Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Splitting pairs: the diverging fates of duplicated genes

Key Points

  • Genomic sequence analysis is revealing the presence of duplicated genes in all sequenced organisms.

  • Gene duplicates can arise through tandem, segmental or global duplication events.

  • In instances in which complete regulatory sequences are duplicated in concert with coding sequences, the duplicates will have highly redundant functions.

  • Classical models predict that the loss of one redundant duplicate will be the most likely evolutionary outcome, whereas the retention of two duplicates — because one takes on a new role — should happen far more rarely.

  • Sub-functionalization models might help to explain the surprising number of ancient duplicates that are retained in genomes. If each duplicate loses a complementary sub-function then both must be retained to recapitulate the complete function of the single ancestral gene.

  • Sub-functionalization relies on the inherent multifunctionality of genes, this is often provided by modular enhancers that direct specific components of gene expression patterns.

  • The duplication–degeneration–complementation (DDC) model integrates gene-level sub-functionalization with population-level evolutionary processes.

  • Species in which whole-genome duplication events have occurred, such as zebrafish and Arabidopsis, are providing useful systems to explore potential instances of degenerative complementation.

  • Sophisticated sequence analysis approaches are starting to open up the possibility of recognizing candidate cases of sub-functionalization in silico.

Abstract

Many genes are members of large families that have arisen during evolution through gene duplication events. Our increasing understanding of gene organization at the scale of whole genomes is revealing further evidence for the extensive retention of genes that arise during duplication events of various types. Duplication is thought to be an important means of providing a substrate on which evolution can work. An understanding of gene duplication and its resolution is crucial for revealing mechanisms of genetic redundancy. Here, we consider both the theoretical framework and the experimental evidence to explain the preservation of duplicated genes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phylogeny of chordates.
Figure 2: Zebrafish duplicate genes subdivide ancestral mouse Hoxb1 expression.
Figure 3: Function shuffling.
Figure 4: Mutant phenotypes of ap1 and ap1/cal plants.

Similar content being viewed by others

References

  1. Lynch, M. & Conery, J. S. The evolutionary fate and consequences of duplicate genes. Science 290, 1151–1155 (2000).This paper analyses divergence rates between duplicated genes from six eukaryotic genomes and argues that duplications might be important in speciation.

    Article  CAS  PubMed  Google Scholar 

  2. Song, K., Lu, P., Tang, K. & Osborn, T. C. Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc. Natl Acad. Sci. USA 92, 7719–7723 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hughes, M. K. & Hughes, A. L. Evolution of duplicate genes in a tetraploid animal, Xenopus laevis. Mol. Biol. Evol. 10, 1360–1369 (1993).

    CAS  PubMed  Google Scholar 

  4. Sidow, A. Gen(om)e duplications in the evolution of early vertebrates. Curr. Opin. Genet. Dev. 6, 715–722 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Meyer, A. & Schartl, M. Gene and genome duplications in vertbrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr. Opin. Cell Biol. 11, 699–704 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Wolfe, K. H. Yesterday's polyploids and the mystery of diploidization. Nature Rev. Genet. 2, 333–341 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Postlethwait, J. H. et al. Zebrafish comparative genomics and the origins of vertebrate chromosomes. Genome Res. 10, 1890–1902 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Tautz, D. Redundancies, development and the flow of information. Bioessays 14, 263–266 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Pickett, F. B. & Meeks-Wagner, D. R. Seeing double, appreciating genetic redundancy. Plant Cell 7, 1347–1356 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Thomas, J. H. Thinking about genetic redundancy. Trends Genet. 9, 395–399 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Fisher, R. A. The sheltering of lethals. Am. Nat. 69, 446–455 (1935).

    Article  Google Scholar 

  12. Haldane, J. B. S. The part played by recurrent mutation in evolution. Am. Nat. 67, 5–9 (1933).

    Article  Google Scholar 

  13. Nadeau, J. H. & Sankoff, D. Comparable rates of gene loss and functional divergence after genome duplications early in vertebrate evolution. Genetics 147, 1259–1266 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li, W. H., Gu, Z., Wang, H. & Nakrutenko, A. Evolutionary analyses of the human genome. Nature 409, 847–849 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Bailey, J. A. et al. Recent segmental duplications in the human genome. Science 297, 1003–1007 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000).

  17. Force, A. et al. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151, 1531–1545 (1999).The original description of the DDC sub-functionalization model is reported here.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lynch, M. & Force, A. The probability of duplicate gene preservation by subfunctionalization. Genetics 154, 459–473 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Edelman, G. M., Meech, R., Owens, G. C. & Jones, F. S. Synthetic promoter elements obtained by nucleotide sequence variation and selection for activity. Proc. Natl Acad. Sci. USA 97, 3038–3043 (1999).

    Article  Google Scholar 

  20. Yuh, C. H., Bolouri, H. & Davidson, E. H. Cis-regulatory logic in the endo16 gene: switching from a specification to a differentiation mode of control. Development 128, 617–629 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Carroll, S. B. Endless forms: the evolution of gene regulation and morphological diversity. Cell 101, 577–580 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Force, A., Cresko, W. F. & Pickett, F. B. in Modularity in Development and Evolution (eds Schlosser, G. & Wagner, G.) (Univ. of Chicago Press, Illinois, in the press).

  23. Piatigorsky, J. & Wistow, G. The recruitment of crystallins: new functions precede gene duplication. Science 252, 1078–1079 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Hughes, A. L. The evolution of functionally novel proteins after gene duplication. Proc. R. Soc. Lond. B Biol. Sci. 256, 119–124 (1994).

    Article  CAS  Google Scholar 

  25. Averof, M., Dawes, R. & Ferrier, D. Diversification of arthropod Hox genes as a paradigm for the evolution of gene functions. Semin. Cell Dev. Biol. 7, 539–551 (1996).

    Article  CAS  Google Scholar 

  26. Stoltzfus, A. On the possibility of constructive neutral evolution. J. Mol. Evol. 49, 169–181 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Lynch, M., O'Hely, M., Walsh, B. & Force, A. The probability of preservation of a newly arisen gene duplicate. Genetics 159, 1789–1804 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Castillo-Davis, C. I. & Hartl, D. L. Genome evolution and developmental constraint in Caenorhabditis elegans. Mol. Biol. Evol. 19, 728–735 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Seoighe, C. & Wolfe, K. H. Updated map of duplicated regions in the yeast genome. Genes Dev. 238, 253–261 (1999).

    CAS  Google Scholar 

  30. McGinnis, W. & Krumlauf, R. Homeobox genes and axial patterning. Cell 68, 283–302 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. De Rosa, R. et al. Hox genes in brachiopods and priapulids and protostome evolution. Nature 399, 772–776 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Holland, P. W., Garcia-Fernandez, J., Williams, N. A. & Sidow, A. Gene duplications and the origins of vertebrate development. Development (Suppl.), 125–133 (1994).

  33. Amores, A. et al. Genome duplications in vertebrate evolution: evidence from zebrafish Hox clusters. Science 282, 1711–1714 (1998).This study analysed the complete organization of the zebrafish Hox clusters, providing strong evidence for the occurrence of a whole-genome duplication event during teleost evolution.

    Article  CAS  PubMed  Google Scholar 

  34. Manley, N. R. & Capecchi, M. R. The role of Hoxa-3 in mouse thymus and thyroid development. Development 121, 1989–2003 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Chisaka, O. & Capecchi, M. R. Regionally restricted developmental defects resulting from targeted disruption of the mouse homeobox gene hox-1.5. Nature 350, 473–479 (1991).

    Article  CAS  PubMed  Google Scholar 

  36. Condie, B. G. & Capecchi, M. R. Mice homozygous for a targeted disruption of Hoxd-3 (Hox-4.1) exhibit anterior transformations of the first and second cervical vertebrae, the atlas and the axis. Development 119, 579–595 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Condie, B. G. & Capecchi, M. R. Mice with targeted disruptions in the paralogous genes hoxa-3 and hoxd-3 reveal synergistic interactions. Nature 370, 304–307 (1994).

    Article  CAS  PubMed  Google Scholar 

  38. Greer, J. M., Puetz, J., Thomas, K. R. & Capecchi, M. R. Maintenance of functional equivalence during paralogous Hox gene evolution. Nature 403, 661–665 (2000).An elegant mouse genetics approach to investigating functional redundancy in Hox genes.

    Article  CAS  PubMed  Google Scholar 

  39. Bruce, A., Oates, A., Prince, V. E. & Ho, R. K. Additional hox clusters in the zebrafish: divergent expression belies conserved activities of duplicate hoxB5 genes. Evol. Dev. 3, 127–144 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. McClintock, J. M., Kheirbek, M. A. & Prince, V. E. Knock-down of duplicated zebrafish hoxb1 genes reveals distinct roles in hindbrain patterning and a novel mechanism of duplicate gene retention. Development 129, 2339–2354 (2002).Describes the sub-functionalization of a pair of duplicated zebrafish Hox genes. This study is unique in including the analysis of not only duplicate gene expression and function, but also duplicate regulatory sequences.

    Article  CAS  PubMed  Google Scholar 

  41. McClintock, J. M., Carlson, R., Mann, D. M. & Prince, V. E. Consequences of Hox gene duplication in the vertebrates: an investigation of the zebrafish Hox paralogue group 1 genes. Development 128, 2471–2484 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Studer, M., Lumsden, A., Ariza-McNaughton, L., Bradley, A. & Krumlauf, R. Altered segmental identity and abnormal migration of motor neurons in mice lacking Hoxb1. Nature 384, 630–634 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Goddard, J. M., Rossel, M., Manley, N. R. & Capecchi, M. R. Mice with targeted disruption of Hoxb1 fail to form the motor nucleus of the V11th nerve. Development 122, 3217–3228 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Gaufo, G. O., Flodby, P. & Capecchi, M. R. Hoxb1 controls effectors of sonic hedgehog and Mash1 signaling pathways. Development 127, 5343–5354 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Lufkin, T., Dierich, A., LeMeur, M., Mark, M. & Chambon, P. Disruption of the Hox-1.6 homeobox gene results in defects in a region corresponding to its rostral domain of expression. Cell 66, 1105–1119 (1991).

    Article  CAS  PubMed  Google Scholar 

  46. Carpenter, E. M., Goddard, J. M., Chisaka, O., Manley, N. R. & Capecchi, M. R. Loss of Hox-A1 (Hox-1.6) function results in the reorganization of the murine hindbrain. Development 118, 1063–1075 (1993).

    Article  CAS  PubMed  Google Scholar 

  47. Mark, M. et al. Two rhombomeres are altered in Hoxa1 mutant mice. Development 119, 319–338 (1993).

    Article  CAS  PubMed  Google Scholar 

  48. Postlethwait, J. H. et al. Vertebrate genome evolution and the zebrafish gene map. Nature Genet. 18, 345–349 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Taylor, J. S., Van de Peer, Y., Braasch, I. & Meyer, A. Comparative genomics provides evidence for an ancient genome duplication event in fish. Phil. Trans. R. Soc. Lond. B Biol. Sci. 356, 1661–1679 (2001).

    Article  CAS  Google Scholar 

  50. Sakamoto, T. et al. A microsatellite linkage map of rainbow trout (Oncorhynchus mykiss) characterized by large sex-specific differences in recombination rates. Genetics 15, 1331–1345 (2000).

    Article  Google Scholar 

  51. Tassabehji, M., Newton, V. E. & Read, A. P. Waardenburg syndrome type 2 caused by mutations in the human microphthalmia (MITF) gene. Nature Genet. 8, 251–255 (1994).

    Article  CAS  PubMed  Google Scholar 

  52. Smith, S. D., Kelley, P. M., Kenyon, J. B. & Hoover, D. Tietz syndrome (hypopigmentation/deafness) caused by mutation of MITF. J. Med. Genet. 37, 446–448 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hodgkinson, C. A. et al. Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic helix–loop–helix zipper protein. Cell 74, 395–404 (1993).

    Article  CAS  PubMed  Google Scholar 

  54. Lister, J. A., Close, J. & Raible, D. W. Duplicate mitf genes in zebrafish: complementary expression and conservation of melanogenic potential. Dev. Biol. 237, 333–344 (2001).Shows that the zebrafish mitfa and mitfb duplicate genes are homologous to distinct isoforms of the mammalian Mitf gene.

    Article  CAS  PubMed  Google Scholar 

  55. Altschmied, J. et al. Subfunctionalization of duplicate mitf genes associated with differential degeneration of alternative exons in fish. Genetics 161, 259–267 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Talbot, W. S. & Hopkins, N. Zebrafish mutations and functional analysis of the vertebrate genome. Genes Dev. 14, 755–762 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Sampath, K. et al. Induction of the zebrafish ventral brain and floorplate requires cyclops/nodal signalling. Nature 395, 185–189 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Feldman, B. et al. Zebrafish organizer development and germ-layer formation require nodal-related signals. Nature 395, 181–185 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Yan, Y.-L. et al. A zebrafish sox9 gene is required for cartilage morphogenesis. Development (in the press).

  60. Gaut, B. S. & Doebley, J. F. DNA sequence evidence for the segmental allotetraploid origin of maize. Proc. Natl Acad. Sci. USA 94, 6809–6814 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gaut, B. S. Patterns of chromosomal duplication in maize and their implications for comparative maps of the grasses. Genome Res. 11, 55–66 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Vision, T. J., Brown, D. G. & Tanksley, S. D. The origins of genomic duplications in Arabidopsis. Science 290, 2114–2116 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Blanc, G., Barakat, A., Guyot, R., Cooke, R. & Delseny, M. Extensive duplication and reshuffling in the Arabidopsis genome. Plant Cell 12, 1093–1101 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ferrandiz, C., Gu, Q., Martienssen, R. & Yanofsky, M. F. Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1, and CAULIFLOWER. Development 127, 725–734 (2000).This report describes the phenotypes of triple mutants of the Arabidopsis genes AP1, CAL and FUL and their partially redundant functions in a gene network.

    Article  CAS  PubMed  Google Scholar 

  65. Purugganan, M. D., Rounsley, S. D., Schmidt, R. J. & Yanofsky, M. F. Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family. Genetics 140, 345–356 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Achaz, G., Netter, P. & Coissac, E. Study of intrachromosomal duplications among the eukaryote genomes. Mol. Biol. Evol. 18, 2280–2288 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Irish, V. F. & Sussex, I. M. Function of the apetala-1 gene during Arabidopsis floral development. Plant Cell 2, 741–753 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Bowman, J. L., Alvarez, J., Weigel, D., Meyerowitz, E. M. & Smyth, D. R. Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development 119, 721–743 (1993).

    Article  CAS  Google Scholar 

  69. Mandel, M. A. & Yanofsky, M. F. The Arabidopsis AGL8 MADS box gene is expressed in inflorescence meristems and is negatively regulated by APETALA1. Plant Cell 7, 1763–1771 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Purugganan, M. D. & Suddith, J. I. Molecular population genetics of the Arabidopsis CAULIFLOWER regulatory gene: nonneutral evolution and naturally occurring variation in floral homeotic function. Proc. Natl Acad. Sci. USA 9, 8130–8134 (1998).Describes sequence comparisons of MADS-box genes from ecotypes of Arabidopisis to reveal that CAL is a surprisingly polymorphic gene.

    Article  Google Scholar 

  71. Olsen, K. M., Womack, A., Garrett, A. R., Suddith, J. I. & Purugganan, M. D. Contrasting evolutionary forces in the Arabidopsis thaliana floral developmental pathway. Genetics 160, 1641–1650 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. McDonald, J. H. & Kreitman, M. Adaptive protein evolution at the Adh locus in Drosophila. Nature 351, 652–654 (1991).

    Article  CAS  PubMed  Google Scholar 

  73. Chiu, C.-H. et al. Molecular evolution of the HoxA cluster in the three major gnathostome lineages. Proc. Natl Acad. Sci. USA 99, 5492–5497 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Schwartz, S. et al. PipMaker — A web server for aligning two genomic DNA sequences. Genome Res. 10, 577–586 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Scemama, J.-L., Hunter, M., McCallum, J., Prince, V. & Stellwag, E. Evolutionary divergence of teleost Hoxb2 expression patterns and transcriptional regulatory loci. J. Exp. Zool. 294, 285–299.

  76. Ludwig, M. Z., Bergman, C., Patel, N. H. & Kreitman, M. Evidence for stabilizing selection in a eukaryotic enhancer element. Nature 403, 564–567 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Zhang, Q., Arbuckle, J. & Wessler, S. R. Recent, extensive, and preferential insertion of members of the miniature inverted-repeat transposable element family Heartbreaker into genic regions of maize. Proc. Natl Acad. Sci. USA 97, 1160–1165 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gu, X. Statistical methods for testing functional divergence after gene duplication. Mol. Biol. Evol. 16, 1664–1674 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Dermitzakis, E. T. & Clark, A. G. Differential selection after duplication in mammalian developmental genes. Mol. Biol. Evol. 18, 557–562 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Nei, M. & Kumar, S. Molecular Evolution and Phylogenetics (Oxford Univ. Press, New York, 2000).

    Google Scholar 

  81. Kumar, S., Tamura, K., Jakobsen, I. B. & Nei, M. MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17, 1244–1245 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Shuai, B., Reynaga-Pena, C. G. & Springer, P. S. The lateral organ boundaries gene defines a novel, plant-specific gene family. Plant Physiol. 129, 747–761 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Shiu, S. H. & Bleecker, A. B. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc. Natl Acad. Sci. USA 98, 10763–10768 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lynch, M. & Force, A. Gene duplication and the origin of interspecific genomic incompatibility. Am. Nat. 156, 590–605 (2000).

    Article  PubMed  Google Scholar 

  85. Mezey, J. G., Cheverud, J. M. & Wagner, G. P. Is the genotype–phenotype map modular? A statistical approach using mouse quantitative trait loci data. Genetics 156, 305–311 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Emerson, R. A. Genetic correlation and spurious allelomorphism in maize. Nebraska Agric. Exp. Stat. Annu. Rep. 24, 59–90 (1911).

    Google Scholar 

  87. Muller, H. J. Further studies on the nature and causes of gene mutations. Proc. Sixth Int. Congr. Genet. 1, 213–255 (1932).

    Google Scholar 

  88. Serebrovsky, A. S. & Dubinin, N. P. Artificial production of mutations and the problem of the gene. Uspeki Eksperimental noi Biologii 8, 235–247 (1929).

    Google Scholar 

  89. Raffel, D. & Muller, H. J. Position effect and gene divisibility considered in connection with three strikingly similar scute mutations. Genetics 25, 541–583 (1940).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Verderosa, F. J. & Muller, H. J. Another case of dissimilar characters in Drosophila apparently representing changes of the same locus. Genetics 39, 999 (1954).

    Google Scholar 

  91. Prince, V. E. The Hox paradox: more complex(es) than imagined. Dev. Biol. 249, 1–15 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Studer, M. et al. Genetic interactions between Hoxa1 and Hoxb1 reveal new roles in regulation of early hindbrain patterning. Development 125, 1025–1036 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Pöpperl, H. et al. Segmental expression of Hoxb1 is controlled by a highly conserved autoregulatory loop dependent upon exd/pbx. Cell 81, 1031–1042 (1995).

    Article  PubMed  Google Scholar 

  94. Dupe, V. et al. In vivo functional analysis of the Hoxa-1 3′ retinoic acid response element (3′RARE). Development 124, 399–410 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Langston, A. W., Thompson, J. R. & Gudas, L. J. Retinoic acid-responsive enhancers located 3′ of the Hox A and Hox B homeobox gene clusters. Functional analysis. J. Biol. Chem. 272, 2167–2175 (1997).

    Article  CAS  PubMed  Google Scholar 

  96. Shih, L., Tsay, H., Lin, S. & Hwang, S. L. Expression of zebrafish Hoxa1a in neuronal cells of the midbrain and anterior hindbrain. Mech. Dev. 101, 279–281 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Kolm, P. J. & Sive, H. L. Regulation of the Xenopus labial homeodomain genes, HoxA1 and HoxD1: activation by retinoids and peptide growth factors. Dev. Biol. 167, 34–49 (1995).

    Article  CAS  PubMed  Google Scholar 

  98. Scholpp, S. & Brand, M. Morpholino-induced knockdown of zebrafish engrailed genes eng2 and eng3 reveals redundant and unique functions in midbrain–hindbrain boundary development. Genesis 30, 129–133 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Bruce, A. Force, R. Ho, J. Postlethwait and three reviewers for helpful comments on the manuscript. We are also grateful to D. Raible for advice on Mitf gene evolution, and to S. Santini and A. Meyer for sharing their observations before publication. Work cited from the Prince lab was funded by the National Science Foundation and that from the Pickett lab by the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria E. Prince.

Related links

Related links

DATABASES

Locus Link

Abd-B

dumpy

En1

eve stripe 2

Hoxa1

Hoxa3

Hoxb1

hoxb1a

hoxb1b

Hoxb2

Hoxb3

hoxb5a

Hoxd3

Mitf

nodal

os

Sox9

SOX9

Sy

OMIM

campomelic dysplasia

Tietz syndrome

Waardenburg syndrome type 2a

The <i>Arabidopsis</i> Information Resource

AP1

CAL

FUL

ZFIN

cyc

egr2

engrailed2a

engrailed2b

mitfa

mitfb

ndr1

sox9a

FURTHER INFORMATION

F. Bryan Pickett's lab

Gene Tools LLC

PipMaker and MultiPipMaker

TRANSFAC — The Transcription Factor Database

Victoria Prince's lab

Glossary

POLYPLOIDY

A polyploid organism has more than two sets of chromosomes (two sets being the prevalent diploid state). For example, a tetraploid organism has four sets of chromosomes and an octaploid has eight sets.

ALLOTETRAPLOIDY

The generation of the tetraploid state by fusion of two nuclei from different species. For example, two fertilized diploid oocytes can fuse such that the newly formed single egg has two complete sets of chromosomes.

AUTOTETRAPLOIDY

In contrast to allotetraploidy, both sets of chromosomes are derived from the same species. This can occur in the fertilized oocyte if the nucleus divides but the cell does not.

TELEOST

A bony fish that belongs to the infraclass Teleostei (comprising more than 20,000 species), which includes nearly all the important food and game fish, and many aquarium fish.

REDUNDANCY

When two genes can fulfil an equivalent function. Because of pleiotropy, redundancy is often partial, with two genes having overlapping rather than equivalent functions.

NON-FUNCTIONALIZATION

When one of two duplicate genes acquires a mutation in coding or regulatory sequences that ultimately renders the gene non-functional.

PURIFYING SELECTION

Selection against deleterious alleles, which will be eliminated from the population.

NEO-FUNCTIONALIZATION

When one of two duplicate genes acquires a mutation in coding or regulatory sequences that allows the gene to take on a new and useful function.

CONSERVED SYNTENY

(syn, same; teny, thread). Homology of gene order between two chromosomes or chromosomal segments, within or between species.

PLEIOTROPY

When a single gene has a role in several processes.

SUB-FUNCTION

Any functionally discrete, independently mutable portion of a locus. For example, a cis-regulatory element, a protein domain or an alternative splice site.

ALLELIC SERIES

A series of alleles that can be present at the same locus and that produce graded phenotypes.

GENETIC DRIFT

The increase or decrease in allele frequencies in populations due to chance.

LENS CRYSTALLIN

A protein that accumulates at high concentration in the eye and that forms the crystallin lens.

DEGENERATIVE MUTATION

A sequence change that causes a loss of function of the affected sub-function or gene.

INDIVIDUAL RELATIVE FITNESS

The capacity of the individual to survive and reproduce.

EFFECTIVE POPULATION SIZE

The equivalent number of breeding adults in a population after adjusting for complicating factors, such as non-random variation in family size or stochastic fluctuation in population size.

PARALOGUES

Homologous genes that are related by a duplication event. For example, mouse Hoxa2 and Hoxb2 are paralogues.

NEURAL CREST

A vertebrate-specific migratory cell type that derives from the dorsal-most aspect of the neural tube and contributes to many tissues, including the peripheral nervous system and cranium.

RHOMBOMERE

A segment of the vertebrate hindbrain (rhombencephalon).

MORPHOLINO

An antisense reagent that is able to block translation to knock down gene function.

TETRASOMY

When one chromosome in the complement is represented four times in each nucleus.

ORTHOLOGUES

Homologous genes that are related by a speciation event. For example, mouse Hoxa1 and chick HOXA1 are orthologues.

ORGANIZER

A small dorsal region of the vertebrate gastrula-stage embryo that has the remarkable capacity to organize a complete embryonic body plan. Hilde Mangold and Hans Spemann first identified the organizer in amphibian embryos using tissue transplantation.

MADS BOX

A highly conserved sequence motif found in a family of plant transcription factors and named after the initials of the four founder members of the family.

MERISTEM

An undifferentiated cell population that resides at the growing tip of the roots or shoots of a plant.

INFLORESCENCE MERISTEM

An apical meristem that lies atop a shoot and that produces several, lateral flower meristems.

STAMEN

The male, pollen-bearing organ of the plant.

ECOTYPE

A subdivision of a species that survives as a distinct population through environmental selection and reproductive isolation.

SYNONYMOUS CHANGE

A nucleotide change that does not alter the amino acid that is encoded.

REPLACEMENT ALLELE

An allele in which a mutation causes a resulting change in amino-acid identity.

CLADE

A lineage of organisms or alleles that comprises an ancestor and all its descendants.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prince, V., Pickett, F. Splitting pairs: the diverging fates of duplicated genes. Nat Rev Genet 3, 827–837 (2002). https://doi.org/10.1038/nrg928

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg928

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing