Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Evaluating genome-scale approaches to eukaryotic DNA replication

Key Points

  • Mechanisms regulating where and when eukaryotic DNA replication initiates remain a fundamental mystery in molecular biology.

  • Genome-scale approaches are now being used to identify the location of replication origins and to evaluate replication timing.

  • Mapping replication origins in yeasts has been successful, but the current data sets from multicellular organisms are scarce and inconsistent.

  • Methods for mapping origins include trapping the earliest replicated DNA by replication fork arrest, mapping small nascent leading strands and trapping replication bubbles.

  • Studies of replication timing can involve prospective or retroactive synchronization of cells, followed by comparison of early- and late-S-phase DNA by microarray or sequencing.

  • Genome-wide studies of replication timing have shown that timing is regulated at the level of replication domains and that there are links between replication timing and chromatin structure.

Abstract

Mechanisms regulating where and when eukaryotic DNA replication initiates remain a mystery. Recently, genome-scale methods have been brought to bear on this problem. The identification of replication origins and their associated proteins in yeasts is a well-integrated investigative tool, but corresponding data sets from multicellular organisms are scarce. By contrast, standardized protocols for evaluating replication timing have generated informative data sets for most eukaryotic systems. Here, I summarize the genome-scale methods that are most frequently used to analyse replication in eukaryotes, the kinds of questions each method can address and the technical hurdles that must be overcome to gain a complete understanding of the nature of eukaryotic replication origins.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: How to find an origin.
Figure 2: Different methods may enrich for different origins.
Figure 3: Replication timing analysis by retroactive fluorescence-activated cell sorter synchronization.

Similar content being viewed by others

References

  1. Masai, H., Matsumoto, S., You, Z., Yoshizawa-Sugata, N. & Oda, M. Eukaryotic chromosome DNA replication: where, when, and how? Annu. Rev. Biochem. 79, 89–130 (2010).

    CAS  PubMed  Google Scholar 

  2. Woodward, A. M. et al. Excess Mcm2–7 license dormant origins of replication that can be used under conditions of replicative stress. J. Cell Biol. 173, 673–683 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ibarra, A., Schwob, E. & Mendez, J. Excess MCM proteins protect human cells from replicative stress by licensing backup origins of replication. Proc. Natl Acad. Sci. USA 105, 8956–8961 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Doksani, Y., Bermejo, R., Fiorani, S., Haber, J. E. & Foiani, M. Replicon dynamics, dormant origin firing, and terminal fork integrity after double-strand break formation. Cell 137, 247–258 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Koren, A., Soifer, I. & Barkai, N. MRC1-dependent scaling of the budding yeast DNA replication timing program. Genome Res. 20, 781–790 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Raghuraman, M. K. & Brewer, B. J. Molecular analysis of the replication program in unicellular model organisms. Chromosome Res. 18, 19–34 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Krysan, P. J., Smith, J. G. & Calos, M. P. Autonomous replication in human cells of multimers of specific human and bacterial DNA sequences. Mol. Cell. Biol. 13, 2688–2696 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Aladjem, M. I. Replication in context: dynamic regulation of DNA replication patterns in metazoans. Nature Rev. Genet. 8, 588–600 (2007).

    CAS  PubMed  Google Scholar 

  9. Hamlin, J. L. et al. A revisionist replicon model for higher eukaryotic genomes. J. Cell. Biochem. 105, 321–329 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Eaton, M. L., Galani, K., Kang, S., Bell, S. P. & MacAlpine, D. M. Conserved nucleosome positioning defines replication origins. Genes Dev. 24, 748–753 (2010). This paper combined genome-wide ChIP–seq analysis of ORC and nucleosome positions with in vitro nucleosome reconstitution to demonstrate that ORC binds to sequence-defined NFRs and directs local nucleosome positioning at budding yeast origins.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. MacAlpine, H. K., Gordan, R., Powell, S. K., Hartemink, A. J. & MacAlpine, D. M. Drosophila ORC localizes to open chromatin and marks sites of cohesin complex loading. Genome Res. 20, 201–211 (2010). This paper used ChIP–chip to show that ORC localizes to NFRs in D. melanogaster cells. In combination with reference 10, it suggests that nucleosome organization may be a defining feature of all eukaryotic origins.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Deal, R. B., Henikoff, J. G. & Henikoff, S. Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones. Science 328, 1161–1164 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Breier, A. M., Chatterji, S. & Cozzarelli, N. R. Prediction of Saccharomyces cerevisiae replication origins. Genome Biol. 5, R22 (2004).

    PubMed  PubMed Central  Google Scholar 

  14. Wyrick, J. J. et al. Genome-wide distribution of ORC and MCM proteins in S. cerevisiae: high-resolution mapping of replication origins. Science 294, 2357–2360 (2001).

    CAS  PubMed  Google Scholar 

  15. Xu, W., Aparicio, J. G., Aparicio, O. M. & Tavare, S. Genome-wide mapping of ORC and Mcm2p binding sites on tiling arrays and identification of essential ARS consensus sequences in S. cerevisiae. BMC Genomics 7, 276 (2006).

    PubMed  PubMed Central  Google Scholar 

  16. MacAlpine, D. M. & Bell, S. P. A genomic view of eukaryotic DNA replication. Chromosome Res. 13, 309–326 (2005).

    CAS  PubMed  Google Scholar 

  17. Hayashi, M. et al. Genome-wide localization of pre-RC sites and identification of replication origins in fission yeast. EMBO J. 26, 1327–1339 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Nieduszynski, C. A., Knox, Y. & Donaldson, A. D. Genome-wide identification of replication origins in yeast by comparative genomics. Genes Dev. 20, 1874–1879 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Dai, J., Chuang, R. Y. & Kelly, T. J. DNA replication origins in the Schizosaccharomyces pombe genome. Proc. Natl Acad. Sci. USA 102, 337–342 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Cotobal, C., Segurado, M. & Antequera, F. Structural diversity and dynamics of genomic replication origins in Schizosaccharomyces pombe. EMBO J. 29, 934–942 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Chuang, R. Y. & Kelly, T. J. The fission yeast homologue of Orc4p binds to replication origin DNA via multiple AT-hooks. Proc. Natl Acad. Sci. USA 96, 2656–2661 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lantermann, A. B. et al. Schizosaccharomyces pombe genome-wide nucleosome mapping reveals positioning mechanisms distinct from those of Saccharomyces cerevisiae. Nature Struct. Mol. Biol. 17, 251–257 (2010).

    CAS  Google Scholar 

  23. Gilbert, D. M. In search of the holy replicator. Nature Rev. Mol. Cell Biol. 5, 848–855 (2004).

    CAS  Google Scholar 

  24. Paixao, S. et al. Modular structure of the human lamin B2 replicator. Mol. Cell. Biol. 24, 2958–2967 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Altman, A. L. & Fanning, E. Defined sequence modules and an architectural element cooperate to promote initiation at an ectopic mammalian chromosomal replication origin. Mol. Cell. Biol. 24, 4138–4150 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu, G., Malott, M. & Leffak, M. Multiple functional elements comprise a mammalian chromosomal replicator. Mol. Cell. Biol. 23, 1832–1842 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Guan, Z. et al. Decreased replication origin activity in temporal transition regions. J. Cell Biol. 187, 623–635 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lin, H. B., Dijkwel, P. A. & Hamlin, J. L. Promiscuous initiation on mammalian chromosomal DNA templates and its possible suppression by transcription. Exp. Cell Res. 308, 53–64 (2005).

    CAS  PubMed  Google Scholar 

  29. Vashee, S. et al. Sequence-independent DNA binding and replication initiation by the human origin recognition complex. Genes Dev. 17, 1894–1908 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Remus, D., Beall, E. L. & Botchan, M. R. DNA topology, not DNA sequence, is a critical determinant for Drosophila ORC-DNA binding. EMBO J. 23, 897–907 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Gupta, S. et al. Predicting human nucleosome occupancy from primary sequence. PLoS Comput. Biol. 4, e1000134 (2008).

    PubMed  PubMed Central  Google Scholar 

  32. Schepers, A. & Papior, P. Why are we where we are? Understanding replication origins and initiation sites in eukaryotes using ChIP-approaches. Chromosome Res. 18, 63–77 (2010).

    CAS  PubMed  Google Scholar 

  33. Friedman, K. L., Brewer, B. J. & Fangman, W. L. Replication profile of Saccharomyces cerevisiae chromosome VI. Genes Cells 2, 667–678 (1997).

    CAS  PubMed  Google Scholar 

  34. Poloumienko, A., Dershowitz, A., De, J. & Newlon, C. S. Completion of replication map of Saccharomyces cerevisiae chromosome III. Mol. Biol. Cell 12, 3317–3327 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Heichinger, C., Penkett, C. J., Bahler, J. & Nurse, P. Genome-wide characterization of fission yeast DNA replication origins. EMBO J. 25, 5171–5179 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu, P. Y. & Nurse, P. Establishing the program of origin firing during S phase in fission yeast. Cell 136, 852–864 (2009). This report used genome-wide replication profiling of the earliest BrdU-labelled DNA synthesized in the presence of hydroxyurea to show that holding cells in mitosis increases the binding of ORC to certain origins in fission yeast and causes these origins to become earlier replicating.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Patel, P. K., Arcangioli, B., Baker, S. P., Bensimon, A. & Rhind, N. DNA replication origins fire stochastically in fission yeast. Mol. Biol. Cell 17, 308–316 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Norio, P. et al. Progressive activation of DNA replication initiation in large domains of the immunoglobulin heavy chain locus during B cell development. Mol. Cell 20, 575–587 (2005).

    CAS  PubMed  Google Scholar 

  39. Norio, P. & Schildkraut, C. L. Plasticity of DNA replication initiation in epstein-barr virus episomes. PLoS Biol. 2, e152 (2004).

    PubMed  PubMed Central  Google Scholar 

  40. Lebofsky, R., Heilig, R., Sonnleitner, M., Weissenbach, J. & Bensimon, A. DNA replication origin interference increases the spacing between initiation events in human cells. Mol. Biol. Cell 17, 5337–5345 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Mesner, L. D., Crawford, E. L. & Hamlin, J. L. Isolating apparently pure libraries of replication origins from complex genomes. Mol. Cell 21, 719–726 (2006).

    CAS  PubMed  Google Scholar 

  42. Anglana, M., Apiou, F., Bensimon, A. & Debatisse, M. Dynamics of DNA replication in mammalian somatic cells: nucleotide pool modulates origin choice and interorigin spacing. Cell 114, 385–394 (2003).

    CAS  PubMed  Google Scholar 

  43. Yabuki, N., Terashima, H. & Kitada, K. Mapping of early firing origins on a replication profile of budding yeast. Genes Cells 7, 781–789 (2002).

    CAS  PubMed  Google Scholar 

  44. Katou, Y. et al. S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex. Nature 424, 1078–1083 (2003).

    CAS  PubMed  Google Scholar 

  45. Viggiani, C. J., Knott, S. R. & Aparicio, O. M. Genome-wide analysis of DNA synthesis by BrdU immunoprecipitation on tiling microarrays (BrdU-IP-chip) in Saccharomyces cerevisiae. Cold Spring Harb. Protoc. 2010, pdb.prot5385 (2010).

    Google Scholar 

  46. Feng, W. et al. Genomic mapping of single-stranded DNA in hydroxyurea-challenged yeasts identifies origins of replication. Nature Cell Biol. 8, 148–155 (2006).

    CAS  PubMed  Google Scholar 

  47. Sasaki, T. et al. The Chinese hamster dihydrofolate reductase replication origin decision point follows activation of transcription and suppresses initiation of replication within transcription units. Mol. Cell. Biol. 26, 1051–1062 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Alvino, G. M. et al. Replication in hydroxyurea: it's a matter of time. Mol. Cell. Biol. 27, 6396–6406 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Mickle, K. L. et al. Checkpoint independence of most DNA replication origins in fission yeast. BMC Mol. Biol. 8, 112 (2007).

    PubMed  PubMed Central  Google Scholar 

  50. Gilbert, D. M. Replication origin plasticity, Taylor-made: inhibition vs recruitment of origins under conditions of replication stress. Chromosoma 116, 341–347 (2007).

    PubMed  Google Scholar 

  51. Courbet, S. et al. Replication fork movement sets chromatin loop size and origin choice in mammalian cells. Nature 455, 557–560 (2008).

    CAS  PubMed  Google Scholar 

  52. Knott, S. R., Viggiani, C. J., Tavare, S. & Aparicio, O. M. Genome-wide replication profiles indicate an expansive role for Rpd3L in regulating replication initiation timing or efficiency, and reveal genomic loci of Rpd3 function in Saccharomyces cerevisiae. Genes Dev. 23, 1077–1090 (2009). In this report, the authors examined the role of the budding yeast histone deacetylase Rpd3 in the timing of origin firing using genome-wide replication profiling of the earliest BrdU-labelled DNA synthesized in the presence of hydroxyurea.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Cadoret, J. C. & Prioleau, M. N. Genome-wide approaches to determining origin distribution. Chromosome Res. 18, 79–89 (2010).

    CAS  PubMed  Google Scholar 

  54. Cadoret, J. C. et al. Genome-wide studies highlight indirect links between human replication origins and gene regulation. Proc. Natl Acad. Sci. USA 105, 15837–15842 (2008). A genome-scale analysis of sites of enrichment of small nascent single-stranded DNA within the human ENCODE regions using the Lexo method and hybridization to microarrays.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Gerbi, S. A. & Bielinsky, A. K. Replication initiation point mapping. Methods 13, 271–280 (1997).

    CAS  PubMed  Google Scholar 

  56. Das-Bradoo, S. & Bielinsky, A. K. Replication initiation point mapping: approach and implications. Methods Mol. Biol. 521, 105–120 (2009).

    CAS  PubMed  Google Scholar 

  57. Lucas, I. et al. High-throughput mapping of origins of replication in human cells. EMBO Rep. 8, 770–777 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Karnani, N., Taylor, C. M., Malhotra, A. & Dutta, A. Genomic study of replication initiation in human chromosomes reveals the influence of transcription regulation and chromatin structure on origin selection. Mol. Biol. Cell 21, 393–404 (2010). A second genome-scale analysis of sites of enrichment of small nascent single-stranded DNA within the human ENCODE regions using both the Lexo and BrdU-IP methods and hybridization to microarrays. Reasons for the low concordance with results in reference 54 are discussed although many features of the sites were in common.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Sequeira-Mendes, J. et al. Transcription initiation activity sets replication origin efficiency in mammalian cells. PLoS Genet. 5, e1000446 (2009). A genome-scale analysis of sites of enrichment of small nascent single-stranded DNA across a segment of the mouse genome in ES cells using hybridization to microarrays. Similarities in the features found for these origins and those in reference 54 are discussed.

    PubMed  PubMed Central  Google Scholar 

  60. Maric, C. & Prioleau, M. N. Interplay between DNA replication and gene expression: a harmonious coexistence. Curr. Opin. Cell Biol. 22, 277–283 (2010).

    CAS  PubMed  Google Scholar 

  61. Mesner, L. D. & Hamlin, J. L. Isolation of restriction fragments containing origins of replication from complex genomes. Methods Mol. Biol. 521, 315–328 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Francis, L. I., Randell, J. C., Takara, T. J., Uchima, L. & Bell, S. P. Incorporation into the prereplicative complex activates the Mcm2–7 helicase for Cdc7-Dbf4 phosphorylation. Genes Dev. 23, 643–654 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Gelbart, M. E., Bachman, N., Delrow, J., Boeke, J. D. & Tsukiyama, T. Genome-wide identification of Isw2 chromatin-remodeling targets by localization of a catalytically inactive mutant. Genes Dev. 19, 942–954 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Romero, J. & Lee, H. Asymmetric bidirectional replication at the human DBF4 origin. Nature Struct. Mol. Biol. 15, 722–729 (2008).

    CAS  Google Scholar 

  65. Tuduri, S., Tourriere, H. & Pasero, P. Defining replication origin efficiency using DNA fiber assays. Chromosome Res. 18, 91–102 (2010).

    CAS  PubMed  Google Scholar 

  66. Cohen, S. M. et al. BRG1 co-localizes with DNA replication factors and is required for efficient replication fork progression. Nucleic Acids Res. 22 Jun 2010 (doi:10.1093/nar/gkq559).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Sullivan, B. A. & Karpen, G. H. Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nature Struct. Mol. Biol. 11, 1076–1083 (2004).

    CAS  Google Scholar 

  68. Cipriany, B. R. et al. Single molecule epigenetic analysis in a nanofluidic channel. Anal. Chem. 82, 2480–2487 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Gilbert, D. M. Making sense of eukaryotic DNA replication origins. Science 294, 96–100 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Knott, S. R., Viggiani, C. J. & Aparicio, O. M. To promote and protect: coordinating DNA replication and transcription for genome stability. Epigenetics 4, 362–365 (2009).

    CAS  PubMed  Google Scholar 

  71. Huvet, M. et al. Human gene organization driven by the coordination of replication and transcription. Genome Res. 17, 1278–1285 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Jorgensen, F. G. & Schierup, M. H. Increased rate of human mutations where DNA and RNA polymerases collide. Trends Genet. 25, 523–527 (2009).

    PubMed  Google Scholar 

  73. Bermejo, R. et al. Genome-organizing factors Top2 and Hmo1 prevent chromosome fragility at sites of S phase transcription. Cell 138, 870–884 (2009).

    CAS  PubMed  Google Scholar 

  74. Tuduri, S. et al. Topoisomerase I suppresses genomic instability by preventing interference between replication and transcription. Nature Cell Biol. 11, 1315–1324 (2009).

    CAS  PubMed  Google Scholar 

  75. Necsulea, A., Guillet, C., Cadoret, J. C., Prioleau, M. N. & Duret, L. The relationship between DNA replication and human genome organization. Mol. Biol. Evol. 26, 729–741 (2009).

    CAS  PubMed  Google Scholar 

  76. Azvolinsky, A., Giresi, P. G., Lieb, J. D. & Zakian, V. A. Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae. Mol. Cell 34, 722–734 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Liachko, I. et al. A comprehensive genome-wide map of autonomously replicating sequences in a naive genome. PLoS Genet. 6, e1000946 (2010).

    PubMed  PubMed Central  Google Scholar 

  78. Aladjem, M. I. et al. Replication initiation patterns in the β-globin loci of totipotent and differentiated murine cells: evidence for multiple initiation regions. Mol. Cell. Biol. 22, 442–452 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Hiratani, I. & Gilbert, D. M. in The Cell Biology of Stem Cells (eds Meshorer, E. & Plath, K.) 41–58 (Landes and Springer, Austin, Texas, 2010).

    Google Scholar 

  80. Karnani, N., Taylor, C. M. & Dutta, A. Microarray analysis of DNA replication timing. Methods Mol. Biol. 556, 191–203 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Farkash-Amar, S. & Simon, I. Genome-wide analysis of the replication program in mammals. Chromosome Res. 18, 115–125 (2009).

    Google Scholar 

  82. Gilbert, D. M. & Cohen, S. N. Bovine papilloma virus plasmids replicate randomly in mouse fibroblasts throughout S-phase of the cell cycle. Cell 50, 59–68 (1987).

    CAS  PubMed  Google Scholar 

  83. Gilbert, D. M. Temporal order of replication of Xenopus laevis 5S ribosomal RNA genes in somatic cells. Proc. Natl Acad. Sci. USA 83, 2924–2928 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Hansen, R., Canfield, T., Lamb, M., Gartler, S. & Laird, C. Association of fragile X syndrome with delayed replication of the FMR1 gene. Cell 73, 1403–1409 (1993).

    CAS  PubMed  Google Scholar 

  85. Schubeler, D. et al. Genome-wide DNA replication profile for Drosophila melanogaster: a link between transcription and replication timing. Nature Genet. 32, 438–442 (2002).

    PubMed  Google Scholar 

  86. Schwaiger, M. et al. Chromatin state marks cell-type- and gender-specific replication of the Drosophila genome. Genes Dev. 23, 589–601 (2009). The first comprehensive genome-wide mapping of replication timing in two D. melanogaster tissue culture cell lines derived from different tissues. The study revealed developmental and gender-specific differences.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Schwaiger, M., Kohler, H., Oakeley, E. J., Stadler, M. B. & Schubeler, D. Heterochromatin protein 1 (HP1) modulates replication timing of the Drosophila genome. Genome Res. 20, 771–780 (2010). A genome-wide analysis of replication timing in D. melanogaster cultured cells lacking heterochromatin protein 1 (HP1). Surprisingly, the study revealed roles for HP1 both in very late replication of centromeric DNA and in early replication of certain euchromatic regions with high levels of repeats.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Hansen, R. S. et al. Sequencing newly replicated DNA reveals widespread plasticity in human replication timing. Proc. Natl Acad. Sci. USA 107, 139–144 (2010). A genome-wide replication timing analysis in four human cell lines using the BrdU-IP method followed by sequencing. This study revealed many differences in and links to the accessibility of chromatin by DNase I.

    CAS  PubMed  Google Scholar 

  89. Hiratani, I. et al. Genome-wide dynamics of replication timing revealed by in vitro models of mouse embryogenesis. Genome Res. 20, 155–169 (2010). A genome-wide analysis of replication timing in 22 cell lines representing 10 stages of early mouse development. It revealed widespread changes in replication timing, including a set of early to late changes during epiblast maturation that harboured genes which became difficult to reactivate when late replicating.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Ryba, T. et al. Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types. Genome Res. 20, 761–770 (2010). A genome-wide replication timing analysis of eight human cell types, including four human ES cell lines, and a comparison to corresponding mouse profiles. The study revealed overall cell-type-specific evolutionary conservation of replication timing and a much closer alignment of human ES cells to mouse epiblast-derived stem cells than to mouse ES cells, as well as a surprisingly close alliance of replication timing to chromatin spatial proximity. This report also showed the equivalence of microarray to sequencing methods in the same cell line.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Desprat, R. et al. Predictable dynamic program of timing of DNA replication in human cells. Genome Res. 19, 2288–2299 (2009). A replication timing analysis of 3% of the genome in three human cell lines using the S/G1 microarray hybridization method, followed by genome-wide analysis by S/G1 sequencing. Equivalent results were obtained by both methods, and this group also identified a close linkage between early replication and proximity to expressed genes.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Yokochi, T. et al. G9a selectively represses a class of late-replicating genes at the nuclear periphery. Proc. Natl Acad. Sci. USA 106, 19363–19368 (2009). Genome-wide replication timing analysis is used as a tool to show that loss of the G9a histone methyltransferase in mouse ES cells results in the de-repression of a set of genes that are almost exclusively late replicating. However, loss of this enzyme has no detectable effect on replication timing of the genome, except for peri-centromeric regions.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Hiratani, I. et al. Global reorganization of replication domains during embryonic stem cell differentiation. PLoS Biol. 6, e245 (2008). The first genome-wide analysis of replication timing during the course of directed differentiation in three mouse ES cell lines. It revealed widespread consolidation of replication domains, which resulted in the production of fewer segments of discordant replication during neural differentiation. Furthermore, the study highlighted links to transcriptional contol, promoter classes and chromatin marks, and also compared the S/G1 and BrdU-IP profiling methods.

    PubMed  PubMed Central  Google Scholar 

  94. Farkash-Amar, S. et al. Global organization of replication time zones of the mouse genome. Genome Res. 18, 1562–1570 (2008). The authors used an elegant synchronization scheme to create a high-resolution genome-wide map of regions that replicate within fine cell cycle windows.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Woodfine, K. et al. Replication timing of human chromosome 6. Cell Cycle 4, 172–176 (2005).

    CAS  PubMed  Google Scholar 

  96. Woodfine, K. et al. Replication timing of the human genome. Hum. Mol. Genet. 13, 191–202 (2004).

    CAS  PubMed  Google Scholar 

  97. Lee, T. J. et al. Arabidopsis thaliana chromosome 4 replicates in two phases that correlate with chromatin state. PLoS Genet. 6, e1000982 (2010). The first genome-scale analysis of replication timing across a segment of the A. thaliana genome using the BrdU-IP method. Many parallels to animal cells were found.

    PubMed  PubMed Central  Google Scholar 

  98. Gilbert, D. M. & Cohen, S. N. Position effects on the timing of replication of chromosomally integrated simian virus 40 molecules in Chinese hamster cells. Mol. Cell. Biol. 10, 4345–4355 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Karnani, N., Taylor, C., Malhotra, A. & Dutta, A. Pan-S replication patterns and chromosomal domains defined by genome-tiling arrays of ENCODE genomic areas. Genome Res. 17, 865–876 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Lu, J., Li, F., Murphy, C. S., Davidson, M. W. & Gilbert, D. M. G2 phase chromatin lacks determinants of replication timing. J. Cell Biol. 189, 967–980 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Hiratani, I., Takebayashi, S., Lu, J. & Gilbert, D. M. Replication timing and transcriptional control: beyond cause and effect — part II. Curr. Opin. Genet. Dev. 19, 142–149 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Hiratani, I. & Gilbert, D. M. Replication timing as an epigenetic mark. Epigenetics 4, 93–97 (2009).

    CAS  PubMed  Google Scholar 

  103. Pope, B. D., Hiratani, I. & Gilbert, D. M. Domain-wide regulation of DNA replication timing during mammalian development. Chromosome Res. 18, 127–136 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Mendez, J. Temporal regulation of DNA replication in mammalian cells. Crit. Rev. Biochem. Mol. Biol. 44, 343–351 (2009).

    CAS  PubMed  Google Scholar 

  105. McCune, H. J. et al. The temporal program of chromosome replication: genomewide replication in clb5 δ Saccharomyces cerevisiae. Genetics 180, 1833–1847 (2008). This report used density transfer to isolate DNA replicated at specific times during S phase, followed by array hybridization. The study showed that, in Clb5-deleted budding yeast that can only initiate at early origins, large blocks of chromosomes became considerably delayed in their replication, providing evidence for clustering of temporally related origins in budding yeast.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. MacAlpine, D. M., Rodriguez, H. K. & Bell, S. P. Coordination of replication and transcription along a Drosophila chromosome. Genes Dev. 18, 3094–3105 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Yaffe, E. et al. Comparative analysis of DNA replication timing reveals conserved large-scale chromosomal architecture. PLoS Genet. 6, e1001011 (2010). Genome-wide replication timing profiles in mouse and human fibroblast and lymphoblast cell lines using the S/G1 method revealed high cell-type-specific conservation of replication timing, consistent with reference 90. These authors further showed that evolutionary break points are usually located between regions of similar replication time that are in close proximity.

    PubMed  PubMed Central  Google Scholar 

  108. Jorgensen, H. F. et al. The impact of chromatin modifiers on the timing of locus replication in mouse embryonic stem cells. Genome Biol. 8, R169 (2007).

    PubMed  PubMed Central  Google Scholar 

  109. Li, J., Santoro, R., Koberna, K. & Grummt, I. The chromatin remodeling complex NoRC controls replication timing of rRNA genes. EMBO J. 24, 120–127 (2004).

    PubMed  PubMed Central  Google Scholar 

  110. Wu, R., Singh, P. B. & Gilbert, D. M. Uncoupling global and fine-tuning replication timing determinants for mouse pericentric heterochromatin. J. Cell Biol. 174, 185–194 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Hayashi, M. T., Takahashi, T. S., Nakagawa, T., Nakayama, J. I. & Masukata, H. The heterochromatin protein Swi6/HP1 activates replication origins at the pericentromeric region and silent mating-type locus. Nature Cell Biol. 11, 357–362 (2009).

    CAS  PubMed  Google Scholar 

  112. Duan, Z. et al. A three-dimensional model of the yeast genome. Nature 465, 363–367 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Azuara, V. et al. Heritable gene silencing in lymphocytes delays chromatid resolution without affecting the timing of DNA replication. Nature Cell Biol. 5, 668–674 (2003).

    CAS  PubMed  Google Scholar 

  114. Lande-Diner, L., Zhang, J. & Cedar, H. Shifts in replication timing actively affect histone acetylation during nucleosome reassembly. Mol. Cell 34, 767–774 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Pink, C. J. & Hurst, L. D. Timing of replication is a determinant of neutral substitution rates but does not explain slow Y chromosome evolution in rodents. Mol. Biol. Evol. 27, 1077–1086 (2010).

    CAS  PubMed  Google Scholar 

  116. Chen, C. L. et al. Impact of replication timing on non-CpG and CpG substitution rates in mammalian genomes. Genome Res. 20, 447–457 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Hyrien, O. & Goldar, A. Mathematical modelling of eukaryotic DNA replication. Chromosome Res. 18, 147–161 (2010).

    CAS  PubMed  Google Scholar 

  118. Huberman, J. A. & Riggs, A. D. Autoradiography of chromosomal DNA fibers from Chinese hamster cells. Proc. Natl Acad. Sci. USA 55, 599–606 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Takebayashi, S. I., Manders, E. M., Kimura, H., Taguchi, H. & Okumura, K. Mapping sites where replication initiates in mammalian cells using DNA fibers. Exp. Cell Res. 271, 263–268 (2001).

    CAS  PubMed  Google Scholar 

  120. Guan, J. & Lee, L. J. Generating highly ordered DNA nanostrand arrays. Proc. Natl Acad. Sci. USA 102, 18321–18325 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Sekula, S. et al. Multiplexed lipid dip-pen nanolithography on subcellular scales for the templating of functional proteins and cell culture. Small 4, 1785–1793 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank J. Huberman, D. Macalpine, O. Aparicio, A. Beilinsky, N. Rhind, M.-N. Prioleau, A. Dutta, H. Masukata, A. Schepers, J. Hamlin, K. Plath, B. Papp, L. Mesner, M. Mechali, K. Ekwall and members of my laboratory for helpful discussions during the preparation of this article.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

A complete protocol for genome–scale analysis of replication timing in mammalian cells

DNAReplication (a knowledge base for the eukaryotic DNA replication community that includes a forum and a list of new papers)

The ENCODE Project

OriDB (a catalogue of confirmed and predicted DNA replication origin sites)

ReplicationDomain (an interactive database of replication timing and related chromosomal properties, supplemented with protocols)

Glossary

Pre-replication complex

(pre-RC). A complex of proteins that forms at the origin of replication during the initiation step of DNA replication. All pre-RC proteins are essential for DNA replication. The pre-RC is typically thought to consist of origin recognition complex (ORC), DNA replication factor Cdt1, cell division cycle protein 6 (Cdc6) and mini-chromosome maintenance (MCM) complex.

Dormant origin

Cells have a large excess of replication origins over what they need to complete DNA replication. Origins that are in the vicinity of a recently initiated origin normally will be replicated passively when the replication fork passes through them. However, if DNA damage or low-nucleotide pools slow the replication forks, these origins can fire to complete duplication of nearby DNA in a timely fashion.

Replication origin

A site where replication is initiated during S phase. It is bound by the origin recognition complex.

Replication timing programme

All eukaryotic cells replicate segments of their genomes in a defined temporal sequence. This process is referred to as replication timing. The temporal order in which segments of DNA are replicated is specific to specific cell types, and that temporal order is its replication timing programme.

Origin recognition complex

A complex of six subunits that binds to the origins of DNA replication in an ATP-dependent manner before initiation to recruit additional protein members of the pre-replication complex.

Chromatin immunoprecipitation

A technique that is used to identify the location of DNA-binding proteins and epigenetic marks in the genome. Genomic sequences containing the mark of interest are enriched by binding soluble DNA chromatin extracts (complexes of DNA and protein) to an antibody that recognizes the mark.

Mini-chromosome maintenance complex

An oligomeric complex that is suggested to be the helicase involved in replication.

Phased nucleosomes

Nucleosomes that are evenly spaced. This usually occurs when a nucleosome is positioned by a DNA sequence or chromatin protein, which restricts the possible locations of its nearest neighbours.

Efficiency

The percentage of replication cycles in which any given origin is used as an initiation site.

Replication fork

The branch-point structure that forms at the site of active DNA synthesis, where helicases break the hydrogen bonds tethering the two DNA strands and unwind the DNA.

Primer extension

Any configuration in which a partially single-stranded nucleic acid is annealed with a 5′ overhang to a smaller complementary strand. The 3′ hydroxyl of the annealed complementary strand can serve as a primer that can be extended by DNA polymerase along the remaining single-stranded portion of the larger template molecule.

DNase I hypersensitive site

A region of the genome that is readily degraded by the enzyme DNase I owing to decreased nucleosome occupancy (an 'open' chromatin structure).

Replication bubble

The structure formed where two replication forks, derived from the same replication origins, are moving bidirectionally away from the site of initiation. The intervening DNA consists of two newly synthesized strands.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilbert, D. Evaluating genome-scale approaches to eukaryotic DNA replication. Nat Rev Genet 11, 673–684 (2010). https://doi.org/10.1038/nrg2830

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2830

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing