Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cancer pharmacogenomics: strategies and challenges

Key Points

  • Pharmacogenomics aims to understand how genetic variation influences drug efficacy and toxicity and is especially relevant in oncology because failed treatment is often life-threatening. This Review focuses on the challenges involved in studying the influence of germline genetic variation on cancer pharmacogenomic phenotypes.

  • The ideal way of attributing phenotypic effects to a drug of interest is lack of effect in a control group that did not receive the drug and presence of an effect in a treatment group that received a single oncology drug at a standardized dose but is not always attainable in cancer pharmacogenomic studies.

  • Common clinical phenotypes used in cancer pharmacogenomics include toxicity measures, tumour response, progression-free survival and overall survival. Key endophenotypes include drug or metabolite clearance, enzyme activity, gene expression, methylation patterns and serum protein levels.

  • Tumour samples are a mixture of cancer and normal cells and should be avoided as a source of DNA in germline pharmacogenomic studies. Somatic mutations may define disease subtype and can be used as covariates or endophenotypes in germline cancer pharmacogenomic studies.

  • Because of consistent drug dosing and phenotype collection, clinical trials are an ideal infrastructure for pharmacogenomic studies of oncology drugs. However, appropriate replication trials of sufficient sample size are not always feasible, so researchers may need to turn to cell and animal models before and/or after clinical trial studies to generate hypotheses or validate findings.

  • As has been proposed for complex disease susceptibility, cancer pharmacogenomic traits probably have multiple common and rare variants that, when combined, predict response to therapy. Sophisticated analysis tools implemented by statistical geneticists are needed to explore fully the genetics of cancer drug-induced traits.

Abstract

Genetic variation influences the response of an individual to drug treatments. Understanding this variation has the potential to make therapy safer and more effective by determining selection and dosing of drugs for an individual patient. In the context of cancer, tumours may have specific disease-defining mutations, but a patient's germline genetic variation will also affect drug response (both efficacy and toxicity), and here we focus on how to study this variation. Advances in sequencing technologies, statistical genetics analysis methods and clinical trial designs have shown promise for the discovery of variants associated with drug response. We discuss the application of germline genetics analysis methods to cancer pharmacogenomics with a focus on the special considerations for study design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Steps in cancer pharmacogenomic study design.
Figure 2: Negative relationship between sample size and drug treatment consistency in cancer pharmacogenomics.

Similar content being viewed by others

References

  1. Peters, E. J. et al. Pharmacogenomic characterization of US FDA-approved cytotoxic drugs. Pharmacogenomics 12, 1407–1415 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Dolan, M. E. et al. Heritability and linkage analysis of sensitivity to cisplatin-induced cytotoxicity. Cancer Res. 64, 4353–4356 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Watters, J. W., Kraja, A., Meucci, M. A., Province, M. A. & McLeod, H. L. Genome-wide discovery of loci influencing chemotherapy cytotoxicity. Proc. Natl Acad. Sci. USA 101, 11809–11814 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Paugh, S. W. et al. Cancer pharmacogenomics. Clin. Pharmacol. Ther. 90, 461–466 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Relling, M. V. et al. Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S-methyltransferase gene locus. J. Natl Cancer Inst. 91, 2001–2008 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Weinshilboum, R. M. & Sladek, S. L. Mercaptopurine pharmacogenetics: monogenic inheritance of erythrocyte thiopurine methyltransferase activity. Am. J. Hum. Genet. 32, 651–662 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Relling, M. V. et al. Clinical pharmacogenetics implementation consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing. Clin. Pharmacol. Ther. 89, 387–391 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stocco, G. et al. Genetic polymorphism of inosine triphosphate pyrophosphatase is a determinant of mercaptopurine metabolism and toxicity during treatment for acute lymphoblastic leukemia. Clin. Pharmacol. Ther. 85, 164–172 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Innocenti, F. et al. Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J. Clin. Oncol. 22, 1382–1388 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Schroth, W. et al. Breast cancer treatment outcome with adjuvant tamoxifen relative to patient CYP2D6 and CYP2C19 genotypes. J. Clin. Oncol. 25, 5187–5193 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Deeken, J. The Affymetrix DMET platform and pharmacogenetics in drug development. Curr. Opin. Mol. Ther. 11, 260–268 (2009).

    CAS  PubMed  Google Scholar 

  12. Grady, B. J. & Ritchie, M. D. Statistical optimization of pharmacogenomics association studies: key considerations from study design to analysis. Curr. Pharmacogenom. Person. Med. 9, 41–66 (2011).

    Article  CAS  Google Scholar 

  13. Ingle, J. N. et al. Genome-wide associations and functional genomic studies of musculoskeletal adverse events in women receiving aromatase inhibitors. J. Clin. Oncol. 28, 4674–4682 (2010). This cancer pharmacogenomics GWAS of toxicity in a clinical trial demonstrates how cell models can functionally validate patient findings.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Innocenti, F. et al. A genome-wide association study of overall survival in pancreatic cancer patients treated with gemcitabine in CALGB 80303. Clin. Cancer Res. 18, 577–584 (2012). This GWAS demonstrates a potential prognostic rather than drug effect, an important distinction to make in cancer studies.

    Article  CAS  PubMed  Google Scholar 

  15. Trevino, L. R. et al. Germline genetic variation in an organic anion transporter polypeptide associated with methotrexate pharmacokinetics and clinical effects. J. Clin. Oncol. 27, 5972–5978 (2009). This successful cancer pharmacogenomics GWAS highlights the use of drug clearance as an endophenotype.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kiyotani, K. et al. Lessons for pharmacogenomics studies: association study between CYP2D6 genotype and tamoxifen response. Pharmacogenet. Genom. 20, 565–568 (2010).

    Article  CAS  Google Scholar 

  17. Schroth, W. et al. Association between CYP2D6 polymorphisms and outcomes among women with early stage breast cancer treated with tamoxifen. JAMA 302, 1429–1436 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Regan, M. M. et al. CYP2D6 genotype and tamoxifen response in postmenopausal women with endocrine-responsive breast cancer: The Breast International Group 1–98 Trial. J. Natl Cancer Inst. 104, 441–451 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nakamura, Y. et al. Re: CYP2D6 genotype and tamoxifen response in postmenopausal women with endocrine-responsive breast cancer: The Breast International Group 1–98 Trial. J. Natl Cancer Inst. 104, 1264 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Klopfleisch, R., Weiss, A. T. & Gruber, A. D. Excavation of a buried treasure—DNA, mRNA, miRNA and protein analysis in formalin fixed, paraffin embedded tissues. Histol. Histopathol. 26, 797–810 (2011).

    CAS  PubMed  Google Scholar 

  21. Spencer, C. C., Su, Z., Donnelly, P. & Marchini, J. Designing genome-wide association studies: sample size, power, imputation, and the choice of genotyping chip. PLoS Genet. 5, e1000477 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Baldwin, R. M. et al. A genome-wide association study identifies novel loci for paclitaxel-induced sensory peripheral neuropathy in CALGB 40101. Clin. Cancer Res. 18, 5099–5109 (2012). This cancer pharmacogenomics GWAS demonstrates the use of dose to toxicity event as a phenotype.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Daly, A. K. Genome-wide association studies in pharmacogenomics. Nature Rev. Genet. 11, 241–246 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Link, E. et al. SLCO1B1 variants and statin-induced myopathy—a genomewide study. N. Engl. J. Med. 359, 789–799 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Wilke, R. A. et al. The Clinical Pharmacogenomics Implementation Consortium: CPIC guideline for SLCO1B1 and simvastatin-induced myopathy. Clin. Pharmacol. Ther. 92, 112–117 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang, H. Q., Brady, M. F., Cella, D. & Fleming, G. Validation and reduction of FACT/GOG-Ntx subscale for platinum/paclitaxel-induced neurologic symptoms: a gynecologic oncology group study. Int. J. Gynecol. Cancer 17, 387–393 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Karrison, T. G., Maitland, M. L., Stadler, W. M. & Ratain, M. J. Design of Phase II cancer trials using a continuous endpoint of change in tumor size: application to a study of sorafenib and erlotinib in non small-cell lung cancer. J. Natl Cancer Inst. 99, 1455–1461 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Maitland, M. L., Bies, R. R. & Barrett, J. S. A time to keep and a time to cast away categories of tumor response. J. Clin. Oncol. 29, 3109–3111 (2011).

    Article  PubMed  Google Scholar 

  30. Sharma, M. R. et al. Resampling Phase III data to assess. Phase II trial designs and endpoints. Clin. Cancer Res. 18, 2309–2315 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Claret, L. et al. Model-based prediction of Phase III overall survival in colorectal cancer on the basis of phase II tumor dynamics. J. Clin. Oncol. 27, 4103–4108 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Iyer, L. et al. UGT1A1*28 polymorphism as a determinant of irinotecan disposition and toxicity. Pharmacogenom. J. 2, 43–47 (2002).

    Article  CAS  Google Scholar 

  33. Eechoute, K. et al. Polymorphisms in endothelial nitric oxide synthase (eNOS) and vascular endothelial growth factor (VEGF) predict sunitinib-induced hypertension. Clin. Pharmacol. Ther. 92, 503–510 (2012).

    CAS  PubMed  Google Scholar 

  34. Gamazon, E. R., Huang, R. S., Cox, N. J. & Dolan, M. E. Chemotherapeutic drug susceptibility associated SNPs are enriched in expression quantitative trait loci. Proc. Natl Acad. Sci. USA 107, 9287–9292 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wheeler, H. E. & Dolan, M. E. Lymphoblastoid cell lines in pharmacogenomic discovery and clinical translation. Pharmacogenomics 13, 55–70 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, W., Huang, R. S. & Dolan, M. E. Integrating epigenomics into pharmacogenomic studies. Pharmgenom. Pers. Med. 2008, 7–14 (2008).

    Google Scholar 

  37. Huang, R. S. et al. Platinum sensitivity-related germline polymorphism discovered via a cell-based approach and analysis of its association with outcome in ovarian cancer patients. Clin. Cancer Res. 17, 5490–5500 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tan, X. L. et al. Genetic variation predicting cisplatin cytotoxicity associated with overall survival in lung cancer patients receiving platinum-based chemotherapy. Clin. Cancer Res. 17, 5801–5811 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ziliak, D. et al. Germline polymorphisms discovered via a cell-based, genome-wide approach predict platinum response in head and neck cancers. Transl. Res. 157, 265–272 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Begum, F., Ghosh, D., Tseng, G. C. & Feingold, E. Comprehensive literature review and statistical considerations for GWAS meta-analysis. Nucleic Acids Res. 40, 3777–3784 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cantor, R. M., Lange, K. & Sinsheimer, J. S. Prioritizing GWAS results: a review of statistical methods and recommendations for their application. Am. J. Hum. Genet. 86, 6–22 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Manolio, T. A. Genomewide association studies and assessment of the risk of disease. N. Engl. J. Med. 363, 166–176 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Zeggini, E. & Ioannidis, J. P. Meta-analysis in genome-wide association studies. Pharmacogenomics 10, 191–201 (2009).

    Article  PubMed  Google Scholar 

  44. Kim, S. & Xing, E. P. Statistical estimation of correlated genome associations to a quantitative trait network. PLoS Genet. 5, e1000587 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Korte, A. et al. A mixed-model approach for genome-wide association studies of correlated traits in structured populations. Nature Genet. 44, 1066–1071 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Goetz, M. P. et al. Evaluation of CYP2D6 and efficacy of tamoxifen and raloxifene in women treated for breast cancer chemoprevention: results from the NSABP P1 and P2 clinical trials. Clin. Cancer Res. 17, 6944–6951 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nowell, S. A. et al. Association of genetic variation in tamoxifen-metabolizing enzymes with overall survival and recurrence of disease in breast cancer patients. Breast Cancer Res. Treat. 91, 249–258 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Okishiro, M. et al. Genetic polymorphisms of CYP2D6 10 and CYP2C19 2, 3 are not associated with prognosis, endometrial thickness, or bone mineral density in Japanese breast cancer patients treated with adjuvant tamoxifen. Cancer 115, 952–961 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Berry, D. A. Bayesian clinical trials. Nature Rev. Drug Discov. 5, 27–36 (2006).

    Article  CAS  Google Scholar 

  50. Salanti, G., Higgins, J. P., Trikalinos, T. A. & Ioannidis, J. P. Bayesian meta-analysis and meta-regression for gene-disease associations and deviations from Hardy–Weinberg equilibrium. Stat. Med. 26, 553–567 (2007).

    Article  PubMed  Google Scholar 

  51. Stephens, M. & Balding, D. J. Bayesian statistical methods for genetic association studies. Nature Rev. Genet. 10, 681–690 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Newcombe, P. J. et al. A comparison of Bayesian and frequentist approaches to incorporating external information for the prediction of prostate cancer risk. Genet. Epidemiol. 36, 71–83 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Fridley, B. L. et al. Bayesian mixture models for the incorporation of prior knowledge to inform genetic association studies. Genet. Epidemiol. 34, 418–426 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Higgins, J. P., Thompson, S. G., Deeks, J. J. & Altman, D. G. Measuring inconsistency in meta-analyses. BMJ 327, 557–560 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Faye, L. L. & Bull, S. B. Two-stage study designs combining genome-wide association studies, tag single-nucleotide polymorphisms, and exome sequencing: accuracy of genetic effect estimates. BMC Proceedings 5 (Suppl. 9), S64 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Garner, C. Upward bias in odds ratio estimates from genome-wide association studies. Genet. Epidemiol. 31, 288–295 (2007).

    Article  PubMed  Google Scholar 

  57. Sun, L. et al. BR-squared: a practical solution to the winner's curse in genome-wide scans. Hum. Genet. 129, 545–552 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ioannidis, J. P. Why most published research findings are false. PLoS Med. 2, e124 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ioannidis, J. P. Why most discovered true associations are inflated. Epidemiology 19, 640–648 (2008).

    Article  PubMed  Google Scholar 

  60. Lopez-Lopez, E. et al. Polymorphisms of the SLCO1B1 gene predict methotrexate-related toxicity in childhood acute lymphoblastic leukemia. Pediatr. Blood Cancer 57, 612–619 (2011).

    Article  PubMed  Google Scholar 

  61. Liu, M. et al. Aromatase inhibitors, estrogens and musculoskeletal pain: estrogen-dependent T-cell leukemia 1A (TCL1A) gene-mediated regulation of cytokine expression. Breast Cancer Res. 14, R41 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ng, K. P. et al. A common BIM deletion polymorphism mediates intrinsic resistance and inferior responses to tyrosine kinase inhibitors in cancer. Nature Med. 18, 521–528 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Altshuler, D. M. et al. Integrating common and rare genetic variation in diverse human populations. Nature 467, 52–58 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Frazer, K. A. et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. The 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

  66. Huang, R. S. et al. A genome-wide approach to identify genetic variants that contribute to etoposide-induced cytotoxicity. Proc. Natl Acad. Sci. USA 104, 9758–9763 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Niu, N. et al. Radiation pharmacogenomics: a genome-wide association approach to identify radiation response biomarkers using human lymphoblastoid cell lines. Genome Res. 20, 1482–1492 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen, S. H. et al. A genome-wide approach identifies that the aspartate metabolism pathway contributes to asparaginase sensitivity. Leukemia 25, 66–74 (2011).

    Article  PubMed  CAS  Google Scholar 

  69. Mitra, A. K. et al. Impact of genetic variation in FKBP5 on clinical response in pediatric acute myeloid leukemia patients: a pilot study. Leukemia 25, 1354–1356 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li, L. et al. Gemcitabine and cytosine arabinoside cytotoxicity: association with lymphoblastoid cell expression. Cancer Res. 68, 7050–7058 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wen, Y. et al. An eQTL-based method identifies CTTN and ZMAT3 as pemetrexed susceptibility markers. Hum. Mol. Genet. 21, 1470–1480 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Heiser, L. M. et al. Subtype and pathway specific responses to anticancer compounds in breast cancer. Proc. Natl Acad. Sci. USA 109, 2724–2729 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Gibson, G. Rare and common variants: twenty arguments. Nature Rev. Genet. 13, 135–145 (2011).

    Article  CAS  Google Scholar 

  74. Manolio, T. A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nelson, M. R. et al. An abundance of rare functional variants in 202 drug target genes sequenced in 14,002 people. Science 337, 100–104 (2012). This preliminary survey highlights the need for studying rare variants in pharmacogenomics.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ramsey, L. B. et al. Rare versus common variants in pharmacogenetics: SLCO1B1 variation and methotrexate disposition. Genome Res. 22, 1–8 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bansal, V., Libiger, O., Torkamani, A. & Schork, N. J. Statistical analysis strategies for association studies involving rare variants. Nature Rev. Genet. 11, 773–785 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Liu, J. Z. et al. A versatile gene-based test for genome-wide association studies. Am. J. Hum. Genet. 87, 139–145 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tatonetti, N. P., Dudley, J. T., Sagreiya, H., Butte, A. J. & Altman, R. B. An integrative method for scoring candidate genes from association studies: application to warfarin dosing. BMC Bioinformatics 11 (Suppl. 9), S9 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Cooper, G. M. et al. A genome-wide scan for common genetic variants with a large influence on warfarin maintenance dose. Blood 112, 1022–1027 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Takeuchi, F. et al. A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose. PLoS Genet. 5, e1000433 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Zhang, W. & Dolan, M. E. Impact of the 1000 genomes project on the next wave of pharmacogenomic discovery. Pharmacogenomics 11, 249–256 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Pasaniuc, B. et al. Extremely low-coverage sequencing and imputation increases power for genome-wide association studies. Nature Genet. 44, 631–635 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Kang, G., Lin, D., Hakonarson, H. & Chen, J. Two-stage extreme phenotype sequencing design for discovering and testing common and rare genetic variants: efficiency and power. Hum. Hered. 73, 139–147 (2012).

    Article  PubMed  Google Scholar 

  85. Lamina, C. Digging into the extremes: a useful approach for the analysis of rare variants with continuous traits? BMC Proceedings 5 (Suppl. 9), S105 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Li, D., Lewinger, J. P., Gauderman, W. J., Murcray, C. E. & Conti, D. Using extreme phenotype sampling to identify the rare causal variants of quantitative traits in association studies. Genet. Epidemiol. 35, 790–799 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Nebert, D. W. Extreme discordant phenotype methodology: an intuitive approach to clinical pharmacogenetics. Eur. J. Pharmacol. 410, 107–120 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Emond, M. J. et al. Exome sequencing of extreme phenotypes identifies DCTN4 as a modifier of chronic Pseudomonas aeruginosa infection in cystic fibrosis. Nature Genet. 44, 886–889 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Wang, K., Li, M. & Hakonarson, H. Analysing biological pathways in genome-wide association studies. Nature Rev. Genet. 11, 843–854 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Soh, T. I., Yong, W. P. & Innocenti, F. Recent progress and clinical importance on pharmacogenetics in cancer therapy. Clin. Chem. Lab Med. 49, 1621–1632 (2011).

    CAS  PubMed  Google Scholar 

  91. Relling, M. V. & Klein, T. E. CPIC: Clinical Pharmacogenetics Implementation Consortium of the Pharmacogenomics Research Network. Clin. Pharmacol. Ther. 89, 464–467 (2011). This paper describes CPIC, a consortium designed to provide peer-reviewed, updated, freely accessible guidelines to clinicians for actionable gene–drug pairs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Purcell, S. M. et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460, 748–752 (2009). This study introduces a polygenic risk score analysis method to detect the contribution of common SNPs to a complex phenotype.

    CAS  PubMed  Google Scholar 

  93. Yang, J. et al. Common SNPs explain a large proportion of the heritability for human height. Nature Genet. 42, 565–569 (2010). This study introduces a mixed linear modelling method to detect the contribution of common SNPs to a complex phenotype.

    Article  CAS  PubMed  Google Scholar 

  94. Visscher, P. M. et al. A commentary on 'Common SNPs explain a large proportion of the heritability for human height' by Yang et al. (2010). Twin Res. Hum. Genet. 13, 517–524 (2010).

    Article  PubMed  Google Scholar 

  95. O'Donnell, P. H. et al. The 1200 patients project: creating a new medical model system for clinical implementation of pharmacogenomics. Clin. Pharmacol. Ther. 92, 446–449 (2012). A description is provided in this paper of one institution's pharmacogenomics implementation project, which is designed to facilitate the availability of pharmacogenomic information for personalized prescribing.

    Article  CAS  PubMed  Google Scholar 

  96. Meyerson, M., Gabriel, S. & Getz, G. Advances in understanding cancer genomes through second-generation sequencing. Nature Rev. Genet. 11, 685–696 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Ding, L. et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481, 506–510 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Walter, M. J. et al. Clonal architecture of secondary acute myeloid leukemia. N. Engl. J. Med. 366, 1090–1098 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Vucic, E. A. et al. Translating cancer 'omics' to improved outcomes. Genome Res. 22, 188–195 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hudson, T. J. et al. International network of cancer genome projects. Nature 464, 993–998 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. TCGA. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).

  103. TCGA. Integrated genomic analyses of ovarian carcinoma. Nature 474, 609–615 (2011).

  104. Amado, R. G. et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J. Clin. Oncol. 26, 1626–1634 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Loupakis, F. et al. KRAS codon 61, 146 and BRAF mutations predict resistance to cetuximab plus irinotecan in KRAS codon 12 and 13 wild-type metastatic colorectal cancer. Br. J. Cancer 101, 715–721 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Mitsudomi, T. et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol. 11, 121–128 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Mok, T. S. et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 361, 947–957 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Paez, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Romond, E. H. et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N. Engl. J. Med. 353, 1673–1684 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Dworkin, A. M. et al. Germline variation controls the architecture of somatic alterations in tumors. PLoS Genet. 6, e1001136 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Jonsson, G. et al. Distinct genomic profiles in hereditary breast tumors identified by array-based comparative genomic hybridization. Cancer Res. 65, 7612–7621 (2005).

    Article  PubMed  Google Scholar 

  114. Kiemeney, L. A. et al. A sequence variant at 4p16.3 confers susceptibility to urinary bladder cancer. Nature Genet. 42, 415–419 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. Kilpivaara, O. et al. A germline JAK2 SNP is associated with predisposition to the development of JAK2(V617F)-positive myeloproliferative neoplasms. Nature Genet. 41, 455–459 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Landi, M. T. et al. MC1R germline variants confer risk for BRAF-mutant melanoma. Science 313, 521–522 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Liu, W. et al. Functional EGFR germline polymorphisms may confer risk for EGFR somatic mutations in non-small cell lung cancer, with a predominant effect on exon 19 microdeletions. Cancer Res. 71, 2423–2427 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nature Genet. 38, 904–909 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Wang, K. et al. Diverse genome-wide association studies associate the IL12/IL23 pathway with Crohn Disease. Am. J. Hum. Genet. 84, 399–405 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ashburner, M. et al. Gene Ontology: tool for the unification of biology. Nature Genet. 25, 25–29 (2000).

    Article  CAS  PubMed  Google Scholar 

  122. Thorn, C. F., Klein, T. E. & Altman, R. B. PharmGKB: the pharmacogenetics and pharmacogenomics knowledge base. Methods Mol. Biol. 311, 179–191 (2005).

    CAS  PubMed  Google Scholar 

  123. Hoskins, J. M., Goldberg, R. M., Qu, P., Ibrahim, J. G. & McLeod, H. L. UGT1A1*28 genotype and irinotecan-induced neutropenia: dose matters. J. Natl Cancer Inst. 99, 1290–1295 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the following US National Institutes of Health grants: U01GM61393, R01CA136765, K23CA124802, T32CA009594 and F32CA165823. In addition, M.J.R. is a recipient of a Conquer Cancer Foundation of ASCO Translational Research Professorship, In Memory of Merrill J. Egorin, MD. Any opinions, findings, and conclusions expressed in this material are those of the authors and do not necessarily reflect those of the American Society of Clinical Oncology or the Conquer Cancer Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark J. Ratain.

Ethics declarations

Competing interests

Mark J. Ratain receives royalties related to the use of UDP glucuronosyltransferase 1 family, polypeptide A1 (UGT1A1) genotyping in conjunction with irinotecan. Heather E. Wheeler, Michael L. Maitland, M. Eileen Dolan and Nancy J. Cox declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

1000 Genomes Project

ClinicalTrials.gov

CPIC: Clinical Pharmacogenetics Implementation Consortium

Gene Ontology

Genomics > Table of Pharmacogenomic Biomarkers in Drug Labels

HapMap Homepage

Imaging Response Criteria — Cancer Imaging Program

KEGG PATHWAY database

Nature Reviews Genetics Series on Study designs

Nature Reviews Genetics Series on Translational genetics

Pharmacogenomics of Anticancer Agents Research Group

The Pharmacogenomics Knowledgebase (PharmGKB)

Protocol Development (Common Terminology Criteria for Adverse Events)

Summary Minutes of the Pediatric Oncology Subcommittee of the Oncologic Drugs Advisory Committee July 15, 2003

Glossary

Efficacy

In oncology, this term refers to measures such as tumour response, progression-free survival and overall survival.

Pharmacokinetics

The effect of the body on the drug: that is, the process by which a drug is absorbed, distributed, metabolized and eliminated by the body.

Pharmacodynamics

The effect of the drug on the body: that is, drug targets and mechanisms of action.

Nested case–control design

A case–control study in which only a subset of controls is compared to the cases by matching controls to the cases on known covariates that associate with the phenotype of interest. It increases efficiency and may reduce genotyping costs.

Adverse events

Toxicities or side effects attributed to the use of a particular drug.

Common Terminology Criteria for Adverse Events

(CTCAE). Organizes adverse events by body system and rates each specific event according to a 1–5 scale: 1, mild but not warranting intervention; 2, moderate with medical intervention or temporary cessation of treatment warranted; 3, severe requiring intensive medical intervention or hospitalization; 4, life-threatening; and 5, death.

Tumour response

How a tumour changes or does not change in size after a particular treatment regimen.

Fixed effects models

A type of meta-analysis that combines the effect sizes (estimates) across studies that each have the same phenotype measured on the same scale and assumes the genetic effects are the same across the different studies.

Random effects models

A type of meta-analysis that combines the effect sizes (estimates) across studies with the same phenotypic measurement, allows the genetic effects to be different across the different studies and provides a measure of heterogeneity across the studies.

Z scores

A statistical measure that quantifies the number of standard deviations that an observed data point is from the expected value under no association.

Bayesian models

A statistical framework that incorporates uncertainty in prior beliefs about parameters such as between-study variance, effect size and genetic model (that is, additive and dominant) into association testing.

Winner's curse phenomenon

Refers to the overestimation of the effect size of a newly identified genetic association because many genome-wide association studies are underpowered for detecting small genetic effects at a stringent genome-wide significance level. It implies that the sample size required for a confirmatory study will be underestimated, resulting in failure to replicate the association.

Censoring

A type of missing data problem that occurs when the value of a measurement is only partially known (for example, in survival analysis, it might be known only that the date of death is sometime after the date of last patient contact).

Extreme phenotype hypothesis

The assumption that individuals with the most severe drug response phenotypes are more likely to carry alleles that associate with the phenotypes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wheeler, H., Maitland, M., Dolan, M. et al. Cancer pharmacogenomics: strategies and challenges. Nat Rev Genet 14, 23–34 (2013). https://doi.org/10.1038/nrg3352

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3352

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer