Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

A fortunate choice: the history of Arabidopsis as a model plant

Abstract

During the past 20 years, the flowering plant Arabidopsis thaliana has been adopted as a model organism by thousands of biologists. This community has developed important tools, resources and experimental approaches that have greatly stimulated plant biological research. Here, we review some of the key events that led to the uptake of Arabidopsis as a model plant and to the growth of the Arabidopsis community.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The number of articles published annually that describe research on Arabidopsis.
Figure 2: Arabidopsis thaliana.
Figure 3: Second meeting of the Arabidopsis Genome Initiative, July 1998.

References

  1. Meyerowitz, E. M. Prehistory and history of Arabidopsis research. Plant Physiol. 125, 15–19 (2001).

    Article  CAS  Google Scholar 

  2. Chory, J. et al. A National Science Foundation-Sponsored Workshop Report. “The 2010 Project”: Functional genomics and the virtual plant. A blueprint for understanding how plants are built and how to improve them. Plant Physiol. 123, 423–425 (2000).

    Article  CAS  Google Scholar 

  3. Rédei, G. P. in Methods in Arabidopsis Research (eds Koncz, C., Chua, N. H. & Schell, J.) 1–15 (World Scientific, Singapore, 1992).

    Book  Google Scholar 

  4. Fink, G. R. Anatomy of a revolution. Genetics 149, 473–477 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Pennisi, E. Arabidopsis comes of age. Science 290, 32–35 (2000).

    Article  CAS  Google Scholar 

  6. Laibach, F. Zur frage nach der individualität der chromosomen im plfanzenreich. Beih. Bot. Zentralbl. 22, 191–210 (1907).

    Google Scholar 

  7. Laibach, F. Arabidopsis thaliana (L.) Heynh. als object fur genetische und entwicklungsphysiologische untersuchungen. Bot. Archiv. 44, 439–455 (1943).

    Google Scholar 

  8. Rédei, G. P. Arabidopsis thaliana (L.) Heynh. A review of the biology and genetics. Bibliogr. Genet. 20, 1–151 (1970).

    Google Scholar 

  9. Rédei, G. P. & Koncz, C. in Methods in Arabidopsis Research (ed. Koncz, C., Chua, N. H. & Schell, J.) 16–82 (World Scientific, Singapore, 1992).

    Book  Google Scholar 

  10. Rédei, G. P. Arabidopsis as a genetic tool. Annu. Rev. Genet. 9, 111–127 (1975).

    Article  Google Scholar 

  11. Müller, A. Embryonentest zum nachweis rezessiver lethalfaktoren bei Arabidopsis thaliana. Biol. Zentralbl. 82, 133–163 (1963).

    Google Scholar 

  12. Ledoux, L., Huart, R. & Jacobs, M. DNA-mediated genetic correction of thiamineless Arabidopsis thaliana. Nature 249, 17–21 (1974).

    Article  CAS  Google Scholar 

  13. Meinke, D. W. & Sussex, I. M. Embryo-lethal mutants of Arabidopsis thaliana: model system for genetic analysis of plant embryo development. Dev. Biol. 72, 50–61 (1979).

    Article  CAS  Google Scholar 

  14. Koornneef, M. et al. Linkage map of Arabidopsis thaliana. J. Hered. 74, 265–272 (1983).

    Article  Google Scholar 

  15. Chilton, M. D. et al. Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11, 263–271 (1977).

    Article  CAS  Google Scholar 

  16. Koornneef, M. & van der Veen, J. H. Induction and analysis of gibberellin sensitive mutants in Arabidopsis thaliana (L) Heynh. Theor. Appl. Genet. 58, 257–263 (1980).

    Article  CAS  Google Scholar 

  17. Koornneef, M., Rolff, E. & Spruit, C. J. P. Genetic control of light-inhibited hypocotyl elongation in Arabidopsis thaliana (L) Heynh. Zeit. Pflanzenphysiol. 100, 147–160 (1980).

    Article  Google Scholar 

  18. Koornneef, M., Jorna, M. L., Brinkhorst-van der Swan, D. & Karssen, C. M. The isolation of abscisic-acid (ABA) deficient mutants by selection of induced revertants in non-germinating gibberellin sensitive lines of Arabidopsis thaliana (L) Heynh. Theor. Appl. Genet. 61, 385–393 (1982).

    Article  CAS  Google Scholar 

  19. Koornneef, M. The Genetics of Some Plant Hormones and Photoreceptors in Arabidopsis thaliana (L) Heynh. Ph.D. thesis, Wageningen Agricultural University, The Netherlands (1982).

    Google Scholar 

  20. Somerville, C. R. & Ogren, W. L. Phosphoglycolate phosphatase-deficient mutant of Arabidopsis. Nature 280, 833–836 (1979).

    Article  CAS  Google Scholar 

  21. Somerville, C. R. & Ogren, W. L. Inhibition of photosynthesis in Arabidopsis mutants lacking leaf glutamate synthase activity. Nature 286, 257–259 (1980).

    Article  CAS  Google Scholar 

  22. Leutwiler, L. S., Houghevans, B. R. & Meyerowitz, E. M. The DNA of Arabidopsis thaliana. Mol. Gen. Genet. 194, 15–23 (1984).

    Article  CAS  Google Scholar 

  23. Bennett, M. D. & Smith, J. B. Nuclear-DNA amounts in angiosperms. Phil. Trans. R. Soc. Lond. B Biol. Sci. 274, 227–274 (1976).

    Article  CAS  Google Scholar 

  24. Braam, J. & Davis, R. W. Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Cell 60, 357–364 (1990).

    Article  CAS  Google Scholar 

  25. Chang, C., Bowman, J. L., Dejohn, A. W., Lander, E. S. & Meyerowitz, E. M. Restriction fragment length polymorphism linkage map for Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 85, 6856–6860 (1988).

    Article  CAS  Google Scholar 

  26. Cheng, C. L., Dewdney, J., Nam, H. G., den Boer, B. G. W. & Goodman, H. M. A new locus (NIA 1) in Arabidopsis thaliana encoding nitrate reductase. EMBO J. 7, 3309–3314 (1988).

    Article  CAS  Google Scholar 

  27. Crawford, N. M., Smith, M., Bellissimo, D. & Davis, R. W. Sequence and nitrate regulation of the Arabidopsis thaliana mRNA encoding nitrate reductase, a metalloflavoprotein with three functional domains. Proc. Natl Acad. Sci. USA 85, 5006–5010 (1988).

    Article  CAS  Google Scholar 

  28. Last, R. L. & Fink, G. R. Tryptophan-requiring mutants of the plant Arabidopsis thaliana. Science 240, 305–310 (1988).

    Article  CAS  Google Scholar 

  29. Nam, H. G. et al. Restriction fragment length polymorphism linkage map of Arabidopsis thaliana. Plant Cell 1, 699–705 (1989).

    Article  CAS  Google Scholar 

  30. Meyerowitz, E. M. & Pruitt, R. E. Arabidopsis thaliana and plant molecular genetics. Science 229, 1214–1218 (1985).

    Article  CAS  Google Scholar 

  31. Lloyd, A. M. et al. Transformation of Arabidopsis thaliana with Agrobacterium tumefaciens. Science 234, 464–466 (1986).

    Article  CAS  Google Scholar 

  32. Estelle, M. A. & Somerville, C. R. The mutants of Arabidopsis. Trends Genet. 2, 89–93 (1986).

    Article  Google Scholar 

  33. Meyerowitz, E. M. Arabidopsis thaliana. Annu. Rev. Genet. 21, 93–111 (1987).

    Article  CAS  Google Scholar 

  34. Hauge, B. M. et al. An integrated genetic RFLP map of the Arabidopsis thaliana genome. Plant J. 3, 745–754 (1993).

    Article  CAS  Google Scholar 

  35. Grill, E. & Somerville, C. Construction and characterization of a yeast artificial chromosome library of Arabidopsis which is suitable for chromosome walking. Mol. Gen. Genet. 226, 484–490 (1991).

    Article  CAS  Google Scholar 

  36. Guzman, P. & Ecker, J. R. Development of large DNA methods for plants: molecular cloning of large segments of Arabidopsis and carrot DNA into yeast. Nucleic Acids Res. 16, 11091–11105 (1988).

    Article  CAS  Google Scholar 

  37. Ward, E. R. & Jen, G. C. Isolation of single-copy-sequence clones from a yeast artificial chromosome library of randomly-sheared Arabidopsis thaliana DNA. Plant Mol. Biol. 14, 561–568 (1990).

    Article  CAS  Google Scholar 

  38. Arondel, V. et al. Map-based cloning of a gene controlling omega-3-fatty-acid desaturation in Arabidopsis. Science 258, 1353–1355 (1992).

    Article  CAS  Google Scholar 

  39. Giraudat, J. et al. Isolation of the Arabidopsis Abi3 gene by positional cloning. Plant Cell 4, 1251–1261 (1992).

    Article  CAS  Google Scholar 

  40. Feldmann, K. A. & Marks, M. D. Agrobacterium-mediated transformation of germinating seeds of Arabidopsis thaliana: a non-tissue culture approach. Mol. Gen. Genet. 208, 1–9 (1987).

    Article  CAS  Google Scholar 

  41. Marks, M. D. & Feldmann, K. A. Trichome development in Arabidopsis thaliana. 1. T-DNA tagging of the glabrous1 gene. Plant Cell 1, 1043–1050 (1989).

    Article  CAS  Google Scholar 

  42. Feldmann, K. A., Marks, M. D., Christianson, M. L. & Quatrano, R. S. A dwarf mutant of Arabidopsis generated by T-DNA insertion mutagenesis. Science 243, 1351–1354 (1989).

    Article  CAS  Google Scholar 

  43. Somerville, C. Arabidopsis blooms. Plant Cell 1, 1131–1135 (1989).

    Article  Google Scholar 

  44. Yanofsky, M. F. et al. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346, 35–39 (1990).

    Article  CAS  Google Scholar 

  45. Feldmann, K. A. & Marks, M. D. Rapid and efficient regeneration of plants from explants of Arabidopsis thaliana. Plant Sci. 47, 63–69 (1986).

    Article  Google Scholar 

  46. Valvekens, D., van Montagu, M. & van Lijsebettens, M. Agrobacterium turnefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc. Natl Acad. Sci. USA 85, 5536–5540 (1988).

    Article  CAS  Google Scholar 

  47. Bechtold, N., Ellis, J. & Pelletier, G. In-planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C.R. Acad. Sci. Ser. III 316, 1194–1199 (1993).

    CAS  Google Scholar 

  48. Weigel, D. & Meyerowitz, E. M. The ABCs of floral homeotic genes. Cell 78, 203–209 (1994).

    Article  CAS  Google Scholar 

  49. Bowman, J. L., Smyth, D. R. & Meyerowitz, E. M. Genetic interactions among floral homeotic genes of Arabidopsis. Development 112, 1–20 (1991).

    CAS  PubMed  Google Scholar 

  50. Haughn, G. W. & Somerville, C. R. Genetic control of morphogenesis in Arabidopsis. Dev. Genet. 9, 73–89 (1988).

    Article  Google Scholar 

  51. Magnien, E., Bevan, M. & Planque, K. A European bridge project to tackle a model-plant genome. Trends Biotechnol. 10, 12–15 (1992).

    Article  Google Scholar 

  52. Kaul, S. et al. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000).

    Article  CAS  Google Scholar 

  53. Somerville, C. & Dangl, L. Genomics: plant biology in 2010. Science 290, 2077–2078 (2000).

    Article  CAS  Google Scholar 

  54. Somerville, C. The twentieth century trajectory of plant biology. Cell 100, 13–25 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Dilworth, M. Dilworth, M. Clutter, D. Meinke and E. Meyerowitz for providing images and information about events mentioned herein.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chris Somerville or Maarten Koornneef.

Related links

Related links

DATABASES

The <i>Arabidopsis</i> Information Resource

FAD3

FURTHER INFORMATION

Affymetrix's Arabidopsis ATH1 Genome Array

Chris Somerville's lab

GARNET

International Arabidopsis Symposium in Göttingen, Germany

Kazusa DNA Research Institute

Maarten Koornneef's lab

MIPS

SciSearch

Glossary

ACCESSION

A sample of a plant variety collected at a specific location and time.

AGROBACTERIUM TUMEFACIENS

A gram-negative soil bacterium that is used to transfer DNA into plant cells by a process similar to bacterial conjugation. The transferred DNA (T-DNA) randomly integrates into the plant genome to produce stably transformed plants.

ANTHOCYANIN

A flavonoid pigment. Anthocyanins are found in the cell vacuoles of plant organs and produce blue, red and purple colours in plants.

AUXIN

A plant hormone, also called indole-3-acetic acid, which is required for many aspects of plant development and for plant cell growth in culture.

AUXOTROPH

A mutant strain of a given organism that is unable to synthesize a molecule required for its growth. It, therefore, needs the molecule supplied in its growth medium to grow.

ECOTYPE

In the Arabidopsis literature, this term refers to a sample of a plant variety collected at a specific location and time.

FEULGEN MICROSPECTROPHOTOMETRY

A method for measuring cellular DNA content in which nuclei are stained with a DNA-specific dye and the amount of DNA per nucleus is measured by quantifying the absorbance of light by single nuclei in cytological preparations.

FORWARD GENETICS

A genetic analysis that proceeds from phenotype to genotype by positional cloning or candidate-gene analysis.

HOMEOTIC GENES

A class of genes that are crucial for controlling the early development and differentiation of embryonic tissues in eukaryotic organisms. The homeotic genes studied in Arabidopsis are frequently called organ identity genes.

PHYTOHORMONES

Plant growth and development is regulated by several small molecules, such as auxin, cytokinin, brassinosteroids, ethylene, jasmonic acid and abscisic acid.

VERNALIZATION

The induction of flowering by exposure of plants to a period of low temperature.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Somerville, C., Koornneef, M. A fortunate choice: the history of Arabidopsis as a model plant. Nat Rev Genet 3, 883–889 (2002). https://doi.org/10.1038/nrg927

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg927

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing