Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Multifactorial genetics

Rat genetics: attachign physiology and pharmacology to the genome

Key Points

  • The rat is an important model organism for systems biology research, as it has a wealth of physiological and pharmacological data to offer, and more than 200 inbred models of human complex disease.

  • The Rat Genome Project is providing biologists with a powerful set of tools with which to develop better models of human disease at the phenotypic and genomic level.

  • The rat genome can be annotated with biological functions that can relate to complex disease. Methods for doing this range from quantitative trait loci mapping in inbred rat strains to developing and studying congenic, consomic and transgenic rat strains to facilitate gene discovery and a better understanding of the genes that underlie complex disease.

  • Comparative genomics allows different types of information that have been derived from various model organisms to be integrated to generate a synergistic platform for understanding complex disease mechanisms.

Abstract

During the past five years, the Rat Genome Project has been rapidly gaining momentum, especially since the announcement in August 2000 of plans to sequence the rat genome. Combined with the wealth of physiological and pharmacological data for the rat, the genome sequence should facilitate the discovery of mammalian genes that underlie the physiological pathways that are involved in disease. Most importantly, this combined physiological and genomic information should also lead to the development of better pre-clinical models of human disease, which will aid in the development of new therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Integrating data from the rat and mouse for studies of human disease.
Figure 2: Functional complementation by transgenesis.
Figure 3: QTL associated with complex disease phenotypes that map to regions of conserved synteny in the human, rat and mouse genomes.

Similar content being viewed by others

References

  1. Lindsey, J. R. in The Laboratory Rat (eds Baker, H. J., Lindsey, J. R. & Weisbroth, S. H.) 1–36 (Academic, New York, 1979).

    Book  Google Scholar 

  2. Nishioka, Y. The origin of common laboratory mice. Genome 38, 1–7 (1995).

    Article  CAS  Google Scholar 

  3. Gill, T. J. D., Smith, G. J., Wissler, R. W. & Kunz, H. W. The rat as an experimental animal. Science 245, 269–276 (1989).

    Article  Google Scholar 

  4. Greenhouse, D. D., Festing, M. F. W., Hasan, S. & Cohen, A. L. in Genetic Monitoring of Inbred Strains of Rats (ed. Hedrich, H. J.) (Gustav Fischer, Stuttgart, 1990).

    Google Scholar 

  5. Jacob, H. J. et al. Genetic mapping of a gene causing hypertension in the stroke-prone spontaneously hypertensive rat. Cell 67, 213–224 (1991).

    Article  CAS  Google Scholar 

  6. Paterson, A. H. et al. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335, 721–726 (1988). This is the first paper that used a whole-genome scan to map QTL.

    Article  CAS  Google Scholar 

  7. Todd, J. A. et al. Identification of susceptibility loci for insulin-dependent diabetes mellitus by trans-racial gene mapping. Nature 338, 587–589 (1989).

    Article  CAS  Google Scholar 

  8. Hilbert, P. et al. Chromosomal mapping of two genetic loci associated with blood pressure regulations in hereditary hypertensive rats. Nature 353, 521–529 (1991).

    Article  CAS  Google Scholar 

  9. Rapp, J. P. in Hypertension, 2nd edn (eds Genest, J., Kuchel, O., Hamet, P. & Cantin, M.) 534–555 (McGraw–Hill, New York, 1983).

    Google Scholar 

  10. Rapp, J. Genetic analysis of inherited hypertension in the rat. Physiol. Rev. 80, 135–172 (2000). An excellent review for investigators who are interested in the genetic basis of hypertension in rats.

    Article  CAS  Google Scholar 

  11. Yamori, Y. in Hypertension 2nd edn (eds Genest, J., Kuchel, O., Hamet, P. & Cantin, M.) (McGraw–Hill, New York, 1983).

    Google Scholar 

  12. Colle, E., Guttmann, R. D., Seemayer, T. A. & Michel, F. Spontaneous diabetes mellitus syndrome in the rat. IV. Immunogenetic interactions of MHC and non-MHC components of the syndrome. Metab. Clin. Exp. 32, 54–61 (1983).

    Article  CAS  Google Scholar 

  13. Mordes, J. P., Desemone, J. & Rossini, A. A. The BB rat. Diabetes Metab. Rev. 3, 725–750 (1987).

    Article  CAS  Google Scholar 

  14. Mullins, J. J., Peters, J. & Ganten, D. Fulminant hypertension in transgenic rats harbouring the mouse Ren-2 gene. Nature 344, 541–544 (1990).

    Article  CAS  Google Scholar 

  15. Zhang, Y. et al. Positonal cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994).

    Article  CAS  Google Scholar 

  16. Huang, L., Wang, Z. & Li, C. Modulation of circulating leptin levels by its soluble receptor. J. Biol. Chem. 276, 6343–6349 (2001).

    Article  CAS  Google Scholar 

  17. Capecchi, M. Altering the genome by homologous recombination. Science 244, 1288–1292 (1989).

    Article  CAS  Google Scholar 

  18. Todd, J. From genome to aetiology in a multifactorial disease, type 1 diabetes. Bioessays 21, 164–174 (1999).

    Article  CAS  Google Scholar 

  19. Merriman, T. et al. Suggestive evidence for association of human chromosome 18q12–q21 and its orthologue on rat and mouse chromosome 18 with several autoimmune diseases. Diabetes 50, 184–194 (2001).

    Article  CAS  Google Scholar 

  20. Hamet, P., Pausova, Z., Adarichev, V., Adaricheva, K. & Tremblay, J. Hypertension: genes and environment. J. Hypertens. 16, 397–418 (1998).

    Article  CAS  Google Scholar 

  21. Fijneman, F., De Vries, S., Jansen, R. & Demant, P. Complex interactions of new quantitative trait loci, Sluc1, Sluc2, Sluc3, and Sluc4, that influence the susceptibility to lung cancer in the mouse. Nature Genet. 14, 465–467 (1996).

    Article  CAS  Google Scholar 

  22. Nagase, H., Bryson, S., Fee, F. & Balmain, A. Multigenic control of skin tumour development in mice. Ciba Found. Symp. 197, 156–168 (1996).

    CAS  PubMed  Google Scholar 

  23. Lengeling, A., Pfeffer, K. & Balling, R. The battle of two genomes: genetics of bacterial host/pathogen interactions in mice. Mamm. Genome 12, 261–271 (2001).

    Article  CAS  Google Scholar 

  24. Bice, P. et al. Genomic screen for QTLs underlying alcohol consumption in the P and NP rat lines. Mamm. Genome 9, 949–955 (1998).

    Article  CAS  Google Scholar 

  25. Grisel, J. Quantitative trait locus analysis. Alcohol Res. Health 24, 169–174 (2000).

    CAS  PubMed  Google Scholar 

  26. Nadeau, J. & Frankel, W. The roads from phenotypic variation to gene discovery: mutagenesis versus QTLs. Nature Genet. 25, 381–384 (2000).

    Article  CAS  Google Scholar 

  27. Frary, A. et al. fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289, 85–88 (2000). This paper reports the first gene to be cloned by using only positional information, and came out of the first whole-genome scan for QTL.

    Article  CAS  Google Scholar 

  28. Horikawa, Y. et al. Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nature Genet. 26, 163–175 (2000).

    Article  CAS  Google Scholar 

  29. Hugot, J. et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411, 599–603 (2001).

    Article  CAS  Google Scholar 

  30. Ogura, Y. et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411, 603–606 (2001).

    Article  CAS  Google Scholar 

  31. Flint, J. & Mott, R. Finding the molecular basis of quantitative traits: successes and pitfalls. Nature Rev. Genet. 2, 437–445 (2001). An excellent review on finding the genes that underlie QTL.

    Article  CAS  Google Scholar 

  32. Podolin, P. et al. Localization of two insulin-dependent diabetes (Idd) genes to the Idd10 region on mouse chromosome 3. Mamm. Genome 9, 283–286 (1998).

    Article  CAS  Google Scholar 

  33. Legare, M., Bartlett, F. N. & Frankel, W. A major QTL determined by multiple genes in epileptic EL mice. Genome Res. 10, 42–48 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Morel, L., Blenman, K., Croker, B. & Wakeland, E. The major murine systemic lupus erythematosus susceptibility locus, Sle1, is a cluster of functionally related genes. Proc. Natl Acad. Sci. USA 98, 1787–1792 (2001).

    Article  CAS  Google Scholar 

  35. Pravenec, M. et al. Transgenic rescue of defective Cd36 ameliorates insulin resistance in spontaneously hypertensive rats. Nature Genet. 27, 156–158 (2001).

    Article  CAS  Google Scholar 

  36. Aitman, T. et al. Quantitative trait loci for cellular defects in glucose and fatty acid metabolism in hypertensive rats. Nature Genet. 16, 197–201 (1997).

    Article  CAS  Google Scholar 

  37. Aitman, T. J. et al. Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nature Genet. 21, 76–83 (1999).

    Article  CAS  Google Scholar 

  38. Smith, D. et al. Functional screening of 2 Mb of human chromosome 21q22.2 in transgenic mice implicates minibrain in learning defects associated with Down syndrome. Nature Genet. 16, 28–36 (1997).

    Article  CAS  Google Scholar 

  39. Symula, D. J. et al. Functional screening of an asthma QTL in YAC transgenic mice. Nature Genet. 23, 241–244 (1999). This paper set the stage for a series of papers based on the functional analysis of genes that are contained in YACs. This is a potential model for investigators looking to positionally clone genes in rats.

    Article  CAS  Google Scholar 

  40. Zhang, Y., Buchholz, F., Muyrers, J. P. & Stewart, A. F. A new logic for DNA engineering using recombination in Escherichia coli. Nature Genet. 20, 123–128 (1998).

    Article  CAS  Google Scholar 

  41. Muyrers, J., Zhang, Y., Testa, G. & Stewart, F. Rapid modification of bacterial artificial chromosomes by ET-recombination. Nucleic Acids Res. 27, 1555–1557 (1999).

    Article  CAS  Google Scholar 

  42. Mackay, T. F. Quantitative trait loci in Drosophilia. Nature Rev. Genet. 2, 11–20 (2001).

    Article  CAS  Google Scholar 

  43. Iannaccone, P., Taborn, G. & Garton, R. Preimplantation and postimplantation development of rat embryos cloned with cumulus cells and fibroblasts. Zygote 9, 135–143 (2001).

    Article  CAS  Google Scholar 

  44. Hayes, E. et al. Nuclear transfer of adult and genetically modified fetal cells of the rat. Physiol. Genomics 5, 193–204 (2001).

    Article  CAS  Google Scholar 

  45. Legare, M. E., Bartlett, F. S. & Frankel, W. N. A major effect QTL determined by multiple genes in epileptic EL mice. Genome Res. 10, 42–48 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Justice, M. Capitalizing on large-scale mouse mutagenesis screens. Nature Rev. Genet. 1, 109–115 (2000).

    Article  CAS  Google Scholar 

  47. Previtali, S. et al. Laminin receptor α6β4 integrin is highly expressed in ENU-induced glioma in rat. Glia 26, 55–63 (1999).

    Article  CAS  Google Scholar 

  48. Vincent, M. et al. A pharmacogenetic approach to blood pressure in Lyon hypertensive rats. A chromosome 2 locus influences the response to a calcium antagonist. J. Clin. Invest. 100, 2000–2006 (1997).

    Article  CAS  Google Scholar 

  49. Staessen, J. et al. The deletion/insertion polymorphism of the angiotensin converting enzyme gene and cardiovascular–renal risk. J. Hypertens. 15, 1579–1592 (1997).

    Article  CAS  Google Scholar 

  50. Julier, C. et al. Genetic susceptibility for human familial essential hypertension in a region of homology with blood pressure linkage on rat chromosome 10. Hum. Mol. Genet. 6, 2077–2085 (1997).

    Article  CAS  Google Scholar 

  51. Mansfield, T. A. et al. Multilocus linkage of familial hyperkalaemia and hypertension, pseudohypoaldosteronism type II, to chromosomes 1q31– 42 and 17p11–q21. Nature Genet. 16, 202–205 (1997).

    Article  CAS  Google Scholar 

  52. Wilson, F. et al. Human hypertension caused by mutations in WNK kinases. Science 293, 1107–1112 (2001).

    Article  CAS  Google Scholar 

  53. Stoll, M. et al. New target regions for human hypertension via comparative genomics. Genome Res. 10, 473–482 (2000). The first paper to transfer QTL data between several rat and human studies.

    Article  CAS  Google Scholar 

  54. Tanase, H., Suzuki, Y., Ooshima, A., Yamori, Y. & Okamoto, K. Genetic analysis of blood pressure in spontaneously hypertensive rats. Jpn. Circ. J. 34, 1197–1212 (1970).

    Article  CAS  Google Scholar 

  55. Sugiyama, F. et al. Concordance of murine quantitative trait loci for salt-induced hypertension with rat and human loci. Genomics 71, 70–77 (2001).

    Article  CAS  Google Scholar 

  56. Perusse, L. et al. The human obesity gene map: the 2000 update. Obes. Res. 9, 135–169 (2001).

    Article  CAS  Google Scholar 

  57. Becker, K. et al. Clustering of non-major histocompatibility complex susceptibility candidate loci in human autoimmune diseases. Proc. Natl Acad. Sci. USA 95, 9979–9984 (1998).

    Article  CAS  Google Scholar 

  58. Griffiths, M., Encinas, J., Remmers, E., Kuchroo, V. & Wilder, R. Mapping autoimmunity genes. Curr. Opin. Immunol. 11, 689–700 (1999).

    Article  CAS  Google Scholar 

  59. Kwitek-Black, A. E. et al. Automated construction of high-density comparative maps between rat, human, and mouse. Genome Res. 11, 1935–1943 (2001).

    Article  Google Scholar 

  60. Talbot, C. et al. High-resolution mapping of quantitative trait loci in outbred mice. Nature Genet. 21, 305–308 (1999).

    Article  CAS  Google Scholar 

  61. Kohn, M., Pelz, H.-J. & Wayne, R. Natural selection mapping of the warfarin-resistance gene. Proc. Natl Acad. Sci. USA 97, 7911–7915 (2000).

    Article  CAS  Google Scholar 

  62. Peissel, B. et al. Linkage disequilibrium and haplotype mapping of a skin cancer susceptibility locus in outbred mice. Mamm. Genome 11, 979–981 (2000).

    Article  CAS  Google Scholar 

  63. Grupe, A. et al. In silico mapping of complex disease-related traits in mice. Science 292, 1915–1918 (2001). An intriguing paper that uses linkage disequilibrium mapping to localize QTL. It remains to be validated by other groups.

    Article  CAS  Google Scholar 

  64. Steen, R. G. et al. A high-density intergrated genetic linkage and radiation hybrid map of the laboratory rat. Genome Res. 9, AP1–AP8 (1999).

    CAS  PubMed  Google Scholar 

  65. Reich, D. et al. Linkage disequilibrium in the human genome. Nature 411, 199–204 (2001).

    Article  CAS  Google Scholar 

  66. Taylor, B. A. in Origins of Inbred Mice (ed. Morse, H. C.) 423–438 (Academic, New York, 1978).

    Book  Google Scholar 

  67. Pravenec, M., Klir, P., Kren, V., Zicha, J. & Kunes, J. An analysis of spontaneous hypertension in spontaneously hypertensive rats by means of new recombinant inbred strains. J. Hypertens. 7, 217–221 (1989).

    Article  CAS  Google Scholar 

  68. Groot, P. C. et al. The recombinant congenic strains for analysis of multigenic traits: genetic composition. FASEB J. 6, 2826–2835 (1992).

    Article  CAS  Google Scholar 

  69. Stassen, A., Groot, P., Eppig, J. & Demant, P. Genetic composition of the recombinant congenic strains. Mamm. Genome 7, 55–58 (1996).

    Article  CAS  Google Scholar 

  70. Nadeau, J., Singer, J., Matin, A. & Lander, E. Analysing complex genetic traits with chromosome substitution strains. Nature Genet. 24, 221–225 (2000).

    Article  CAS  Google Scholar 

  71. O'Brien, S. et al. The promise of comparative genomics in mammals. Science 286, 458–462 (1999).

    Article  CAS  Google Scholar 

  72. Stoll, M. et al. A genomic-systems biology map for cardiovascular function. Science 294, 1723–1726 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

H.J.J. and A.E.K. are supported by grants from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard J. Jacob.

Related links

Related links

DATABASES

LocusLink 

Ace

ACE

ADRA2A

Afw3

AGT

Aid

APOA4

BBS1

Bhr2

Cd36

Eae3

Fob2

GYS1

GCK

Hlq5

Idd6

IDDM2

IGF1

INSR

Lbw4

LDLR

LIPE

NPY

PRKWNK4

RA

UCP2 

OMIM 

Crohn disease

pseudohypoaldosteronism type II

type II (non-insulin-dependent) diabetes

FURTHER INFORMATION

Baylor College of Medicine ENU mutagenesis screen

GSF ENU Mouse Mutagenesis Project

Harwell ENU mutagenesis programme

McLaughlin Research Institute ENU mutagenesis screen

Medical College of Wisconsin

PubMed

QTL maps and physiological profiles

Rattus norvegicus

Strain query form at Rat Genome Database

The Jackson Laboratory

The PhysGen Project

US National Heart, Lung, and Blood Institute — Programs for Genome Applications

Virtual comparative maps at the Rat Genome Database

Glossary

INBRED STRAIN

A strain that is generated through systematic inbreeding, which fixes certain alleles in a strain so that they replace all other alleles that were present in an outbred population.

QUANTITATIVE TRAIT LOCUS

(QTL). A genetic locus that is identified through the statistical analysis of complex traits (such as height or body weight). These traits are typically affected by more than one gene and also by the environment.

CONGENIC

A strain that is produced by a breeding strategy in which recombinants between two inbred strains are backcrossed to produce a strain that carries a single segment from one strain on the genetic background of the other. The selected segment can contain a quantitative trait locus.

CONSOMIC

A strain that is produced by a breeding strategy in which recombinants between two inbred strains are backcrossed to produce a strain that carries a single chromosome from one strain on the genetic background of the other.

SYSTEMS BIOLOGY

The investigation of all of the elements of a particular biological system, rather than of individual genes or proteins. Systems biology aims to investigate the behaviour and relationships of all of the elements in a particular biological system.

MARKER-ASSISTED SELECTION

The use of genetic markers to predict the inheritance of alleles at a closely linked trait locus.

INTROGRESSION

Transfer of genetic material from one strain to another by repeated backcrosses.

COMPLEMENTATION TEST

A breeding strategy to test whether two mutations are non-allelic when combined in an organism. If the resulting phenotype is wild type, the mutations are non-allelic and said to complement each other.

QUANTITATIVE COMPLEMENTATION

A breeding strategy to identify genes that contribute to a quantitative trait locus (QTL). A QTL allele is crossed to animals that carry null mutations at each candidate gene in the QTL. If the phenotypic effect of the QTL allele on the progeny is not the same in mutant and wild-type backgrounds, allelism (quantitative non-complementation) between the mutant gene and the gene in the QTL is indicated.

ORTHOLOGOUS GENE

Homologous gene in different species, the lineage of which derives from a common ancestral gene without gene duplication or horizontal transmission.

BARORECEPTOR REFLEX

A reflex with a negative-feedback loop system; as blood pressure increases or decreases, the baroreceptor detects the event and initiates a cascade of physiological mechanisms that results in a return to baseline blood pressure.

LINKAGE DISEQUILIBRIUM

The condition in which the frequency of a particular haplotype for two loci is significantly greater or less than that expected from the product of the observed allelic frequencies at each locus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacob, H., Kwitek, A. Rat genetics: attachign physiology and pharmacology to the genome. Nat Rev Genet 3, 33–42 (2002). https://doi.org/10.1038/nrg702

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg702

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing