Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of aging: public or private?

Key Points

  • Much of the experimental work on ageing is done in invertebrate model organisms. However, for work in these organisms to be relevant to studies of human ageing, we need to know which mechanisms of ageing are 'public' (those shared across different, distantly related evolutionary lineages) and which are 'private' (those peculiar to particular evolutionary lineages).

  • Although there is no obvious programme for ageing, two events — caloric restriction and reduced reproductive rate — slow down the rate of ageing throughout the animal kingdom. How they do this is not understood, but their widespread effects indicate that common mechanisms might be at work across different evolutionary lineages.

  • Two evolutionary theories of ageing — the mutation-accumulation and trade-off theories — have different implications for the conservation of the mechanisms of ageing over large evolutionary distances. Experimental tests of these theories in flies support the trade-off model of ageing and indicate that a trade-off occurs between early fecundity and the subsequent rate of ageing.

  • Ageing mutants in invertebrate model organisms have been generated to investigate the mechanisms that underlie ageing. These studies have identified an evolutionary conserved neuroendocrine system, the insulin/IGF (insulin-like growth factor) signalling pathway, which apparently functions to accelerate ageing. The effect of this pathway on ageing can be explained as being part of a trade-off with fitness-enhancing pleiotropic effects that are subject to insulin/IGF-pathway modulation in response to changes in nutrition.

  • The challenges now are to unravel the mechanisms of ageing in invertebrate model organisms, and to determine if they are shared with those in other evolutionary lineages, especially mammals.

Abstract

Ageing — the decline in survival and fecundity with advancing age — is caused by damage to macromolecules and tissues. Ageing is not a programmed process, in the sense that no genes are known to have evolved specifically to cause damage and ageing. Mechanisms of ageing might therefore not be expected to be as highly conserved between distantly related organisms as are mechanisms of development and metabolism. However, evidence is mounting that modulators of the rate of ageing are conserved over large evolutionary distances. As we discuss in this review, this conservation might stem from mechanisms that match reproductive rate to nutrient supply.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two models of antagonistic pleiotropy.
Figure 2: Extended lifespan in daf-2 mutant Caenorhabditis elegans.
Figure 3: Insulin/IGF signalling pathways in Caenorhabditis elegans and Drosophila.
Figure 4: Neuroendocrine regulation of ageing.

Similar content being viewed by others

References

  1. Charlesworth, B. Evolution in Age-Structured Populations (Cambridge Univ. Press, Cambridge, UK, 1994).

    Google Scholar 

  2. Hamilton, W. D. The moulding of senescence by natural selection. J. Theor. Biol. 12, 12–45 (1966).

    CAS  PubMed  Google Scholar 

  3. Partridge, L. & Barton, N. H. Optimality, mutation and the evolution of ageing. Nature 362, 305–311 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Finch, C. E. Longevity, Senescence and the Genome (Univ. Chicago Press, Chicago, 1990).

    Google Scholar 

  5. Halliwell, B. & Gutteridge, J. M. C. Free Radicals in Biology and Medicine (Oxford Science, Oxford, UK, 1999).

    Google Scholar 

  6. Attardi, G. & Schatz, G. Biogenesis of mitochondria. Annu. Rev. Cell Biol. 4, 289–333 (1988).

    CAS  PubMed  Google Scholar 

  7. Lal, S., Ramsey, J., Monemdjou, S., Weindruch, R. & Harper, M. Effects of caloric restriction on skeletal muscle mitochondrial proton leak in aging rats. J. Gerontol. A Biol. Sci. Med. Sci. 56, B116–B122 (2001).

    CAS  PubMed  Google Scholar 

  8. Pamplona, R. et al. Heart fatty acid unsaturation and lipid peroxidation, and aging rate, are lower in the canary and the parakeet than in the mouse. Aging (Milano) 11, 44–49 (1999).

    CAS  Google Scholar 

  9. Schwarze, S. R., Weindruch, R. & Aiken, J. M. Decreased mitochondrial RNA levels without accumulation of mitochondrial DNA deletions in aging Drosophila melanogaster. Mutat. Res. 382, 99–107 (1998).

    CAS  PubMed  Google Scholar 

  10. Wei, Y. H., Lu, C. Y., Lee, H. C., Pang, C. Y. & Ma, Y. S. Oxidative damage and mutation to mitochondrial DNA and age-dependent decline of mitochondrial respiratory function. Ann. NY Acad. Sci. 854, 155–170 (1998).

    CAS  PubMed  Google Scholar 

  11. Campisi, J. Aging and cancer: the double-edged sword of replicative senescence. J. Am. Geriatr. Soc. 45, 482–488 (1997).

    CAS  PubMed  Google Scholar 

  12. Wallace, D. & Melov, S. Radicals r'aging. Nature Genet. 19, 105–106 (1998).

    CAS  PubMed  Google Scholar 

  13. Martin, G. M., Austad, S. N. & Johnson, T. E. Genetic analysis of ageing: role of oxidative damage and environmental stresses. Nature Genet. 13, 25–34 (1996).

    CAS  PubMed  Google Scholar 

  14. Beckman, K. B. & Ames, B. N. The free radical theory of aging matures. Physiol. Rev. 78, 547–581 (1998).

    CAS  PubMed  Google Scholar 

  15. Sohal, R. S., Ku, H.-H., Agarwal, S., Forster, M. J. & Lal, H. Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mech. Ageing Dev. 74, 121–133 (1994).

    CAS  PubMed  Google Scholar 

  16. Finch, C. E. & Kirkwood, T. Chance, Development and Ageing (Oxford Univ. Press, Oxford, UK, 1999).

    Google Scholar 

  17. Carey, J., Liedo, P., Muller, H., Wang, J. & Chiou, J. Mortality oscillations induced by periodic starvation alter sex-mortality differentials in Mediterranean fruit flies. J. Gerontol. A Biol. Sci. Med. Sci. 54, B424–B431 (1999).

    CAS  PubMed  Google Scholar 

  18. Klass, M. R. Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mech. Ageing Dev. 6, 413–429 (1977).

    CAS  PubMed  Google Scholar 

  19. Lane, M. A. et al. Short-term calorie restriction improves disease-related markers in older male rhesus monkeys (Macaca mulatta). Mech. Ageing Dev. 112, 185–196 (2000).

    CAS  PubMed  Google Scholar 

  20. Lin, S., Defossez, P. & Guarente, L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289, 2126–2128 (2000).

    CAS  PubMed  Google Scholar 

  21. Masoro, E. & Austad, S. The evolution of the antiaging action of dietary restriction: a hypothesis. J. Gerontol. A Biol. Sci. Med. Sci. 51, B387–B391 (1996).

    CAS  PubMed  Google Scholar 

  22. Holliday, R. Food, reproduction and longevity: is the extended lifespan of calorie-restricted animals an evolutionary adaptation? Bioessays 10, 125–127 (1989).

    CAS  PubMed  Google Scholar 

  23. Chapman, T. & Partridge, L. Female fitness in Drosophila melanogaster: an interaction between the effect of nutrition and of encounter rate with males. Proc. R. Soc. Lond. B 263, 755–759 (1996).

    CAS  Google Scholar 

  24. Holehan, A. E. & Merry, B. J. The experimental manipulation of ageing by diet. Biol. Rev. 61, 329–368 (1986).

    CAS  PubMed  Google Scholar 

  25. Loison, A., FestaBianchet, M., Gaillard, J. M., Jorgenson, J. T. & Jullien, J. M. Age-specific survival in five populations of ungulates: evidence of senescence. Ecology 8, 2539–2554 (1999).

    Google Scholar 

  26. Newton, I. in Ecology: Achievement and Challenge 67–92 (Blackwell Scientific, Oxford, UK, 2001).

    Google Scholar 

  27. Austad, S. N. & Fischer, K. E. Mammalian aging, metabolism, and ecology: evidence from the bats and marsupials. J. Gerontol. A Biol. Sci. Med. Sci. 46, B47–B53 (1991).

    CAS  Google Scholar 

  28. Williams, G. C. Pleiotropy, natural selection and the evolution of senescence. Evolution 11, 398–411 (1957).

    Google Scholar 

  29. Haldane, J. B. S. New Paths in Genetics (Allen & Unwin, London, 1941).

    Google Scholar 

  30. Keller, L. & Genoud, M. Extraordinary lifespans in ants: a test of evolutionary theories of ageing. Nature 389, 958–960 (1997).

    CAS  Google Scholar 

  31. Ricklefs, R. E. Evolutionary theories of aging: confirmation of a fundamental prediction, with implications for the genetic basis and evolution of life span. Am. Nat. 152, 24–44 (1998).

    CAS  PubMed  Google Scholar 

  32. Mani, G. & Clarke, B. C. Mutational order — a major stochastic process in evolution. Proc. R. Soc. Lond. B 240, 29–37 (1990).

    CAS  PubMed  Google Scholar 

  33. Korona, R. Genetic divergence and fitness convergence under uniform selection in experimental populations of bacteria. Genetics 143, 637–644 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hartl, D. L. & Clark, A. G. Principles of Population Genetics (Sinauer, Sunderland, Massachusetts, 2000).

    Google Scholar 

  35. Hughes, K. A. & Charlesworth, B. A genetic analysis of senescence in Drosophila. Nature 367, 64–66 (1994).

    CAS  PubMed  Google Scholar 

  36. Promislow, D., Tatar, M., Khazaeli, A. A. & Curtsinger, J. W. Age-specific patterns of genetic variance in Drosophila melanogaster. I. Mortality. Genetics 143, 839–848 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Shaw, F., Promislow, D. E., Tatar, M., Hughes, K. A. & Geyer, C. J. Toward reconciling inferences concerning genetic variation in senescence in Drosophila melanogaster. Genetics 152, 553–566 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Charlesworth, B. & Hughes, K. A. Age-specific inbreeding depression and components of genetic variance in relation to the evolution of senescence. Proc. Natl Acad. Sci. USA 93, 6140–6145 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Pletcher, S., Houle, D. & Curtsinger, J. W. Age-specific properties of spontaneous mutations affecting mortality in Drosophila melanogaster. Genetics 148, 287–303 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Pletcher, S., Houle, D. & Curtsinger, J. W. The evolution of age-specific mortality rates in Drosophila melanogaster: genetic divergence among unselected lines. Genetics 153, 813–823 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Charlesworth, B. & Partridge, L. Ageing: levelling of the grim reaper. Curr. Biol. 7, R440–R442 (1997).

    CAS  PubMed  Google Scholar 

  42. Rose, M. & Charlesworth, B. Genetics of life history in Drosophila melanogaster. II. Exploratory selection experiments. Genetics 97, 187–196 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wattiaux, J. M. Cumulative parental age effects in D. subobscura. Evolution 22, 406–421 (1968).

    CAS  PubMed  Google Scholar 

  44. Luckinbill, L. S., Arking, M. J., Clare, M. J., Cirocco, W. C. & Muck, S. A. Selection for delayed senescence in Drosophila melanogaster. Evolution 38, 996–1003 (1984).

    PubMed  Google Scholar 

  45. Rose, M. R. Laboratory evolution of postponed senescence in Drosophila melanogaster. Evolution 38, 1004–1010 (1984).

    PubMed  Google Scholar 

  46. Partridge, L. & Fowler, K. Direct and correlated responses to selection on age at reproduction in Drosophila melanogaster. Evolution 46, 76–91 (1992).

    PubMed  Google Scholar 

  47. Roper, C., Pignatelli, P. & Partridge, L. Evolutionary effects of selection on age at reproduction in larval and adult Drosophila melanogaster. Evolution 47, 445–455 (1993).

    PubMed  Google Scholar 

  48. Partridge, L., Prowse, N. & Pignatelli, P. Another set of responses and correlated responses to selection on age at reproduction in Drosophila melanogaster. Proc. R. Soc. Lond. B 266, 255–261 (1999).

    CAS  Google Scholar 

  49. Zwaan, B., Bijlsma, R. & Hoekstra, R. F. Direct selection on life span in Drosophila melanogaster. Evolution 49, 649–659 (1995).

    PubMed  Google Scholar 

  50. Sgrò, C. & Partridge, L. A delayed wave of death from reproduction in Drosophila. Science 286, 2521–2524 (1999).This study shows that the differences in longevity between selected Drosophila lines are due to the delayed effects of differences in fertility, supporting a delayed damage/antagonistic pleiotropy model of ageing.

    PubMed  Google Scholar 

  51. Kenyon, C. A conserved regulatory system for aging. Cell 105, 165–168 (2001).

    CAS  PubMed  Google Scholar 

  52. Gems, D. & Partridge, L. Insulin/IGF signalling and ageing: seeing the bigger picture. Curr. Opin. Genet. Dev. 11, 287–292 (2001).

    CAS  PubMed  Google Scholar 

  53. Bartke, A. in The Molecular Genetics of Aging (ed. Hekimi, S.) 181–202 (Springer, Berlin and Heidelberg, 2000).

    Google Scholar 

  54. Friedman, D. B. & Johnson, T. E. A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 118, 75–86 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kenyon, C., Chang, J., Gensch, E., Rudener, A. & Tabtiang, R. A C. elegans mutant that lives twice as long as wild type. Nature 366, 461–464 (1993).

    CAS  PubMed  Google Scholar 

  56. Kimura, K. D., Tissenbaum, H. A., Liu, Y. & Ruvkun, G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277, 942–946 (1997).

    CAS  PubMed  Google Scholar 

  57. Morris, J. Z., Tissenbaum, H. A. & Ruvkun, G. A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 382, 536–538 (1996).

    CAS  PubMed  Google Scholar 

  58. Ogg, S. et al. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389, 994–999 (1997).

    CAS  PubMed  Google Scholar 

  59. Gems, D. in The Biology of Nematodes (ed. Lee, D. L.) 413–455 (Taylor & Francis, London, 2002).

    Google Scholar 

  60. Pierce, S. et al. Regulation of DAF-2 receptor signaling by human insulin and ins-1, a member of the unusually large and diverse C. elegans insulin gene family. Genes Dev. 15, 672–686 (2001).This paper revealed that the C. elegans genome contains 37 putative insulin-encoding genes.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Apfeld, J. & Kenyon, C. Cell nonautonomy of C. elegans daf-2 function in the regulation of diapause and life span. Cell 95, 199–210 (1998).

    CAS  PubMed  Google Scholar 

  62. Wolkow, C., Kimura, K., Lee, M. & Ruvkun, G. Regulation of C. elegans life-span by insulinlike signaling in the nervous system. Science 290, 147–150 (2000).

    CAS  PubMed  Google Scholar 

  63. Apfeld, J. & Kenyon, C. Regulation of lifespan by sensory perception in Caenorhabditis elegans. Nature 402, 804–809 (1999).This study describes the retarded ageing that is seen in C. elegans mutants with chemosensory/olfactory defects.

    CAS  PubMed  Google Scholar 

  64. Antebi, A., Yeh, W., Tait, D., Hedgecock, E. & Riddle, D. daf-12 encodes a nuclear receptor that regulates the dauer diapause and developmental age in C. elegans. Genes Dev. 14, 1512–1527 (2000).This paper reported the existence of C. elegans DAF-12 nuclear hormone receptor.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Antebi, A., Culotti, J. G. & Hedgecock, E. M. daf-12 regulates developmental age and the dauer alternative in Caenorhabditis elegans. Development 125, 1191–1205 (1998).

    CAS  PubMed  Google Scholar 

  66. Larsen, P. L., Albert, P. S. & Riddle, D. L. Genes that regulate both development and longevity in Caenorhabditis elegans. Genetics 139, 1567–1583 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Gems, D. et al. Two pleiotropic classes of daf-2 mutation affect larval arrest, adult behavior, reproduction and longevity in Caenorhabditis elegans. Genetics 150, 129–155 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Hsin, H. & Kenyon, C. Signals from the reproductive system regulate the lifespan of C. elegans. Nature 399, 362–366 (1999).In this paper, how signals from the germ line and somatic gonad modulate ageing in C. elegans is described.

    CAS  PubMed  Google Scholar 

  69. Gerisch, B., Weitzel, C., Kober-Eisermann, C., Rottiers, V. & Antebi, A. A hormonal signaling pathway influencing C. elegans metabolism, reproductive development, and life span. Dev. Cell 1, 841–851 (2001).This paper describes evidence that the C. elegans DAF-9 cytochrome P450 enzyme is involved in the synthesis of a steroid that controls dauer formation and, possibly, ageing.

    CAS  PubMed  Google Scholar 

  70. Vanfleteren, J. R. & De Vreese, A. The gerontogenes age-1 and daf-2 determine metabolic rate potential in aging Caenorhabditis elegans. FASEB J. 9, 1355–1361 (1995).

    CAS  PubMed  Google Scholar 

  71. Lakowski, B. & Hekimi, S. The genetics of caloric restriction in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 95, 13091–13096 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Gems, D. & Riddle, D. L. Longevity in Caenorhabditis elegans reduced by mating but not gamete production. Nature 379, 723–725 (1996).

    CAS  PubMed  Google Scholar 

  73. Leroi, A. Molecular signals versus the Loi de Balancement. Trends Ecol. Evol. 16, 24–29 (2001).

    CAS  PubMed  Google Scholar 

  74. Patel, M., Knight, C., Karageorgi, C. & Leroi, A. Evolution of germ-line signals that regulate growth and ageing in nematodes. Proc. Natl Acad. Sci. USA 99, 769–774 (2002).This study shows that the C. elegans germ line controls body size, as well as longevity.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Walker, D., McColl, G., Jenkins, N. L., Harris, J. & Lithgow, G. J. Evolution of lifespan in C. elegans. Nature 405, 296–297 (2000).

    CAS  PubMed  Google Scholar 

  76. Klass, M. R. & Hirsh, D. I. Nonaging developmental variant of C. elegans. Nature 260, 523–525 (1976).

    CAS  PubMed  Google Scholar 

  77. Weinkove, D. & Leevers, S. The genetic control of organ growth: insights from Drosophila. Curr. Opin. Genet. Dev. 10, 75–80 (2000).

    CAS  PubMed  Google Scholar 

  78. Tatar, M. et al. Mutations in the Drosophila insulin receptor homologue retard senescence and impair neuroendocrine function. Science 292, 107–110 (2001).Here, it is shown that the Drosophila insulin/IGF receptor gene Inr regulates ageing, possibly through the regulation of juvenile hormone production.

    CAS  PubMed  Google Scholar 

  79. Clancy, D. et al. Extension of lifespan by loss of chico, a Drosophila insulin receptor substrate protein. Science 292, 104–106 (2001).This describes the increased longevity of the Drosophila insulin receptor substrate mutant chico1, as well as its other phenotypic characteristics.

    CAS  PubMed  Google Scholar 

  80. Gems, D. & Riddle, D. L. Genetic, behavioral and environmental determinants of male longevity in Caenorhabditis elegans. Genetics 154, 1597–1610 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Drummond-Barbosa, D. & Spradling, A. C. Stem cells and their progeny respond to nutritional changes during Drosophila oogenesis. Dev. Biol. 231, 265–278 (2001).This study includes evidence for a role of the chico insulin receptor substrate in mediating the regulation of oogenesis by nutritional status in Drosophila.

    CAS  PubMed  Google Scholar 

  82. Aguinaldo, A. M. A. et al. Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387, 489–493 (1997).

    CAS  PubMed  Google Scholar 

  83. Krook, A., Breuton, L. & O'Rahilly, S. Homozygous nonsense mutation in the insulin receptor gene in infant with leprechaunism. Lancet 342, 277–278 (1993).

    CAS  PubMed  Google Scholar 

  84. Accili, D., Drago, J., Lee, E. J., Johnson, M. D. & Cool, M. H. Early neonatal death in mice homozygous for a null allele of the insulin receptor gene. Nature Genet. 12, 106–109 (1996).

    CAS  PubMed  Google Scholar 

  85. Fernandez, R., Tabarini, D., Azpiazu, N., Frasch, M. & Schlessinger, J. The Drosophila insulin receptor homolog: a gene essential for embryonic development encodes two receptor isoforms with different signaling potential. EMBO J. 14, 3373–3384 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Brown-Borg, H. M., Borg, K. E., Meliska, C. J. & Bartke, A. Dwarf mice and the ageing process. Nature 384, 33 (1996).

    CAS  PubMed  Google Scholar 

  87. Flurkey, K., Papaconstantinou, J., Miller, R. & Harrison, D. Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc. Natl Acad. Sci. USA 98, 6736–6741 (2001).This paper reports the increased longevity of two mouse mutants: the Snell dwarf and the 'little' mouse.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Naar, E. et al. Fertility of transgenic female mice expressing bovine growth hormone or human growth hormone variant genes. Biol. Reprod. 45, 178–187 (1991).

    CAS  PubMed  Google Scholar 

  89. Wolf, E. et al. Effects of long-term elevated serum levels of growth hormone on life expectancy of mice: lessons from transgenic animal models. Mech. Ageing Dev. 68, 71–87 (1993).

    CAS  PubMed  Google Scholar 

  90. Zhou, Y. et al. A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse). Proc. Natl Acad. Sci. USA 94, 13215–13220 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Kopchick, J. & Laron, Z. Is the Laron mouse an accurate model of Laron syndrome? Mol. Genet. Metab. 68, 232–236 (1999).

    CAS  PubMed  Google Scholar 

  92. Coschigano, K., Clemmons, D., Bellush, L. & Kopchick, J. Assessment of growth parameters and life span of GHR/BP gene-disrupted mice. Endocrinology 141, 2608–2613 (2000).This paper describes the increased longevity of the growth-hormone receptor knockout mouse.

    CAS  PubMed  Google Scholar 

  93. Sonntag, W. et al. Pleiotropic effects of growth hormone and insulin-like growth factor (IGF)-1 on biological aging: inferences from moderate caloric-restricted animals. J. Gerontol. A Biol. Sci. Med. Sci. 54, B521–B538 (1999).

    CAS  PubMed  Google Scholar 

  94. Bartke, A. et al. Extending the lifespan of long-lived mice. Nature 414, 412 (2001).

    CAS  PubMed  Google Scholar 

  95. Kirkwood, T. B. L. & Rose, M. R. Evolution of senescence: late survival sacrificed for reproduction. Phil. Trans. R. Soc. Lond. B 332, 15–24 (1991).

    CAS  Google Scholar 

  96. Medawar, P. B. Old age and natural death. Mod. Q. 2, 30–49 (1946).

    Google Scholar 

  97. Medawar, P. B. An Unsolved Problem of Biology (H. K. Lewis, London, 1952).

    Google Scholar 

  98. Charlesworth, B. Mutation–selection balance and the evolutionary advantage of sex and recombination. Genet. Res. 55, 199–221 (1990).

    CAS  PubMed  Google Scholar 

  99. Brogiolo, W. et al. An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr. Biol. 11, 213–221 (2001).

    CAS  PubMed  Google Scholar 

  100. Miskin, R. & Masos, T. Transgenic mice overexpressing urokinase-type plasminogen activator in the brain exhibit reduced food consumption, body weight and size, and increased longevity. J. Gerontol. A Biol. Sci. Med. Sci. 52, B118–B124 (1997).

    CAS  PubMed  Google Scholar 

  101. Migliaccio, E. et al. The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402, 309–313 (1999).

    CAS  PubMed  Google Scholar 

  102. Arantes-Oliveira, N., Apfeld, J., Dillin, A. & Kenyon, C. Regulation of life-span by germ-line stem cells in Caenorhabditis elegans. Science 295, 502–505 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support for their work from the Biotechnology and Biological Sciences Research Council, the Natural Environment Research Council, the European Union FP5 and the Royal Society.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

Akt1

chico

Dp110

growth hormone

growth hormone receptor

Igf1

Inr

Insr

Insrr

ovo

Pit1

prolactin

Prop1

thyroid-stimulating hormone

Mouse Genome Informatics

Ames

Ghrhr lit

Snell

OMIM

Huntington disease

leprechaunism

type II (non-insulin-dependent) diabetes

WormBase

AAP-1

age-1

AKT-1

AKT-2

DAF-2

DAF-12

daf-16

INS-1

PDK-1

FURTHER INFORMATION

Alfred Russel Wallace

David Gems' laboratory

Ageing as a global challenge in the new millennium

Ageing genes: gerontogenes

Linda Partridge's laboratory

Glossary

PEROXIDATION

A type of oxidation that involves the addition of oxygen to, for example, unsaturated fatty acids.

PROTEIN CARBONYL

A protein that contains oxygen that is linked by a double bond to carbon, resulting from protein oxidation.

BIOGERONTOLOGY

The study of biological processes that give rise to ageing.

PLEIOTROPY

The capacity of different alleles of a gene to affect more than one aspect of a phenotype.

INBREEDING DEPRESSION

This occurs when deleterious, recessive alleles become homozygous in the progeny of matings between relatives, causing reduced fitness among these individuals.

DAUER LARVA

A developmentally arrested, immature, long-lived and non-feeding form of Caenorhabditis elegans that forms under conditions of food scarcity and high population density, and that resumes development if food levels increase.

FORWARD GENETICS

A genetic analysis that proceeds from phenotype to genotype: for example, by positional cloning or candidate-gene analysis.

CORPORA ALLATA

Endocrine glands located in the head of insects.

AMPHIDS

Paired openings in the nose of nematodes that act as smell and taste organs.

BIODEMOGRAPHY

The study of age-specific mortality and fecundity rates and their biological determinants.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Partridge, L., Gems, D. Mechanisms of aging: public or private?. Nat Rev Genet 3, 165–175 (2002). https://doi.org/10.1038/nrg753

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg753

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing