Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immune responses to Listeria monocytogenes

Key Points

  • Listeria monocytogenes is a Gram-positive, intracellular bacterial pathogen that invades the cytosol of infected cells.

  • Tumour-necrosis factor (TNF) and interferon-γ are essential for in vivo immune defence against primary infection with L. monocytogenes.

  • TNF- and inducible nitric-oxide synthase (iNOS)-producing dendritic cells (TipDCs) are recruited to sites of L. monocytogenes infection in the spleen in a CC-chemokine receptor 2-dependent manner.

  • MyD88 (myeloid differentiation primary-response protein 88)-mediated signals, and presumably Toll-like-receptor-mediated signals, are essential for clearance of primary infection with L. monocytogenes.

  • CD8+ T cells provide long-term protective immunity against re-infection with L. monocytogenes. Maintenance of CD8+ T-cell memory requires CD4+ T cells.

  • Full induction of protective immunity requires infection with live, cytosol-invasive L. monocytogenes.

  • The primary immune response to infection with L. monocytogenes is mediated by two main CD8+ T-cell subpopulations: one is restricted by MHC class Ia molecules, and the other is restricted by the MHC class Ib molecule H2–M3.

  • H2–M3-restricted T cells make an important contribution to the primary immune response to L. monocytogenes.

Abstract

Listeria monocytogenes is a Gram-positive bacterium that is often used to study the mammalian immune response to infection because it is easy to culture, is relatively safe to work with and causes a highly predictable infection in laboratory mice. The broad application of this mouse model has resulted in a torrent of studies characterizing the contributions of different cytokines, receptors, adaptors and effector molecules to resistance against infection with Listeria monocytogenes. These studies, which are yielding one of the most comprehensive pictures of the 'battle' between host and microorganism, are reviewed here.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The pathogenesis of cellular Listeria monocytogenes infection.
Figure 2: Innate immune activation by virulent Listeria monocytogenes is a multistep process.
Figure 3: CD8+ T-cell responses to primary and secondary infection.
Figure 4: Presentation of Listeria monocytogenes-derived antigens to CD8+ T cells.

Similar content being viewed by others

References

  1. Murray, E. G. D., Webb, R. A. & Swann, M. B. R. A disease of rabbits characterized by a large mononuclear monocytosis, caused by a hitherto undescribed bacillus Bacterium monocytogenes. J. Pathol. Bacteriol. 29, 407–439 (1926).

    Article  Google Scholar 

  2. Pirie, J. H. H. A new disease of veld rodents. 'Tiger River Disease'. Publ. S. Afr. Inst. Med. Res. 3, 163–186 (1927).

    Google Scholar 

  3. Gellin, B. G. & Broome, C. V. Listeriosis. JAMA 261, 1313–1320 (1989).

    Article  CAS  PubMed  Google Scholar 

  4. Bibb, W. F. et al. Analysis of clinical and food-borne isolates of Listeria monocytogenes in the United States by multilocus enzyme electrophoresis and application of the method to epidemiologic investigations. Appl. Environ. Microbiol. 56, 2133–2141 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Sixl, W., Stunzner, D. & Withalm, H. Epidemiologic and serologic study of listeriosis in man and domestic and wild animals in Austria. J. Hyg. Epidemiol. Microbiol. Immunol. 22, 460–469 (1978).

    CAS  PubMed  Google Scholar 

  6. Jakowski, R. M. & Wyand, D. S. Listeriosis associated with canine distemper in a gray fox. J. Am. Vet. Med. Assoc. 159, 626–628 (1971).

    CAS  PubMed  Google Scholar 

  7. Glaser, P. et al. Comparative genomics of Listeria species. Science 294, 849–852 (2001).

    CAS  PubMed  Google Scholar 

  8. Gaillard, J. L., Berche, P., Frehel, C., Gouin, E. & Cossart, P. Entry of L. monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from Gram-positive cocci. Cell 65, 1127–1141 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Lecuit, M. et al. A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier. Science 292, 1722–1725 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Shen, Y., Naujokas, M., Park, M. & Ireton, K. InlB-dependent internalization of Listeria is mediated by the Met receptor tyrosine kinase. Cell 103, 501–510 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Bielecki, J., Youngman, P., Connelly, P. & Portnoy, D. A. Bacillus subtilisexpressing a haemolysin gene from Listeria monocytogenes can grow in mammalian cells. Nature 345, 175–176 (1990).

    Article  CAS  PubMed  Google Scholar 

  12. O'Riordan, M., Yi, C. H., Gonzales, R., Lee, K. D. & Portnoy, D. A. Innate recognition of bacteria by a macrophage cytosolic surveillance pathway. Proc. Natl Acad. Sci. USA 99, 13861–13866 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Berche, P., Gaillard, J. L. & Sansonetti, P. J. Intracellular growth of Listeria monocytogenes as a prerequisite for in vivo induction of T-cell-mediated immunity. J. Immunol. 138, 2266–2271 (1987).

    CAS  PubMed  Google Scholar 

  14. Chico-Calero, I. et al. Hpt, a bacterial homolog of the microsomal glucose-6-phosphate translocase, mediates rapid intracellular proliferation in Listeria. Proc. Natl Acad. Sci. USA 99, 431–436 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Domann, E. et al. A novel bacterial virulence gene in Listeria monocytogenes required for host cell microfilament interaction with homology to the proline-rich region of vinculin. EMBO J. 11, 1981–1990 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kocks, C. et al. L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell 68, 521–531 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Goossens, P. L. & Milon, G. Induction of protective CD8+ T lymphocytes by an attenuated Listeria monocytogenes actA mutant. Int. Immunol. 4, 1413–1418 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Unanue, E. R. Studies in listeriosis show the strong symbiosis between the innate cellular system and the T-cell response. Immunol. Rev. 158, 11–25 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Nickol, A. D. & Bonventre, P. F. Anomalous high native resistance of athymic mice to bacterial pathogens. Infect. Immun. 18, 636–645 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bancroft, G. J., Schreiber, R. D. & Unanue, E. R. Natural immunity: a T-cell-independent pathway of macrophage activation, defined in the SCID mouse. Immunol. Rev. 124, 5–24 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Tripp, C. S., Wolf, S. F. & Unanue, E. R. Interleukin 12 and tumor necrosis factor α are costimulators of interferon γ production by natural killer cells in severe combined immunodeficiency mice with listeriosis, and interleukin 10 is a physiologic antagonist. Proc. Natl Acad. Sci. USA 90, 3725–3729 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Buchmeier, N. A. & Schreiber, R. D. Requirement of endogenous interferon-γ production for resolution of Listeria monocytogenes infection. Proc. Natl Acad. Sci. USA 82, 7404–7408 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Havell, E. A. Evidence that tumor necrosis factor has an important role in antibacterial resistance. J. Immunol. 143, 2894–2899 (1989).

    CAS  PubMed  Google Scholar 

  24. Pfeffer, K. et al. Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection. Cell 73, 457–467 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Rothe, J. et al. Mice lacking the tumour necrosis factor receptor 1 are resistant to TNF-mediated toxicity but highly susceptible to infection by Listeria monocytogenes. Nature 364, 798–802 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Harty, J. T. & Bevan, M. J. Specific immunity to Listeria monocytogenes in the absence of IFN γ. Immunity 3, 109–117 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Xanthoulea, S. et al. Tumor necrosis factor (TNF) receptor shedding controls thresholds of innate immune activation that balance opposing TNF functions in infectious and inflammatory diseases. J. Exp. Med. 200, 367–376 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ehlers, S. et al. The lymphotoxin β receptor is critically involved in controlling infections with the intracellular pathogens Mycobacterium tuberculosis and Listeria monocytogenes. J. Immunol. 170, 5210–5218 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Zheng, S. J., Wang, P., Tsabary, G. & Chen, Y. H. Critical roles of TRAIL in hepatic cell death and hepatic inflammation. J. Clin. Invest. 113, 58–64 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Carrero, J. A., Calderon, B. & Unanue, E. R. Type I interferon sensitizes lymphocytes to apoptosis and reduces resistance to Listeria infection. J. Exp. Med. 200, 535–540 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. O'Connell, R. M. et al. Type I interferon production enhances susceptibility to Listeria monocytogenes infection. J. Exp. Med. 200, 437–445 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Auerbuch, V., Brockstedt, D. G., Meyer-Morse, N., O'Riordan, M. & Portnoy, D. A. Mice lacking the type I Interferon receptor are resistant to Listeria monocytogenes. J. Exp. Med. 200, 527–533 (2004). References 30 to 32 show that mice lacking the receptor for type I IFNs have increased resistance to infection with L. monocytogenes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stockinger, S. et al. Production of type I IFN sensitizes macrophages to cell death induced by Listeria monocytogenes. J. Immunol. 169, 6522–6529 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Conlan, J. W. & North, R. J. Neutrophils are essential for early anti-Listeria defense in the liver, but not in the spleen or peritoneal cavity, as revealed by a granulocyte-depleting monoclonal antibody. J. Exp. Med. 179, 259–268 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Rogers, H. W. & Unanue, E. R. Neutrophils are involved in acute, nonspecific resistance to Listeria monocytogenes in mice. Infect. Immun. 61, 5090–5096 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Czuprynski, C. J., Brown, J. F., Maroushek, N., Wagner, R. D. & Steinberg, H. Administration of anti-granulocyte mAb RB6-8C5 impairs the resistance of mice to Listeria monocytogenes infection. J. Immunol. 152, 1836–1846 (1994).

    CAS  PubMed  Google Scholar 

  37. North, R. J. The relative importance of blood monocytes and fixed macrophages to the expression of cell-mediated immunity to infection. J. Exp. Med. 132, 521–534 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rosen, H., Gordon, S. & North, R. J. Exacerbation of murine listeriosis by a monoclonal antibody specific for the type 3 complement receptor of myelomonocytic cells. Absence of monocytes at infective foci allows Listeria to multiply in nonphagocytic cells. J. Exp. Med. 170, 27–37 (1989).

    Article  CAS  PubMed  Google Scholar 

  39. Kurihara, T., Warr, G., Loy, J. & Bravo, R. Defects in macrophage recruitment and host defense in mice lacking the CCR2 chemokine receptor. J. Exp. Med. 186, 1757–1762 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Miyamoto, M. et al. Neutrophilia in LFA-1-deficient mice confers resistance to listeriosis: possible contribution of granulocyte-colony-stimulating factor and IL-17. J. Immunol. 170, 5228–5234 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Endres, R. et al. Listeriosis in p47phox−/− and TRp55−/− mice: protection despite absence of ROI and susceptibility despite presence of RNI. Immunity 7, 419–432 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Shiloh, M. U. et al. Phenotype of mice and macrophages deficient in both phagocyte oxidase and inducible nitric oxide synthase. Immunity 10, 29–38 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Serbina, N. V., Salazar-Mather, T. P., Biron, C. A., Kuziel, W. A. & Pamer, E. G. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 19, 59–70 (2003). This study shows that a novel DC population that produces iNOS and TNF is recruited to sites of infection with L. monocytogenes.

    Article  CAS  PubMed  Google Scholar 

  44. Takeda, K. & Akira, S. TLR signaling pathways. Semin. Immunol. 16, 3–9 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Seki, E. et al. Critical roles of myeloid differentiation factor 88-dependent proinflammatory cytokine release in early phase clearance of Listeria monocytogenes in mice. J. Immunol. 169, 3863–3868 (2002). Together with reference 47, this paper reports on the impact of MyD88 deficiency on immune defence against infection with L. monocytogenes.

    Article  CAS  PubMed  Google Scholar 

  46. Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Edelson, B. T. & Unanue, E. R. MyD88-dependent but Toll-like receptor 2-independent innate immunity to Listeria: no role for either in macrophage listericidal activity. J. Immunol. 169, 3869–3875 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Serbina, N. V. et al. Sequential MyD88-independent and -dependent activation of innate immune responses to intracellular bacterial infection. Immunity 19, 891–901 (2003). This study shows that the earliest innate immune responses do not depend on MyD88-mediated signals.

    Article  CAS  PubMed  Google Scholar 

  49. Tsuji, N. M. et al. Roles of caspase-1 in Listeria infection in mice. Int. Immunol. 16, 335–343 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Kobayashi, K. et al. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 110, 191–202 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Kobayashi, K. et al. RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems. Nature 416, 194–199 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Chin, A. I. et al. Involvement of receptor-interacting protein 2 in innate and adaptive immune responses. Nature 416, 190–194 (2002). References 51 and 52 show that RIP2-mediated signals contribute to the innate immune response to infection with L. monocytogenes.

    Article  CAS  PubMed  Google Scholar 

  53. Way, S. S., Kollmann, T. R., Hajjar, A. M. & Wilson, C. B. Protective cell-mediated immunity to Listeria monocytogenes in the absence of myeloid differentiation factor 88. J. Immunol. 171, 533–537 (2003). Although MyD88 has a central role in innate immune defence, this study shows that CD8+ T-cell responses are maintained in mice that lack MyD88.

    Article  CAS  PubMed  Google Scholar 

  54. Sha, W. C., Liou, H. C., Tuomanen, E. I. & Baltimore, D. Targeted disruption of the p50 subunit of NF-κB leads to multifocal defects in immune responses. Cell 80, 321–330 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Hauf, N., Goebel, W., Fiedler, F., Sokolovic, Z. & Kuhn, M. Listeria monocytogenes infection of P388D1 macrophages results in a biphasic NF-κB (RelA/p50) activation induced by lipoteichoic acid and bacterial phospholipases and mediated by IκBα and IκBβ degradation. Proc. Natl Acad. Sci. USA 94, 9394–9399 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kayal, S. et al. Listeriolysin O secreted by Listeria monocytogenes induces NF-κB signalling by activating the IκB kinase complex. Mol. Microbiol. 44, 1407–1419 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Aichele, P. et al. Macrophages of the splenic marginal zone are essential for trapping of blood-borne particulate antigen but dispensable for induction of specific T cell responses. J. Immunol. 171, 1148–1155 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Conlan, J. W. Early pathogenesis of Listeria monocytogenes infection in the mouse spleen. J. Med. Microbiol. 44, 295–302 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Zhong, M. X., Kuziel, W. A., Pamer, E. G. & Serbina, N. V. Chemokine receptor 5 is dispensable for innate and adaptive immune responses to Listeria monocytogenes infection. Infect. Immun. 72, 1057–1064 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Merrick, J. C., Edelson, B. T., Bhardwaj, V., Swanson, P. E. & Unanue, E. R. Lymphocyte apoptosis during early phase of Listeria infection in mice. Am. J. Pathol. 151, 785–792 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Jiang, J., Lau, L. L. & Shen, H. Selective depletion of nonspecific T cells during the early stage of immune responses to infection. J. Immunol. 171, 4352–4358 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Berg, R. E., Crossley, E., Murray, S. & Forman, J. Memory CD8+ T cells provide innate immune protection against Listeria monocytogenes in the absence of cognate antigen. J. Exp. Med. 198, 1583–1593 (2003). This study shows that non-specific memory T cells are a principal source of IFN-γ early in primary infection with L. monocytogenes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mackaness, G. B. Cellular resistance to infection. J. Exp. Med. 116, 381–406 (1962).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. McGregor, D. D., Koster, F. T. & Mackaness, G. B. The short lived small lymphocyte as a mediator of cellular immunity. Nature 228, 855–856 (1970).

    Article  CAS  PubMed  Google Scholar 

  65. Edelson, B. T. & Unanue, E. R. Intracellular antibody neutralizes Listeria growth. Immunity 14, 503–512 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Egan, P. J. & Carding, S. R. Downmodulation of the inflammatory response to bacterial infection by γδ T cells cytotoxic for activated macrophages. J. Exp. Med. 191, 2145–2158 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ladel, C. H., Flesch, I. E., Arnoldi, J. & Kaufmann, S. H. Studies with MHC-deficient knock-out mice reveal impact of both MHC I- and MHC II-dependent T cell responses on Listeria monocytogenes infection. J. Immunol. 153, 3116–3122 (1994).

    CAS  PubMed  Google Scholar 

  68. Harty, J. T., Schreiber, R. D. & Bevan, M. J. CD8 T cells can protect against an intracellular bacterium in an interferon γ-independent fashion. Proc. Natl Acad. Sci. USA 89, 11612–11616 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Portnoy, D. A., Schreiber, R. D., Connelly, P. & Tilney, L. G. γ-interferon limits access of Listeria monocytogenes to the macrophage cytoplasm. J. Exp. Med. 170, 2141–2146 (1989).

    Article  CAS  PubMed  Google Scholar 

  70. Collazo, C. M. et al. Inactivation of LRG-47 and IRG-47 reveals a family of interferon γ-inducible genes with essential, pathogen-specific roles in resistance to infection. J. Exp. Med. 194, 181–188 (2001). This study shows that LRG47 has an essential role in defence against infection with L. monocytogenes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kerksiek, K. M., Busch, D. H., Pilip, I. M., Allen, S. E. & Pamer, E. G. H2–M3-restricted T cells in bacterial infection: rapid primary but diminished memory responses. J. Exp. Med. 190, 195–204 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Seaman, M. S., Wang, C. R. & Forman, J. MHC class Ib-restricted CTL provide protection against primary and secondary Listeria monocytogenes infection. J. Immunol. 165, 5192–5201 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Finelli, A. et al. MHC class I restricted T cell responses to Listeria monocytogenes, an intracellular bacterial pathogen. Immunol. Res. 19, 211–223 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Villanueva, M. S., Sijts, A. J. & Pamer, E. G. Listeriolysin is processed efficiently into an MHC class I-associated epitope in Listeria monocytogenes-infected cells. J. Immunol. 155, 5227–5233 (1995).

    CAS  PubMed  Google Scholar 

  75. Decatur, A. L. & Portnoy, D. A. A PEST-like sequence in listeriolysin O essential for Listeria monocytogenes pathogenicity. Science 290, 992–995 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Bubert, A., Kuhn, M., Goebel, W. & Kohler, S. Structural and functional properties of the p60 proteins from different Listeria species. J. Bacteriol. 174, 8166–8171 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sijts, A. J., Pilip, I. & Pamer, E. G. The Listeria monocytogenes-secreted p60 protein is an N-end rule substrate in the cytosol of infected cells. Implications for major histocompatibility complex class I antigen processing of bacterial proteins. J. Biol. Chem. 272, 19261–19268 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. Villanueva, M. S., Fischer, P., Feen, K. & Pamer, E. G. Efficiency of MHC class I antigen processing: a quantitative analysis. Immunity 1, 479–489 (1994).

    Article  CAS  PubMed  Google Scholar 

  79. Vijh, S., Pilip, I. M. & Pamer, E. G. Effect of antigen-processing efficiency on in vivo T cell response magnitudes. J. Immunol. 160, 3971–3977 (1998).

    CAS  PubMed  Google Scholar 

  80. Busch, D. H., Pilip, I. M., Vijh, S. & Pamer, E. G. Coordinate regulation of complex T cell populations responding to bacterial infection. Immunity 8, 353–362 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Mercado, R. et al. Early programming of T cell populations responding to bacterial infection. J. Immunol. 165, 6833–6839 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Badovinac, V. P., Porter, B. B. & Harty, J. T. Programmed contraction of CD8+ T cells after infection. Nature Immunol. 3, 619–626 (2002). References 81 and 82 show that the clonal expansion and contraction of CD8+ T cells occurs even when bacterial infections are attenuated by the early administration of antibiotics.

    Article  CAS  Google Scholar 

  83. Wong, P. & Pamer, E. G. Antigen-independent CD8 T cell proliferation. J. Immunol. 166, 5864–5868 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Badovinac, V. P., Porter, B. B. & Harty, J. T. CD8+ T cell contraction is controlled by early inflammation. Nature Immunol. 5, 809–817 (2004).

    Article  CAS  Google Scholar 

  85. Busch, D. H., Kerksiek, K. M. & Pamer, E. G. Differing roles of inflammation and antigen in T cell proliferation and memory generation. J. Immunol. 164, 4063–4070 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Kaech, S. M. & Ahmed, R. Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naive cells. Nature Immunol. 2, 415–422 (2001).

    Article  CAS  Google Scholar 

  87. Wong, P. & Pamer, E. G. Disparate in vitro and in vivo requirements for IL-2 during antigen-independent CD8 T cell expansion. J. Immunol. 172, 2171–2176 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Badovinac, V. P. & Harty, J. T. Adaptive immunity and enhanced CD8+ T cell response to Listeria monocytogenes in the absence of perforin and IFN-γ. J. Immunol. 164, 6444–6452 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Badovinac, V. P., Tvinnereim, A. R. & Harty, J. T. Regulation of antigen-specific CD8+ T cell homeostasis by perforin and interferon-γ. Science 290, 1354–1358 (2000). This study shows that effector molecules produced by CD8+ T cells can influence the magnitude of the CD8+ T-cell response.

    Article  CAS  PubMed  Google Scholar 

  90. Wong, P. & Pamer, E. G. Feedback regulation of pathogen-specific T cell priming. Immunity 18, 499–511 (2003). This study shows that in vivo T-cell priming occurs only during a short time period following infection.

    Article  CAS  PubMed  Google Scholar 

  91. Lenz, L. L., Butz, E. A. & Bevan, M. J. Requirements for bone marrow-derived antigen-presenting cells in priming cytotoxic T cell responses to intracellular pathogens. J. Exp. Med. 192, 1135–1142 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jung, S. et al. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17, 211–220 (2002). This paper shows that, during infection with L. monocytogenes , the in vivo priming of CD8+ T cells requires antigen presentation by CD11c-expressing antigen-presenting cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. von Koenig, C. H., Finger, H. & Hof, H. Failure of killed Listeria monocytogenes vaccine to produce protective immunity. Nature 297, 233–234 (1982).

    Article  CAS  PubMed  Google Scholar 

  94. Lauvau, G. et al. Priming of memory but not effector CD8 T cells by a killed bacterial vaccine. Science 294, 1735–1739 (2001). This study shows that heat-killed L. monocytogenes effectively primes CD8+ T cells, but these primed T cells do not efficiently undergo differentiation into effector T cells.

    Article  CAS  PubMed  Google Scholar 

  95. Rolph, M. S. & Kaufmann, S. H. CD40 signaling converts a minimally immunogenic antigen into a potent vaccine against the intracellular pathogen Listeria monocytogenes. J. Immunol. 166, 5115–5121 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Brzoza, K. L., Rockel, A. B. & Hiltbold, E. M. Cytoplasmic entry of Listeria monocytogenes enhances dendritic cell maturation and T cell differentiation and function. J. Immunol. 173, 2641–2651 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Mittrucker, H. W., Kursar, M., Kohler, A., Hurwitz, R. & Kaufmann, S. H. Role of CD28 for the generation and expansion of antigen-specific CD8+ T lymphocytes during infection with Listeria monocytogenes. J. Immunol. 167, 5620–5627 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Shedlock, D. J. et al. Role of CD4 T cell help and costimulation in CD8 T cell responses during Listeria monocytogenes infection. J. Immunol. 170, 2053–2063 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Mittrucker, H. W. et al. Inducible costimulator protein controls the protective T cell response against Listeria monocytogenes. J. Immunol. 169, 5813–5817 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Hamilton, S. E., Tvinnereim, A. R. & Harty, J. T. Listeria monocytogenes infection overcomes the requirement for CD40 ligand in exogenous antigen presentation to CD8+ T cells. J. Immunol. 167, 5603–5609 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Sun, J. C. & Bevan, M. J. Long-lived CD8 memory and protective immunity in the absence of CD40 expression on CD8 T cells. J. Immunol. 172, 3385–3389 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Pope, C. et al. Organ-specific regulation of the CD8 T cell response to Listeria monocytogenes infection. J. Immunol. 166, 3402–3409 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Huster, K. M. et al. Selective expression of IL-7 receptor on memory T cells identifies early CD40L-dependent generation of distinct CD8+ memory T cell subsets. Proc. Natl Acad. Sci. USA 101, 5610–5615 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kursar, M. et al. Organ-specific CD4+ T cell response during Listeria monocytogenes infection. J. Immunol. 168, 6382–6387 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Sun, J. C. & Bevan, M. J. Defective CD8 T cell memory following acute infection without CD4 T cell help. Science 300, 339–342 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Shedlock, D. J. & Shen, H. Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science 300, 337–339 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Sun, J. C., Williams, M. A. & Bevan, M. J. CD4+ T cells are required for the maintenance, not programming, of memory CD8+ T cells after acute infection. Nature Immunol. 5, 927–933 (2004). References 105 to 107 characterize the contribution of CD4+ T cells to the generation of memory CD8+ T cells after infection with L. monocytogenes.

    Article  CAS  Google Scholar 

  108. Wong, P., Lara-Tejero, M., Ploss, A., Leiner, I. & Pamer, E. G. Rapid development of T cell memory. J. Immunol. 172, 7239–7245 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Kerksiek, K. M., Ploss, A., Leiner, I., Busch, D. H. & Pamer, E. G. H2–M3-restricted memory T cells: persistence and activation without expansion. J. Immunol. 170, 1862–1869 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Busch, D. H. & Pamer, E. G. MHC class I/peptide stability: implications for immunodominance, in vitro proliferation, and diversity of responding CTL. J. Immunol. 160, 4441–4448 (1998).

    CAS  PubMed  Google Scholar 

  111. Busch, D. H., Pilip, I. & Pamer, E. G. Evolution of a complex T cell receptor repertoire during primary and recall bacterial infection. J. Exp. Med. 188, 61–70 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Busch, D. H. & Pamer, E. G. T cell affinity maturation by selective expansion during infection. J. Exp. Med. 189, 701–710 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kursar, M. et al. Regulatory CD4+CD25+ T cells restrict memory CD8+ T cell responses. J. Exp. Med. 196, 1585–1592 (2002). This study shows that regulatory T cells restrict the development of L. monocytogenes -specific memory T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kursar, M., Kohler, A., Kaufmann, S. H. & Mittrucker, H. W. Depletion of CD4+ T cells during immunization with nonviable Listeria monocytogenes causes enhanced CD8+ T cell-mediated protection against listeriosis. J. Immunol. 172, 3167–3172 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Harty, J. T. & Bevan, M. J. Specific immunity to Listeria monocytogenes in the absence of IFN γ. Immunity 3, 109–117 (1995).

    Article  CAS  PubMed  Google Scholar 

  116. White, D. W., Badovinac, V. P., Kollias, G. & Harty, J. T. Antilisterial activity of CD8+ T cells derived from TNF-deficient and TNF/perforin double-deficient mice. J. Immunol. 165, 5–9 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. White, D. W. & Harty, J. T. Perforin-deficient CD8+ T cells provide immunity to Listeria monocytogenes by a mechanism that is independent of CD95 and IFN-γ but requires TNF-α. J. Immunol. 160, 898–905 (1998).

    CAS  PubMed  Google Scholar 

  118. Jensen, E. R. et al. Fas (CD95)-dependent cell-mediated immunity to Listeria monocytogenes. Infect. Immun. 66, 4143–4150 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Jiang, J., Zenewicz, L. A., San Mateo, L. R., Lau, L. L. & Shen, H. Activation of antigen-specific CD8 T cells results in minimal killing of bystander bacteria. J. Immunol. 171, 6032–6038 (2003). This study shows that CD8+ T cells only kill L. monocytogenes bacteria that express their cognate antigen, showing the specificity of CD8+ T cells during the course of active bacterial infection.

    Article  CAS  PubMed  Google Scholar 

  120. De Libero, G. & Kaufmann, S. H. Antigen-specific Lyt-2+ cytolytic T lymphocytes from mice infected with the intracellular bacterium Listeria monocytogenes. J. Immunol. 137, 2688–2694 (1986).

    CAS  PubMed  Google Scholar 

  121. Kaufmann, S. H., Rodewald, H. R., Hug, E. & De Libero, G. Cloned Listeria monocytogenes specific non-MHC-restricted Lyt-2+ T cells with cytolytic and protective activity. J. Immunol. 140, 3173–3179 (1988).

    CAS  PubMed  Google Scholar 

  122. Pamer, E. G., Wang, C. R., Flaherty, L., Lindahl, K. F. & Bevan, M. J. H-2M3 presents a Listeria monocytogenes peptide to cytotoxic T lymphocytes. Cell 70, 215–223 (1992).

    Article  CAS  PubMed  Google Scholar 

  123. Kurlander, R. J., Shawar, S. M., Brown, M. L. & Rich, R. R. Specialized role for a murine class I-b MHC molecule in prokaryotic host defenses. Science 257, 678–679 (1992).

    Article  CAS  PubMed  Google Scholar 

  124. Lindahl, K. F., Dabhi, V. M., Hovik, R., Smith, G. P. & Wang, C. R. Presentation of N-formylated peptides by H2–M3. Biochem. Soc. Trans. 23, 669–674 (1995).

    Article  CAS  PubMed  Google Scholar 

  125. Lenz, L. L., Dere, B. & Bevan, M. J. Identification of an H2–M3-restricted Listeria epitope: implications for antigen presentation by M3. Immunity 5, 63–72 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Princiotta, M. F., Lenz, L. L., Bevan, M. J. & Staerz, U. D. H2–M3 restricted presentation of a Listeria-derived leader peptide. J. Exp. Med. 187, 1711–1719 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Gulden, P. H. et al. A Listeria monocytogenes pentapeptide is presented to cytolytic T lymphocytes by the H2–M3 MHC class Ib molecule. Immunity 5, 73–79 (1996).

    Article  CAS  PubMed  Google Scholar 

  128. D'Orazio, S. E., Velasquez, M., Roan, N. R., Naveiras-Torres, O. & Starnbach, M. N. The Listeria monocytogenes lemA gene product is not required for intracellular infection or to activate fMIGWII-specific T cells. Infect. Immun. 71, 6721–6727 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ploss, A. et al. Promiscuity of MHC class Ib-restricted T cell responses. J. Immunol. 171, 5948–5955 (2003).

    Article  CAS  PubMed  Google Scholar 

  130. Kerksiek, K. M., Busch, D. H. & Pamer, E. G. Variable immunodominance hierarchies for H2–M3-restricted N-formyl peptides following bacterial infection. J. Immunol. 166, 1132–1140 (2001).

    Article  CAS  PubMed  Google Scholar 

  131. Hamilton, S. E., Porter, B. B., Messingham, K. A., Badovinac, V. P. & Harty, J. T. MHC class Ia-restricted memory T cells inhibit expansion of a nonprotective MHC class Ib (H2–M3)-restricted memory response. Nature Immunol. 5, 159–168 (2004).

    Article  CAS  Google Scholar 

  132. Huleatt, J. W., Pilip, I., Kerksiek, K. & Pamer, E. G. Intestinal and splenic T cell responses to enteric Listeria monocytogenes infection: distinct repertoires of responding CD8 T lymphocytes. J. Immunol. 166, 4065–4073 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

4-1BB

ActA

CCL2

CCR2

CCR5

CD11c

CD40

CD137L

complement receptor 3

H2–M3

ICOS

IFN-γ

IFN-regulatory factor 3

iNOS

internalin A

internalin B

IRAK-M

LLO

LRG47

lymphotoxin-β receptor

MyD88

p47 phox

p50 subunit of NF-κB

p60

RIP2

TLR2

TLR5

TNF

TNFRp55

TRAIL

Infectious Disease Information

Listeria monocytogenes

FURTHER INFORMATION

Eric Pamer's laboratory

Glossary

MONOCYTOSIS

A marked increase in the number of monocytes that are circulating in the bloodstream. It occurs following infection with some pathogens.

CHORIOAMNIONITIS

An infection of placental tissues (the chorion and amnion) during pregnancy. It usually extends to infection of the intra-uterine foetus.

PHOSPHOLIPASES

Enzymes that are produced by some pathogenic bacteria. They hydrolyse phospholipids including phosphatidylinositol and phosphatidylcholine.

HEXOSE-PHOSPHATE TRANSLOCASE

(Hpt). A bacterially encoded membrane protein that transports phosphorylated hexose carbohydrates from the cytosol of the host cell into the bacterium.

ATTENUATED

A reduced capacity to cause disease. This can occur because of auxotrophy or loss of virulence.

SEVERE COMBINED IMMUNODEFICIENT (SCID) MICE

Mice with this defect do not have B or T cells.

NUDE MICE

Mice with a mutation that causes both hairlessness and defective formation of the thymus, resulting in a lack of mature T cells.

CROSS-PRESENTATION

The initiation of a CD8+ T-cell response to an antigen that is not present within antigen-presenting cells (APCs). This exogenous antigen must be taken up by APCs and then re-routed to the MHC class I pathway of antigen presentation.

PEST SEQUENCE

Protein sequence that is found in unstable cytosolic proteins that contain unusually high frequencies of proline (P), glutamine (E), serine (S) and threonine (T) residues. It results in rapid, proteasome-mediated degradation.

PROTEASOME-MEDIATED DEGRADATION

Most of the degradation of cytosolic and nuclear proteins in eukaryotic cells is catalysed by multisubunit proteases known as proteasomes.

IMMUNODOMINANT EPITOPES

Epitopes present in a complex mixture of proteins (such as provided by a whole virus, tumour cell or bacterium) that induce strong T-cell responses.

CD4+CD25+ REGULATORY T CELLS

A specialized subset of CD4+ T cells that can suppress the responses of other T cells. These cells are characterized by the expression of the α-chain of the interleukin-2 (IL-2) receptor (also known as CD25). In some cases, suppression has been associated with the secretion of IL-10, transforming growth factor-β or both of these cytokines.

N-FORMYL METHIONINE

Bacteria initiate protein synthesis with N-formyl methionine, a modified form of the amino acid methionine, which is used by prokaryotic cells. The only eukaryotic proteins that contain N-formyl methionine are those encoded by mitochondria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pamer, E. Immune responses to Listeria monocytogenes. Nat Rev Immunol 4, 812–823 (2004). https://doi.org/10.1038/nri1461

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1461

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing