularly interspaced short palindromic repeats. J. Biol. Chem. 283, 20361–20371 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Agari, Y., Yokoyama, S., Kuramitsu, S. & Shinkai, A. X-ray crystal structure of a CRISPR-associated protein, Cse2, from Thermus thermophilus HB8. Proteins 73, 1063–1067 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Sakamoto, K. et al. X-ray crystal structure of a CRISPR-associated RAMP superfamily protein, Cmr5, from Thermus thermophilus HB8. Proteins 75, 528–532 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Terns and M. Terns for communicating results before publication. L.A.M. is a fellow of The Jane Coffin Childs Memorial Fund for Medical Research. This work was supported by a grant from the US National Institutes of Health to E.J.S.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Nucleotide

iap

nes

InterPro

Cas3

Pfam

Cas1

Cas2

FURTHER INFORMATION

Luciano A. Marraffini's homepage

Erik J. Sontheimer's homepage

CRISPR database

GenBank

Integrated Microbial Genomes data management system

Glossary

Transformation

Genetic alteration of a cell resulting from the acquisition of genes from free DNA molecules in the surrounding environment.

Conjugation

The transfer of genetic information from a donor to a recipient cell by a conjugative or mobile genetic element, often a conjugative plasmid.

Bacteriophage

(Also abbreviated to 'phage'.) A virus that infects bacteria. Virulent phages kill the host (lytic infection cycle), whereas temperate phages can integrate into the host chromosome (lysogenic cycle), becoming a prophage.

Transduction

The transfer of genetic information from one bacterial or archaeal cell to another by a phage particle containing chromosomal DNA.

DNA restriction

The destruction of foreign dsDNA by a restriction endonuclease. The protection of self DNA from restriction is achieved by DNA methylation.

Surface exclusion

A process that bars conjugative transfer of a plasmid into recipient cells that already harbour a related plasmid.

RNA interference

A set of related pathways in eukaryotic cells that use small (20–30 nucleotides) RNAs to regulate the expression or function of cognate sequences.

Protospacer

Phage or plasmid sequences that match one or more clustered, regularly interspaced short palindromic repeat (CRISPR) spacer sequences and are targeted during CRISPR interference.

Dyad symmetry

A twofold rotational symmetry relationship (in this case, a DNA arrangement in which a 5′→3′ sequence on one strand is juxtaposed with the same 5′→3′ sequence on the opposite strand). Transcripts from such regions have the capacity to form stem–loop structures.

Crenarchaeal

Referring to members of the Crenarchaeota phylum, which is composed mainly of thermophilic archaeal organisms.

Histidine-aspartate nuclease

A divalent-metal-dependent phosphohydrolase with a conserved histidine-aspartate motif.

Unwindase

Enzyme that uses the free energy of NTP binding and hydrolysis to drive the separation of complementary RNA or DNA strands.

Virulence factor

A gene responsible for the production of a molecule that contributes to the establishment of disease by bacterial pathogens.

Polylysogen

A lysogen is a bacterium that has a prophage integrated into its chromosome. A polylysogen contains many prophage sequences in its genome.

Virulence plasmid

A plasmid that carries virulence factor genes or pathogenicity islands.

Pathogenicity island

Genomic islands that contain genes that are required for virulence. These islands are usually absent from non-pathogenic organisms and are acquired by horizontal gene transfer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marraffini, L., Sontheimer, E. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 11, 181–190 (2010). https://doi.org/10.1038/nrg2749

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2749

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing