Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Optimal therapy for Helicobacter pylori infections

Abstract

Although Helicobacter pylori infection is both a common and a serious bacterial infection, antimicrobial therapies have rarely been optimized, are prescribed empirically, and provide inferior results compared with antimicrobial therapies for other common infectious diseases. The effectiveness of many of the frequently recommended H. pylori infection treatment regimens has been increasingly compromised by antimicrobial resistance. Regional data on the susceptibility of strains of H. pylori to available antimicrobials are sorely needed. Noninvasive molecular methods are possible to assess clarithromycin susceptibility in isolates obtained from stool specimens. As a general rule, clinicians should prescribe therapeutic regimens that have a ≥90% or, preferably, ≥95% eradication rate locally. If no available regimen can achieve a ≥90% eradication rate, clinicians should use the most effective regimen(s) available locally. Eradication of infection should always be confirmed after treatment in order to provide feedback regarding local effectiveness and an early warning of increasing resistance. In most regions of the world, four-drug treatment regimens, including a PPI plus three antimicrobials (clarithromycin, metronidazole/tinidazole and amoxicillin), or a PPI plus a bismuth plus tetracycline and metronidazole provide the best results. Standard triple therapy (a PPI, amoxicillin and clarithromycin) should now be avoided owing to increasing resistance to this treatment.

Key Points

  • New treatment regimens for Helicobacter pylori infection should be optimized to achieve an eradication rate of ≥95% before their use in clinical practice

  • A patient's allergies and the local availability of drugs should be considered when selecting a treatment

  • If there is no available therapy with an eradication rate ≥90%, the most locally effective therapy available should be employed

  • Treatment should involve high drug doses (for example, 500 mg of clarithromycin, metronidazole or tetracycline) for 14 days unless lower doses and a shorter duration of therapy are equally effective locally

  • H. pylori eradication should be confirmed after treatment, and, if second-line therapy is required, clarithromycin or a fluoroquinolone should not be reused

  • Salvage therapy (after multiple treatment failures) should be chosen on the basis of susceptibility testing whenever possible

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Detection of clarithromycin-susceptible and clarithromycin-resistant Helicobacter pylori in paraffin-embedded gastric tissue sections by whole-cell hybridization with fluorescence-labeled oligonucleotides.
Figure 2: Percentage of treatment success for triple therapy in studies of populations in southern Europe and other geographic areas according to intention-to-treat analysis.
Figure 3: The theoretical effect of increasing clarithromycin resistance on the success of treatment of Helicobacter pylori infection with triple therapy (a PPI, clarithromycin and amoxicillin) for 7 or 14 days.
Figure 4: Average annual recurrence of Helicobacter pylori infection after successful eradication in developing countries.82,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115
Figure 5: Incidence of recurrence or reinfection of Helicobacter pylori in the first year after successful eradication, and incidence of cumulative reinfection or recurrence of H. pylori over all years of follow-up in developing countries.83,84,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123

Similar content being viewed by others

References

  1. Kandulski, A. et al. Helicobacter pylori infection: a clinical overview. Dig. Liver Dis. 40, 619–626 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Sarai, A. S. et al. Helicobacter pylori, a causative agent of vitamin B12 deficiency. J. Infect. Dev. Ctries 2, 346–349 (2008).

    Google Scholar 

  3. Shiotani, A. & Graham, D. Y. Pathogenesis and therapy of gastric and duodenal ulcer disease. Med. Clin. North Am. 86, 1447–1466 (2002).

    Article  PubMed  Google Scholar 

  4. Graham, D. Y. Antibiotic resistance in Helicobacter pylori: implications for therapy. Gastroenterology 115, 1272–1277 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Graham, D. Y. & Shiotani, A. New concepts of resistance in the treatment of Helicobacter pylori infections. Nat. Clin. Pract. Gastroenterol. Hepatol. 5, 331 (2008).

    Article  CAS  Google Scholar 

  6. Megraud, F. H pylori antibiotic resistance: prevalence, importance, and advances in testing. Gut 53, 1374–1384 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Megraud, F. Helicobacter pylori and antibiotic resistance. Gut 56, 1502 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gisbert, J. P. The recurrence of Helicobacter pylori infection: incidence and variables influencing it. A critical review. Am. J. Gastroenterol. 100, 2083–2099 (2005).

    Article  PubMed  Google Scholar 

  9. Graham, D. Y. Helicobacter pylori eradication therapy research: ethical issues and description of results. Clin. Gastroenterol. Hepatol. (in press).

  10. Fischbach, L. A., Goodman, K. J., Feldman, M. & Aragaki, C. Sources of variation of Helicobacter pylori treatment success in adults worldwide: a meta-analysis. Int. J. Epidemiol. 31, 128–139 (2002).

    Article  PubMed  Google Scholar 

  11. Borody, T. J. et al. Omeprazole enhances efficacy of triple therapy in eradicating Helicobacter pylori. Gut 37, 477–481 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Borody, T. J. et al. Optimal H. pylori (HP) therapy—a combination of omeprazole and triple therapy (TT). Gastroenterology 106, A55 (1994).

    Google Scholar 

  13. de Boer, W. A. How to achieve a near 100% cure rate for H. pylori infection in peptic ulcer patients. A personal viewpoint. J. Clin. Gastroenterol. 22, 313–316 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Graham, D. Y. & Fischbach, L. Helicobacter pylori treatment in the era of increasing antibiotic resistance. Gut 59, 1143–1153 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Graham, D. Y. et al. Practical rapid, minimally invasive, reliable nonendoscopic method to obtain Helicobacter pylori for culture. Helicobacter 10, 1–3 (2005).

    Article  PubMed  Google Scholar 

  16. Osato, M. S. et al. Comparison of the Etest and the NCCLS-approved agar dilution method to detect metronidazole and clarithromycin resistant Helicobacter pylori. Int. J. Antimicrob. Agents 17, 39–44 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Osato, M. S. et al. Pattern of primary resistance of Helicobacter pylori to metronidazole or clarithromycin in the United States. Arch. Intern. Med. 161, 1217–1220 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. van der Wouden, E. J. et al. The influence of in vitro nitroimidazole resistance on the efficacy of nitroimidazole-containing anti-Helicobacter pylori regimens: a meta- analysis. Am. J. Gastroenterol. 94, 1751–1759 (1999).

    CAS  PubMed  Google Scholar 

  19. Graham, D. Y. et al. Sequential therapy using high-dose esomeprazole-amoxicillin followed by gatifloxacin for Helicobacter pylori infection. Aliment. Pharmacol. Ther. 24, 845–850 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Dore, M. P. et al. Effect of pretreatment antibiotic resistance to metronidazole and clarithromycin on outcome of Helicobacter pylori therapy: a meta-analytical approach. Dig. Dis. Sci. 45, 68–76 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Bardhan, K. et al. The HOMER Study: the effect of increasing the dose of metronidazole when given with omeprazole and amoxicillin to cure Helicobacter pylori infection. Helicobacter 5, 196–201 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Versalovic, J. et al. Mutations in 23S rRNA are associated with clarithromycin resistance in Helicobacter pylori. Antimicrob. Agents Chemother. 40, 477–480 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Taylor, D. E. et al. Cloning and sequence analysis of two copies of a 23S rRNA gene from Helicobacter pylori and association of clarithromycin resistance with 23S rRNA mutations. Antimicrob. Agents Chemother. 41, 2621–2628 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Versalovic, J. et al. Point mutations in the 23S rRNA gene of Helicobacter pylori associated with different levels of clarithromycin resistance. J. Antimicrob. Chemother. 40, 283–286 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Toracchio, S. et al. Identification of a novel mutation affecting domain V of the 23S rRNA gene in Helicobacter pylori. Helicobacter 9, 396–399 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Fontana, C. et al. New site of modification of 23S rRNA associated with clarithromycin resistance of Helicobacter pylori clinical isolates. Antimicrob. Agents Chemother. 46, 3765–3769 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rimbara, E. et al. Novel mutation in 23S rRNA that confers low-level resistance to clarithromycin in Helicobacter pylori. Antimicrob. Agents Chemother. 52, 3465–3466 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Moore, R. A. et al. Nucleotide sequence of the gyrA gene and characterization of ciprofloxacin-resistant mutants of Helicobacter pylori. Antimicrob. Agents Chemother. 39, 107–111 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, G. et al. Spontaneous mutations that confer antibiotic resistance in Helicobacter pylori. Antimicrob. Agents Chemother. 45, 727–733 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nishizawa, T. et al. Gatifloxacin resistance and mutations in gyrA after unsuccessful Helicobacter pylori eradication in Japan. Antimicrob. Agents Chemother. 50, 1538–1540 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Miyachi, H. et al. Primary levofloxacin resistance and gyrA/B mutations among Helicobacter pylori in Japan. Helicobacter 11, 243–249 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Wang, L. H. et al. Distribution of gyrA mutations in fluoroquinolone-resistant Helicobacter pylori strains. World J. Gastroenterol. 16, 2272–2277 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hoffman, P. S. et al. Metabolic activities of metronidazole-sensitive and -resistant strains of Helicobacter pylori: repression of pyruvate oxidoreductase and expression of isocitrate lyase activity correlate with resistance. J. Bacteriol. 178, 4822–4829 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kwon, D. H. et al. Analysis of rdxA and involvement of additional genes encoding NAD(P)H flavin oxidoreductase (FrxA) and ferredoxin-like protein (FdxB) in metronidazole resistance of Helicobacter pylori. Antimicrob. Agents Chemother. 44, 2133–2142 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chisholm, S. A. & Owen, R. J. Mutations in Helicobacter pylori rdxA gene sequences may not contribute to metronidazole resistance. J. Antimicrob. Chemother. 51, 995–999 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Marais, A. et al. Characterization of the genes rdxA and frxA involved in metronidazole resistance in Helicobacter pylori. Res. Microbiol. 154, 137–144 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Rimbara, E. et al. Mutations in penicillin-binding proteins 1, 2 and 3 are responsible for amoxicillin resistance in Helicobacter pylori. J. Antimicrob. Chemother. 61, 995–998 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Okamoto, T. et al. A change in PBP1 is involved in amoxicillin resistance of clinical isolates of Helicobacter pylori. J. Antimicrob. Chemother. 50, 849–856 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Gerrits, M. M. et al. Multiple mutations in or adjacent to the conserved penicillin-binding protein motifs of the penicillin-binding protein 1A confer amoxicillin resistance to Helicobacter pylori. Helicobacter 11, 181–187 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Furuta, T. et al. Influence of CYP2C19 polymorphism and Helicobacter pylori genotype determined from gastric tissue samples on response to triple therapy for H pylori infection. Clin. Gastroenterol. Hepatol. 3, 564–573 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Vecsei, A. et al. Stool polymerase chain reaction for Helicobacter pylori detection and clarithromycin susceptibility testing in children. Clin. Gastroenterol. Hepatol. 8, 309–312 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Lottspeich, C. et al. Evaluation of the novel Helicobacter pylori ClariRes real-time PCR assay for detection and clarithromycin susceptibility testing of H. pylori in stool specimens from symptomatic children. J. Clin. Microbiol. 45, 1718–1722 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Noguchi, N. et al. Detection of mixed clarithromycin-resistant and -susceptible Helicobacter pylori using nested PCR and direct sequencing of DNA extracted from faeces. J. Med. Microbiol. 56, 1174–1180 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Schabereiter-Gurtner, C. et al. Novel real-time PCR assay for detection of Helicobacter pylori infection and simultaneous clarithromycin susceptibility testing of stool and biopsy specimens. J. Clin. Microbiol. 42, 4512–4518 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Menard, A. et al. PCR-restriction fragment length polymorphism can also detect point mutation A2142C in the 23S rRNA gene, associated with Helicobacter pylori resistance to clarithromycin. Antimicrob. Agents Chemother. 46, 1156–1157 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stone, G. G. et al. A PCR-oligonucleotide ligation assay to determine the prevalence of 23S rRNA gene mutations in clarithromycin-resistant Helicobacter pylori. Antimicrob. Agents Chemother. 41, 712–714 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Marais, A. et al. Direct detection of Helicobacter pylori resistance to macrolides by a polymerase chain reaction/DNA enzyme immunoassay in gastric biopsy specimens. Gut 44, 463–467 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pina, M. et al. Detection of point mutations associated with resistance of Helicobacter pylori to clarithromycin by hybridization in liquid phase. J. Clin. Microbiol. 36, 3285–3290 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Maeda, S. et al. Detection of clarithromycin-resistant Helicobacter pylori strains by a preferential homoduplex formation assay. J. Clin. Microbiol. 38, 210–214 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. van Doorn, L. J. et al. Rapid detection, by PCR and reverse hybridization, of mutations in the Helicobacter pylori 23S rRNA gene, associated with macrolide resistance. Antimicrob. Agents Chemother. 43, 1779–1782 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gibson, J. R. et al. Novel method for rapid determination of clarithromycin sensitivity in Helicobacter pylori. J. Clin. Microbiol. 37, 3746–3748 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Oleastro, M. et al. Real-Time PCR Assay for rapid and accurate detection of point mutations conferring resistance to clarithromycin in Helicobacter pylori. J. Clin. Microbiol. 41, 397–402 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lascols, C. et al. Fast and accurate quantitative detection of Helicobacter pylori and identification of clarithromycin resistance mutations in H. pylori isolates from gastric biopsy specimens by real-time PCR. J. Clin. Microbiol. 41, 4573–4577 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Burucoa, C. et al. Quadruplex real-time PCR assay using allele-specific scorpion primers for detection of mutations conferring clarithromycin resistance to Helicobacter pylori. J. Clin. Microbiol. 46, 2320–2326 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Matsumura, M. et al. Rapid detection of mutations in the 23S rRNA gene of Helicobacter pylori that confers resistance to clarithromycin treatment to the bacterium. J. Clin. Microbiol. 39, 691–695 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Alarcon, T. et al. PCR using 3′-mismatched primers to detect A2142C mutation in 23S rRNA conferring resistance to clarithromycin in Helicobacter pylori clinical isolates. J. Clin. Microbiol. 38, 923–925 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Furuta, T. et al. Modified allele-specific primer-polymerase chain reaction method for analysis of susceptibility of Helicobacter pylori strains to clarithromycin. J. Gastroenterol. Hepatol. 22, 1810–1815 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Nakamura, A. et al. Determination of mutations of the 23S rRNA gene of Helicobacter pylori by allele specific primer-polymerase chain reaction method. J. Gastroenterol. Hepatol. 22, 1057–1063 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Nishizawa, T. et al. Rapid detection of point mutations conferring resistance to fluoroquinolone in gyrA of Helicobacter pylori by allele-specific PCR. J. Clin. Microbiol. 45, 303–305 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Cambau, E. et al. Evaluation of a new test, genotype HelicoDR, for molecular detection of antibiotic resistance in Helicobacter pylori. J. Clin. Microbiol. 47, 3600–3607 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yilmaz, O. et al. Detection of Helicobacter pylori and determination of clarithromycin susceptibility using formalin-fixed, paraffin-embedded gastric biopsy specimens by fluorescence in situ hybridization. Helicobacter 12, 136–141 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Vega, A. E. et al. Detection of clarithromycin-resistant Helicobacter pylori in frozen gastric biopsies from pediatric patients by a commercially available fluorescent in situ hybridization. Diagn. Microbiol. Infect. Dis. 59, 421–423 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Morris, J. M. et al. Evaluation of seaFAST, a rapid fluorescent in situ hybridization test, for detection of Helicobacter pylori and resistance to clarithromycin in paraffin-embedded biopsy sections. J. Clin. Microbiol. 43, 3494–3496 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Russmann, H. et al. Detection of Helicobacter pylori in paraffin-embedded and in shock-frozen gastric biopsy samples by fluorescent in situ hybridization. J. Clin. Microbiol. 41, 813–815 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Cellini, L. et al. Analysis of genetic variability, antimicrobial susceptibility and virulence markers in Helicobacter pylori identified in Central Italy. Scand. J. Gastroenterol. 41, 280–287 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Hung, K. H. et al. Prevalence of primary fluoroquinolone resistance among clinical isolates of Helicobacter pylori at a University Hospital in Southern Taiwan. Helicobacter 14, 61–65 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Essa, A. S. et al. Meta-analysis: four-drug, three-antibiotic, non-bismuth-containing “concomitant therapy” versus triple therapy for Helicobacter pylori eradication. Helicobacter 14, 109–118 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gisbert, J. P. et al. Sequential therapy for Helicobacter pylori eradication: a critical review. J. Clin. Gastroenterol. (in press).

  69. Gatta, L. et al. Sequential therapy or triple therapy for Helicobacter pylori infection: systematic review and meta-analysis of randomized controlled trials in adults and children. Am. J. Gastroenterol. 104, 3069–3079 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Graham, D. Y. et al. Therapy for Helicobacter pylori infection can be improved: sequential therapy and beyond. Drugs 68, 725–736 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Hsu, P. I. et al. Search for a grade A therapy for Helicobacter pylori infection: 14-day sequential or sequential-concomitant hybrid therapy. Gastroenterology 138 (Suppl. 1), S111 (2010).

    Google Scholar 

  72. Fischbach, L. A. et al. Meta-analysis: the efficacy, adverse events, and adherence related to first-line anti-Helicobacter pylori quadruple therapies. Aliment. Pharmacol. Ther. 20, 1071–1082 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Luther, J. et al. Empiric quadruple vs. triple therapy for primary treatment of Helicobacter pylori infection: Systematic review and meta-analysis of efficacy and tolerability. Am. J. Gastroenterol. 105, 65–73 (2010).

    Article  PubMed  Google Scholar 

  74. O'Morain, C. et al. Efficacy and safety of single-triple capsules of bismuth biskalcitrate, metronidazole and tetracycline, given with omeprazole, for the eradication of Helicobacter pylori: an international multicentre study. Aliment. Pharmacol. Ther. 17, 415–420 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Laine, L. et al. Bismuth-based quadruple therapy using a single capsule of bismuth biskalcitrate, metronidazole, and tetracycline given with omeprazole versus omeprazole, amoxicillin, and clarithromycin for eradication of Helicobacter pylori in duodenal ulcer patients: a prospective, randomized, multicenter, North American trial. Am. J. Gastroenterol. 98, 562–567 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Malfertheiner, P. et al. Quadruple therapy with bismuth subcitrate potassium, metronidazole, tetracycline, and omeprazole is superior to triple therapy with omeprazole, amoxicillin, and clarithromycin in the eradication of Helicobacter pylori. Gastroenterology 138 (Suppl. 1), 33 (2010).

    Google Scholar 

  77. Graham, D. Y. et al. Metronidazole containing quadruple therapy for infection with metronidazole resistant Helicobacter pylori: a prospective study. Aliment. Pharmacol. Ther. 14, 745–750 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Frenck, R. W. et al. Helicobacter in the developing world. Microbes Infect. 5, 705–713 (2003).

    Article  PubMed  Google Scholar 

  79. WHO. The global burden of disease: 2004 update [online], (2008).

  80. Mathers, C. D. & Loncar, D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 3, e442 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  81. National Cancer Institute. A snapshot of stomach (gastric) cancer [online], (2009).

  82. Fischbach, L. & Evans, E. L. Meta-analysis: the effect of antibiotic resistance status on the efficacy of triple and quadruple first-line therapies for Helicobacter pylori. Aliment. Pharmacol. Ther. 26, 343–357 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Ramirez-Ramos, A. et al. Rapid recurrence of Helicobacter pylori infection in Peruvian patients after successful eradication. Gastrointestinal Physiology Working Group of the Universidad Peruana Cayetano Heredia and The Johns Hopkins University. Clin. Infect. Dis. 25, 1027–1031 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Ahuja, V. & Sharma, M. P. High recurrence rate of Helicobacter pylori infection in developing countries. Gastroenterology 123, 653–654 (2002).

    Article  PubMed  Google Scholar 

  85. Bell, G. D. & Powell, K. U. Helicobacter pylori reinfection after apparent eradication—the Ipswich experience. Scand. J. Gastroenterol. Suppl. 215, 96–104 (1996).

    Article  CAS  PubMed  Google Scholar 

  86. Parsonnet, J. What is the Helicobacter pylori global reinfection rate? Can. J. Gastroenterol. 17 (Suppl.), 46B–48B (2003).

    Article  PubMed  Google Scholar 

  87. Graham, D. Y. et al. A report card to grade Helicobacter pylori therapy. Helicobacter 12, 275–278 (2007).

    Article  PubMed  Google Scholar 

  88. Kepekci, Y. & Kadayifci, A. Does the eradication of Helicobacter pylori cure duodenal ulcer disease in communities with a high prevalence rate? Comparison with long-term acid suppression. Int. J. Clin. Pract. 53, 505–508 (1999).

    CAS  PubMed  Google Scholar 

  89. Figueroa, G. et al. Low H. pylori reinfection rate after triple therapy in Chilean duodenal ulcer patients. Am. J. Gastroenterol. 91, 1395–1399 (1996).

    CAS  PubMed  Google Scholar 

  90. Ciok, J., Dzieniszewski, J. & Lucer, C. Helicobacter pylori eradication and antral intestinal metaplasia—two years follow-up study. J. Physiol. Pharmacol. 48 (Suppl. 4), 115–122 (1997).

    PubMed  Google Scholar 

  91. Goh, K. L. et al. Reinfection and duodenal ulcer relapse in south-east Asian patients following successful Helicobacter pylori eradication: results of a 2-year follow-up. Eur. J. Gastroenterol. Hepatol. 8, 1157–1160 (1996).

    Article  CAS  PubMed  Google Scholar 

  92. Kumar, D. et al. Randomized trial of a quadruple-drug regimen and a triple-drug regimen for eradication of Helicobacter pylori: long-term follow-up study. Indian J. Gastroenterol. 20, 191–194 (2001).

    CAS  PubMed  Google Scholar 

  93. Mitchell, H. M. et al. A low rate of reinfection following effective therapy against Helicobacter pylori in a developing nation (China). Gastroenterology 114, 256–261 (1998).

    Article  CAS  PubMed  Google Scholar 

  94. Silva, F. M. et al. Helicobacter pylori reinfection in Brazilian patients with peptic ulcer disease: a 5-year follow-up. Helicobacter 15, 46–52 (2010).

    Article  PubMed  Google Scholar 

  95. Bapat, M. R. et al. Acquisition of Helicobacter pylori infection and reinfection after its eradication are uncommon in Indian adults. Indian J. Gastroenterol. 19, 172–174 (2000).

    CAS  PubMed  Google Scholar 

  96. Aydin, A. et al. Low reinfection rate of Helicobacter pylori infection in Turkey. J. Clin. Gastroenterol. 30, 337 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Louw, J. A. et al. Helicobacter pylori eradication in the African setting, with special reference to reinfection and duodenal ulcer recurrence. Gut 36, 544–547 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ashour, A. A. et al. Distribution of vacA genotypes in Helicobacter pylori strains isolated from Brazilian adult patients with gastritis, duodenal ulcer or gastric carcinoma. FEMS Immunol. Med. Microbiol. 33, 173–178 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Zhou, L. et al. A five-year follow-up study on the pathological changes of gastric mucosa after H. pylori eradication. Chin. Med. J. (Engl.) 116, 11–14 (2003).

    Google Scholar 

  100. Ahmad, M. M. et al. Long-term re-infection rate after Helicobacter pylori eradication in Bangladeshi adults. Digestion 75, 173–176 (2007).

    Article  PubMed  Google Scholar 

  101. Mera, R. et al. Long term follow up of patients treated for Helicobacter pylori infection. Gut 54, 1536–1540 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Oona, M. et al. Long-term recurrence rate after treatment of Helicobacter pylori infection in children and adolescents in Estonia. Scand. J. Gastroenterol. 39, 1186–1191 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Zendehdel, N. et al. Helicobacter pylori reinfection rate 3 years after successful eradication. J. Gastroenterol. Hepatol. 20, 401–404 (2005).

    Article  PubMed  Google Scholar 

  104. Mach, T. & Zahradnik-Bilska, J. Reinfection with Helicobacter pylori in patients with duodenal ulcer after successful eradication. Przegl. Lek. 56, 477–482 (1999).

    CAS  PubMed  Google Scholar 

  105. Della Libera, E. et al. Eradication of Helicobacter pylori infection in patients with duodenal ulcer and non-ulcer dyspepsia and analysis of one-year reinfection rates. Braz. J. Med. Biol. Res. 34, 753–757 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Hildebrand, P. et al. Recrudescence and reinfection with Helicobacter pylori after eradication therapy in Bangladeshi adults. Gastroenterology 121, 792–798 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Kyzekove, J. et al. Is there any relationship between functional dyspepsia and chronic gastritis associated with Helicobacter pylori infection? Hepatogastroenterology 48, 594–602 (2001).

    CAS  PubMed  Google Scholar 

  108. Leal-Herrera, Y. et al. High rates of recurrence and of transient reinfections of Helicobacter pylori in a population with high prevalence of infection. Am. J. Gastroenterol. 98, 2395–2402 (2003).

    Article  PubMed  Google Scholar 

  109. Konar, A. et al. Natural history of severe duodenal ulcer disease. Indian J. Gastroenterol. 17, 48–50 (1998).

    CAS  PubMed  Google Scholar 

  110. Karczewska, E. et al. Oral cavity as a potential source of gastric reinfection by Helicobacter pylori. Dig. Dis. Sci. 47, 978–986 (2002).

    Article  PubMed  Google Scholar 

  111. Soto, G. et al. Helicobacter pylori reinfection is common in Peruvian adults after antibiotic eradication therapy. J. Infect. Dis. 188, 1263–1275 (2003).

    Article  PubMed  Google Scholar 

  112. Wheeldon, T. U. et al. Long-term follow-up of Helicobacter pylori eradication therapy in Vietnam: reinfection and clinical outcome. Aliment. Pharmacol. Ther. 21, 1047–1053 (2005).

    Article  PubMed  Google Scholar 

  113. Andreson, H. et al. Persistence of Helicobacter pylori infection in patients with peptic ulcer perforation. Scand. J. Gastroenterol. 42, 324–329 (2007).

    Article  PubMed  Google Scholar 

  114. Gunaid, A. A. et al. Recurrence of Helicobacter pylori infection 1 year after successful treatment: prospective cohort study in the Republic of Yemen. Eur. J. Gastroenterol. Hepatol. 16, 1309–1314 (2004).

    Article  PubMed  Google Scholar 

  115. Gurel, S. et al. After the eradication of Helicobacter pylori infection, relapse is a serious problem in Turkey. J. Clin. Gastroenterol. 28, 241–244 (1999).

    Article  CAS  PubMed  Google Scholar 

  116. Mansour-Ghanaei, F. et al. Recurrence of Helicobacter pylori infection 1 year after successful eradication: a prospective study in Northern Iran. Med. Sci. Monit. 16, CR144–CR148 (2010).

    PubMed  Google Scholar 

  117. Gabryelewicz, A. et al. Multicenter evaluation of dual-therapy (omeprazol and amoxycillin) for Helicobacter pylori-associated duodenal and gastric ulcer (two years of the observation). J. Physiol. Pharmacol. 48 (Suppl. 4), 93–105 (1997).

    PubMed  Google Scholar 

  118. Coelho, L. G. et al. Duodenal ulcer and eradication of Helicobacter pylori in a developing country. An 18-month follow-up study. Scand. J. Gastroenterol. 27, 362–366 (1992).

    Article  CAS  PubMed  Google Scholar 

  119. Najafi, M. S. et al. Reinfection rate after successful Helicobacter pylori eradication in children. Iran. J. Ped. 20, 58–62 (2010).

    Google Scholar 

  120. Hoffenberg, P. et al. Comparison of 2 treatment schemes to eradicate Helicobacter pylori. Rev. Med. Chil. 123, 185–191 (1995).

    CAS  PubMed  Google Scholar 

  121. Konturek, P. C. et al. Epidermal growth factor and transforming growth factor alpha in duodenal ulcer and non-ulcer dyspepsia patients before and after Helicobacter pylori eradication. Scand. J. Gastroenterol. 33, 143–151 (1998).

    Article  CAS  PubMed  Google Scholar 

  122. Eisig, J. N. et al. Helicobacter pylori recurrence in patients with duodenal ulcer: clinical, endoscopic, histologic, and genotypic aspects. A 10-year Brazilian series. Helicobacter 11, 431–435 (2006).

    Article  PubMed  Google Scholar 

  123. Jarosz, M. et al. Dietary and socio-economic factors in relation to Helicobacter pylori re-infection. World J. Gastroenterol. 15, 1119–1125 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported in part by the Office of Research and Development Medical Research Service Department of Veterans Affairs. Dr. Graham is supported in part by Public Health Service grant DK56338, which funds the Texas Medical Center Digestive Diseases Center. The contents are solely the responsibility of the authors and do not necessarily represent the official views of the VA or NIH. C. P. Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the MedscapeCME-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Contributions

E. Rimbara, L. A. Fischbach and D. Y. Graham contributed equally to researching data for the article, discussing content, and writing and reviewing/editing of the manuscript before submission.

Corresponding author

Correspondence to David Y. Graham.

Ethics declarations

Competing interests

D. Y. Graham is a Consultant for Otsuka Pharmaceuticals, has previously been a Consultant for Meretek amd is an unpaid Consultant for Novartis. E. Rimbara and L. A. Fischbach declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rimbara, E., Fischbach, L. & Graham, D. Optimal therapy for Helicobacter pylori infections. Nat Rev Gastroenterol Hepatol 8, 79–88 (2011). https://doi.org/10.1038/nrgastro.2010.210

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2010.210

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing