Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

TEC-family kinases: regulators of T-helper-cell differentiation

Key Points

  • The phenotypes of mice that are deficient in TEC-family kinases have previously been associated with defects in phospholipase C-γ1 activation and Ca2+ mobilization. Now, several studies indicate that the TEC-family kinase ITK (interleukin-2-inducible T-cell kinase) is also required for the actin reorganization and cell polarization that occurs after T-cell-receptor engagement.

  • There are striking similarities between T cells that are deficient in ITK and VAV1 with respect to biochemical and cellular defects, including impaired reorganization of actin, and effects on recruitment of protein kinase C-θ (PKC-θ) and activation of transcription factors.

  • Evidence implicates TEC-family kinases in the development of T helper (TH) cells.

  • Overexpression of RLK (resting lymphocyte kinase) by Jurkat T cells or in mice leads to skewed differentiation towards the TH1-cell lineage.

  • T cells from Itk−/− mice produce decreased levels of TH2 cytokines and fail to mount responses to several TH2-cell-inducing pathogens.

  • Mice that are deficient in VAV1 or PKC-θ also show TH2-cell defects, implying that there are common pathways regulating TH2-cell development.

  • The recent finding that specific inhibitors of ITK ameliorate disease in a mouse model of allergic asthma indicates that ITK is a potential therapeutic target for TH2-cell-mediated diseases.

  • The defective TH2-cell response to infection with Schistosoma mansoni that is observed in Itk−/− mice is rescued by deletion of RLK, despite the presence of more severe biochemical defects in Rlk−/−Itk−/− T cells. This indicates that global inhibitors of TEC-family kinases might not be ideal therapeutic agents.

  • A role for TEC in TH-cell development has not yet been examined, but recent findings indicate that this TEC-family kinase might have unique functions in effector T cells.

Abstract

The TEC-family protein tyrosine kinases ITK, RLK and TEC have been identified as key components of T-cell-receptor signalling that contribute to the regulation of phospholipase C-γ, the mobilization of Ca2+ and the activation of mitogen-activated protein kinases. Recent data also show that TEC kinases contribute to T-cell-receptor-driven actin reorganization and cell polarization, which are required for productive T-cell activation. Functional studies have implicated TEC kinases as important mediators of pathways that control the differentiation of CD4+ T helper cells. Here, we review studies of signalling pathways that involve TEC kinases and how these pathways might contribute to the regulation of T-helper-cell differentiation and function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and activation of TEC-family kinases.
Figure 2: TEC-family kinases in T-cell-receptor-signalling pathways.
Figure 3: T-cell receptors and chemokine receptors signal through TEC-family kinases.
Figure 4: RLK and ITK in T-helper-cell development.

Similar content being viewed by others

References

  1. Thomas, J. D. et al. Colocalization of X-linked agammaglobulinemia and X-linked immunodeficiency genes. Science 261, 355–358 (1993).

    CAS  PubMed  Google Scholar 

  2. Tsukada, S. et al. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell 72, 279–290 (1993).

    CAS  PubMed  Google Scholar 

  3. Vetrie, D. et al. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein tyrosine kinases. Nature 361, 226–232 (1993).

    CAS  PubMed  Google Scholar 

  4. Rawlings, D. J. et al. Mutation of unique region of Bruton's tyrosine kinase in immunodeficient XID mice. Science 261, 358–361 (1993).

    CAS  PubMed  Google Scholar 

  5. de Weers, M., Mensink, R. G., Kraakman, M. E., Schuurman, R. K. & Hendriks, R. W. Mutation analysis of the Bruton's tyrosine kinase gene in X-linked agammaglobulinemia: identification of a mutation which affects the same codon as is altered in immunodeficient xid mice. Hum. Mol. Genet. 3, 161–166 (1994).

    CAS  PubMed  Google Scholar 

  6. Smith, C. I. et al. The Tec family of cytoplasmic tyrosine kinases: mammalian Btk, Bmx, Itk, Tec, Txk and homologs in other species. Bioessays 23, 436–446 (2001).

    CAS  PubMed  Google Scholar 

  7. Berg, L. J., Finkelstein, L. D., Lucas, J. A. & Schwartzberg, P. L. Tec family kinases in T lymphocyte development and function. Annu. Rev. Immunol. 23, 549–600 (2005).

    CAS  PubMed  Google Scholar 

  8. Liao, X. C. & Littman, D. R. Altered T cell receptor signaling and disrupted T cell development in mice lacking Itk. Immunity 3, 757–769 (1995).

    CAS  PubMed  Google Scholar 

  9. Liu, K. Q., Bunnell, S. C., Gurniak, C. B. & Berg, L. J. T cell receptor-initiated calcium release is uncoupled from capacitative calcium entry in Itk-deficient T cells. J. Exp. Med. 187, 1721–1727 (1998). This paper was the first to describe the Ca2+-mobilization defect after TCR stimulation of T cells from Itk−/− mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Schaeffer, E. M. et al. Requirement for Tec kinases Rlk and Itk in T cell receptor signaling and immunity. Science 284, 638–641 (1999). This study shows that T cells from mice that are deficient in both RLK and ITK have more severe cellular defects than do ITK-deficient T cells, indicating that there is genetic redundancy between the TEC-family kinases.

    CAS  PubMed  Google Scholar 

  11. Fowell, D. J. et al. Impaired NFATc translocation and failure of TH2 development in Itk-deficient CD4+ T cells. Immunity 11, 399–409 (1999). This paper presents the initial finding of the importance of ITK for T H 2-cell development.

    CAS  PubMed  Google Scholar 

  12. Labno, C. M. et al. Itk functions to control actin polymerization at the immune synapse through localized activation of Cdc42 and WASP. Curr. Biol. 13, 1619–1624 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Grasis, J. A., Browne, C. D. & Tsoukas, C. D. Inducible T cell tyrosine kinase regulates actin-dependent cytoskeletal events induced by the T cell antigen receptor. J. Immunol. 170, 3971–3976 (2003).

    CAS  PubMed  Google Scholar 

  14. Woods, M. L. et al. A novel function for the Tec family tyrosine kinase Itk in activation of β1 integrins by the T-cell receptor. EMBO J. 20, 1232–1244 (2001). References 12 14 show that both T cells deficient in ITK and T cells that express mutant versions of ITK have actin-polarization defects after TCR engagement. In addition, reference 12 , together with reference 50 , provides evidence for the altered localization of VAV1 in ITK-deficient cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Schaeffer, E. et al. Mutation of Tec family kinases alters T helper cell differentiation. Nature Immunol. 2, 1183–1188 (2001). This paper shows that elimination of RLK on an Itk−/− background rescues the T H 2-cell defects observed in Itk−/− T cells, highlighting the complexity of the effects of TEC-family kinases on T H -cell differentiation.

    CAS  Google Scholar 

  16. Miller, A. & Berg, L. Defective Fas ligand expression and activation-induced cell death in the absence of IL-2-inducible T cell kinase. J. Immunol. 168, 2163–2172 (2002).

    CAS  PubMed  Google Scholar 

  17. Mueller, C. & August, A. Attenuation of immunological symptoms of allergic asthma in mice lacking the tyrosine kinase Itk. J. Immunol. 170, 5056–5063 (2003). This study shows that ITK is important for the pathology of allergic asthma, a T H 2-cell-mediated response.

    CAS  PubMed  Google Scholar 

  18. Matsumoto, Y. et al. Identification of highly expressed genes in peripheral blood T cells from patients with atopic dermatitis. Int. Arch. Allergy Immunol. 129, 327–340 (2002).

    CAS  PubMed  Google Scholar 

  19. Lin, T. -A. et al. Selective Itk inhibitors block T-cell activation and murine lung inflammation. Biochemistry 43, 11056–11062 (2004).

    CAS  PubMed  Google Scholar 

  20. Scharenberg, A. M. & Kinet, J. P. PtdIns-3,4,5-P3: a regulatory nexus between tyrosine kinases and sustained calcium signals. Cell 94, 5–8 (1998).

    CAS  PubMed  Google Scholar 

  21. Tomlinson, M. G., Heath, V. L., Turck, C. W., Watson, S. P. & Weiss, A. SHIP family inositol phosphatases interact with and negatively regulate the Tec tyrosine kinase. J. Biol. Chem. 279, 55089–55096 (2004).

    CAS  PubMed  Google Scholar 

  22. Shan, X. et al. Deficiency of PTEN in Jurkat T cells causes constitutive localization of Itk to the plasma membrane and hyperresponsiveness to CD3 stimulation. Mol. Cell. Biol. 20, 6945–6957 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. August, A., Sadra, A., Dupont, B. & Hanafusa, H. Src-induced activation of inducible T cell kinase (ITK) requires phosphatidylinositol 3-kinase activity and the Pleckstrin homology domain of inducible T cell kinase. Proc. Natl Acad. Sci. USA 94, 11227–11232 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Debnath, J. et al. rlk/TXK encodes two forms of a novel cysteine string tyrosine kinase activated by Src family kinases. Mol. Cell. Biol. 19, 1498–1507 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Chamorro, M. et al. Requirements for activation and RAFT localization of the T-lymphocyte kinase Rlk/Txk. BMC Immunol. 2, 3 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Andreotti, A. H., Bunnell, S. C., Feng, S., Berg, L. J. & Schreiber, S. L. Intramolecular association of two domains in a Tec family tyrosine kinase influences binding of signaling proteins. Nature 385, 93–97 (1997).

    CAS  PubMed  Google Scholar 

  27. Brazin, K. N., Mallis, R. J., Fulton, D. B. & Andreotti, A. H. Regulation of the tyrosine kinase Itk by the peptidyl-prolyl isomerase cyclophilin A. Proc. Natl Acad. Sci. USA 99, 1899–1904 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lucas, J. A., Miller, A. T., Atherly, L. O. & Berg, L. J. The role of Tec family kinases in T cell development and function. Immunol. Rev. 191, 119–138 (2003).

    CAS  PubMed  Google Scholar 

  29. Colgan, J. et al. Cyclophilin A regulates TCR signal strength in CD4+ T cells via a proline-directed conformational switch in Itk. Immunity 21, 189–201 (2004).

    CAS  PubMed  Google Scholar 

  30. Miller, A. T., Wilcox, H. M., Lai, Z. & Berg, L. J. Signaling through Itk promotes T helper 2 differentiation via negative regulation of T-bet. Immunity 21, 67–80 (2004).

    CAS  PubMed  Google Scholar 

  31. Tomlinson, M. G. et al. Expression and function of Tec, Itk, and Btk in lymphocytes: evidence for a unique role for Tec. Mol. Cell. Biol. 24, 2455–2466 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kane, L., Lin, J. & Weiss, A. Signal transduction by the TCR for antigen. Curr. Opin. Immunol. 12, 242–249 (2000).

    CAS  PubMed  Google Scholar 

  33. Samelson, L. E. Signal transduction mediated by the T cell antigen receptor: the role of adapter proteins. Annu. Rev. Immunol. 20, 371–394 (2002).

    CAS  PubMed  Google Scholar 

  34. Bunnell, S. C. et al. Biochemical interactions integrating Itk with the T cell receptor-initiated signaling cascade. J. Biol. Chem. 275, 2219–2230 (2000).

    CAS  PubMed  Google Scholar 

  35. Su, Y. W. et al. Interaction of SLP adaptors with the SH2 domain of Tec family kinases. Eur. J. Immunol. 29, 3702–3711 (1999).

    CAS  PubMed  Google Scholar 

  36. Ching, K. A. et al. TCR/CD3-induced activation and binding of Emt/Itk to linker of activated T cell complexes: requirement for the Src homology 2 domain. J. Immunol. 165, 256–262 (2000).

    CAS  PubMed  Google Scholar 

  37. Shan, X. & Wange, R. L. Itk/Emt/Tsk activation in response to CD3 cross-linking in Jurkat T cells requires ZAP-70 and Lat and is independent of membrane recruitment. J. Biol. Chem. 274, 29323–29330 (1999).

    CAS  PubMed  Google Scholar 

  38. Takata, M. & Kurosaki, T. A role for Bruton's tyrosine kinase in B cell antigen receptor-mediated activation of phospholipase C-γ2. J. Exp. Med. 184, 31–40 (1996).

    CAS  PubMed  Google Scholar 

  39. Fluckiger, A. C. et al. Btk/Tec kinases regulate sustained increases in intracellular Ca2+ following B-cell receptor activation. EMBO J. 17, 1973–1985 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Noh, D. Y., Shin, S. H. & Rhee, S. G. Phosphoinositide-specific phospholipase C and mitogenic signaling. Biochim. Biophys. Acta 1242, 99–113 (1995).

    PubMed  Google Scholar 

  41. Ellmeier, W. et al. Severe B cell deficiency in mice lacking the Tec kinase family members Tec and Btk. J. Exp. Med. 192, 1611–1624 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Schaeffer, E. M. & Schwartzberg, P. L. Tec family kinases in lymphocyte signaling and function. Curr. Opin. Immunol. 12, 282–288 (2000).

    CAS  PubMed  Google Scholar 

  43. Kupfer, A. & Kupfer, H. Imaging immune cell interactions and functions: SMACs and the immunological synapse. Semin. Immunol. 15, 295–300 (2003).

    CAS  PubMed  Google Scholar 

  44. Cannon, J. L. & Burkhardt, J. The regulation of actin remodeling during T-cell–APC conjugate formation. Immunol. Rev. 186, 90–96 (2002).

    CAS  PubMed  Google Scholar 

  45. Bustelo, X. R. Vav proteins, adaptors and cell signaling. Oncogene 20, 6372–6381 (2001).

    CAS  PubMed  Google Scholar 

  46. Tybulewicz, V. L., Ardouin, L., Prisco, A. & Reynolds, L. F. Vav1: a key signal transducer downstream of the TCR. Immunol. Rev. 192, 42–52 (2003). This paper provides an excellent review of the phenotypes of Vav1−/− mice.

    CAS  PubMed  Google Scholar 

  47. Holsinger, L. J. et al. Defects in actin-cap formation in Vav-deficient mice implicate an actin requirement for lymphocyte signal transduction. Curr. Biol. 8, 563–572 (1998).

    CAS  PubMed  Google Scholar 

  48. Wulfing, C., Bauch, A., Crabtree, G. R. & Davis, M. M. The vav exchange factor is an essential regulator in actin-dependent receptor translocation to the lymphocyte– antigen-presenting cell interface. Proc. Natl Acad. Sci. USA 97, 10150–10155 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Fischer, K. D. et al. Vav is a regulator of cytoskeletal reorganization mediated by the T-cell receptor. Curr. Biol. 8, 554–562 (1998).

    CAS  PubMed  Google Scholar 

  50. Dombroski, D. et al. Kinase-independent functions for Itk in the TCR-induced regulation of Vav and the actin cytoskeleton. J. Immunol. 174, 1385–1392 (2005).

    CAS  PubMed  Google Scholar 

  51. Donnadieu, E. et al. Differential roles of Lck and Itk in T cell response to antigen recognition revealed by calcium imaging and electron microscopy. J. Immunol. 166, 5540–5549 (2001).

    CAS  PubMed  Google Scholar 

  52. Schaeffer, E. M. et al. Tec family kinases modulate thresholds for thymocyte development and selection. J. Exp. Med. 192, 987–1000 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Reynolds, L. F. et al. Vav1 transduces T cell receptor signals to the activation of phospholipase C-γ1 via phosphoinositide 3-kinase-dependent and -independent pathways. J. Exp. Med. 195, 1103–1114 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Finkelstein, L. D. & Schwartzberg, P. L. Tec kinases: shaping T-cell activation through actin. Trends Cell Biol. 14, 443–451 (2004).

    CAS  PubMed  Google Scholar 

  55. Costello, P. S. et al. The Rho-family GTP exchange factor Vav is a critical transducer of T cell receptor signals to the calcium, ERK, and NF-κB pathways. Proc. Natl Acad. Sci. USA 96, 3035–3040 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Zeng, R. et al. SLP-76 coordinates Nck-dependent Wiskott–Aldrich syndrome protein recruitment with Vav1/Cdc42-dependent Wiskott–Aldrich syndrome protein activation at the T cell–APC contact site. J. Immunol. 171, 1360–1368 (2003).

    CAS  PubMed  Google Scholar 

  57. Krawczyk, C. et al. Vav1 controls integrin clustering and MHC/peptide-specific cell adhesion to antigen-presenting cells. Immunity 16, 331–343 (2002).

    CAS  PubMed  Google Scholar 

  58. Villalba, M. et al. A novel functional interaction between Vav and PKCθ is required for TCR-induced T cell activation. Immunity 12, 151–160 (2000).

    CAS  PubMed  Google Scholar 

  59. Fischer, A. M., Mercer, J. C., Iyer, A., Ragin, M. J. & August, A. Regulation of CXCR4 mediated migration by the Tec family tyrosine kinase ITK. J. Biol. Chem. 279, 29816–29820 (2004).

    CAS  PubMed  Google Scholar 

  60. Takesono, A., Horai, R., Mandai, M., Dombroski, D. & Schwartzberg, P. L. Requirement for Tec kinases in chemokine-induced migration and activation of Cdc42 and Rac. Curr. Biol. 14, 917–922 (2004).

    CAS  PubMed  Google Scholar 

  61. Nore, B. F. et al. Redistribution of Bruton's tyrosine kinase by activation of phosphatidylinositol 3-kinase and Rho-family GTPases. Eur. J. Immunol. 30, 145–154 (2000).

    CAS  PubMed  Google Scholar 

  62. Lachance, G., Levasseur, S. & Naccache, P. H. Chemotactic factor-induced recruitment and activation of Tec family kinases in human neutrophils. Implication of phosphatidylinositol 3-kinases. J. Biol. Chem. 277, 21537–21541 (2002).

    CAS  PubMed  Google Scholar 

  63. Lucas, J. A., Atherly, L. O. & Berg, L. J. The absence of Itk inhibits positive selection without changing lineage commitment. J. Immunol. 168, 6142–6151 (2002).

    CAS  PubMed  Google Scholar 

  64. August, A., Fischer, A., Hao, S., Mueller, C. & Ragin, M. The Tec family of tyrosine kinases in T cells, amplifiers of T cell receptor signals. Int. J. Biochem. Cell Biol. 34, 1184–1189 (2002).

    CAS  PubMed  Google Scholar 

  65. Glimcher, L. H. & Murphy, K. M. Lineage commitment in the immune system: the T helper lymphocyte grows up. Genes Dev. 14, 1693–1711 (2000).

    CAS  PubMed  Google Scholar 

  66. Mowen, K. A. & Glimcher, L. H. Signaling pathways in TH2 development. Immunol. Rev. 202, 203–222 (2004). This paper provides a comprehensive review of the effects of signalling molecules and transcription factors on T H -cell differentiation, including a description of the phenotypes of the various NFAT-deficient mice.

    CAS  PubMed  Google Scholar 

  67. Hu, Q. et al. Identification of Rlk, a novel protein tyrosine kinase with predominant expression in the T cell lineage. J. Biol. Chem. 270, 1928–1934 (1995).

    CAS  PubMed  Google Scholar 

  68. Kashiwakura, J. et al. Txk, a nonreceptor tyrosine kinase of the Tec family, is expressed in T helper type 1 cells and regulates interferon γ production in human T lymphocytes. J. Exp. Med. 190, 1147–1154 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Perez-Villar, J. J., O'Day, K., Hewgill, D. H., Nadler, S. G. & Kanner, S. B. Nuclear localization of the tyrosine kinase Itk and interaction of its SH3 domain with karyopherin α (Rch1α). Int. Immunol. 13, 1265–1274 (2001).

    CAS  PubMed  Google Scholar 

  70. Webb, C. F. et al. The transcription factor Bright associates with Bruton's tyrosine kinase, the defective protein in immunodeficiency disease. J. Immunol. 165, 6956–6965 (2000).

    CAS  PubMed  Google Scholar 

  71. Takeba, Y., Nagafuchi, H., Takeno, M., Kashiwakura, J. & Suzuki, N. Txk, a member of nonreceptor tyrosine kinase of Tec family, acts as a TH1 cell-specific transcription factor and regulates IFN-γ gene transcription. J. Immunol. 168, 2365–2370 (2002).

    CAS  PubMed  Google Scholar 

  72. Takeno, M. et al. TH1-dominant shift of T cell cytokine production, and subsequent reduction of serum immunoglobulin E response by administration in vivo of plasmid expressing Txk/Rlk, a member of Tec family tyrosine kinases, in a mouse model. Clin. Exp. Allergy 34, 965–970 (2004).

    CAS  PubMed  Google Scholar 

  73. Reiner, S. L. & Locksley, R. M. The regulation of immunity to Leishmania major. Annu. Rev. Immunol. 13, 151–177 (1995).

    CAS  PubMed  Google Scholar 

  74. Cohn, L., Elias, J. A. & Chupp, G. L. Asthma: mechanisms of disease persistence and progression. Annu. Rev. Immunol. 22, 789–815 (2004).

    CAS  PubMed  Google Scholar 

  75. Salek-Ardakani, S., So, T., Halteman, B. S., Altman, A. & Croft, M. Differential regulation of TH2 and TH1 lung inflammatory responses by protein kinase C θ. J. Immunol. 173, 6440–6447 (2004). This paper, together with reference 77, shows T H 2-cell defects in Pkc-θ−/− mice.

    CAS  PubMed  Google Scholar 

  76. Gulbranson-Judge, A. et al. Defective immunoglobulin class switching in Vav-deficient mice is attributable to compromised T cell help. Eur. J. Immunol. 29, 477–487 (1999).

    CAS  PubMed  Google Scholar 

  77. Marsland, B. J., Soos, T. J., Spath, G., Littman, D. R. & Kopf, M. Protein kinase C θ is critical for the development of in vivo T helper (TH)2 cell but not TH1 cell responses. J. Exp. Med. 200, 181–189 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Fowell, D. J., Magram, J., Turck, C. W., Killeen, N. & Locksley, R. M. Impaired TH2 subset development in the absence of CD4. Immunity 6, 559–569 (1997).

    CAS  PubMed  Google Scholar 

  79. Brown, D. R., Moskowitz, N. H., Killeen, N. & Reiner, S. L. A role for CD4 in peripheral T cell differentiation. J. Exp. Med. 186, 101–107 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Leitenberg, D., Boutin, Y., Constant, S. & Bottomly, K. CD4 regulation of TCR signaling and T cell differentiation following stimulation with peptides of different affinities for the TCR. J. Immunol. 161, 1194–1203 (1998).

    CAS  PubMed  Google Scholar 

  81. Balamuth, F., Brogdon, J. L. & Bottomly, K. CD4 raft association and signaling regulate molecular clustering at the immunological synapse site. J. Immunol. 172, 5887–5892 (2004).

    CAS  PubMed  Google Scholar 

  82. Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999).

    CAS  PubMed  Google Scholar 

  83. Pfeifhofer, C. et al. Protein kinase C θ affects Ca2+ mobilization and NFAT cell activation in primary mouse T cells. J. Exp. Med. 197, 1525–1535 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Sun, Z. et al. PKC-θ is required for TCR-induced NF-κB activation in mature but not immature thymocytes. Nature 404, 402–407 (2000).

    CAS  PubMed  Google Scholar 

  85. Tarakhovsky, A. et al. Defective antigen receptor-mediated proliferation of B and T cells in the absence of Vav. Nature 374, 467–470 (1995).

    CAS  PubMed  Google Scholar 

  86. Cote-Sierra, J. et al. Interleukin 2 plays a central role in TH2 differentiation. Proc. Natl Acad. Sci. USA 101, 3880–3885 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Ranger, A. M. et al. Delayed lymphoid repopulation with defects in IL-4-driven responses produced by inactivation of NF-ATc. Immunity 8, 125–134 (1998).

    CAS  PubMed  Google Scholar 

  88. Yoshida, H. et al. The transcription factor NF-ATc1 regulates lymphocyte proliferation and TH2 cytokine production. Immunity 8, 115–124 (1998).

    CAS  PubMed  Google Scholar 

  89. Das, J. et al. A critical role for NF-κB in GATA3 expression and TH2 differentiation in allergic airway inflammation. Nature Immunol. 2, 45–50 (2001).

    CAS  Google Scholar 

  90. Cannons, J. L. et al. SAP regulates TH2 differentiation and PKCθ-mediated activation of NF-κB1. Immunity 21, 693–706 (2004).

    CAS  PubMed  Google Scholar 

  91. Sommers, C. L. et al. A role for the Tec family tyrosine kinase Txk in T cell activation and thymocyte selection. J. Exp. Med. 190, 1427–1438 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Leitenberg, D. & Bottomly, K. Regulation of naive T cell differentiation by varying the potency of TCR signal transduction. Semin. Immunol. 11, 283–292 (1999).

    CAS  PubMed  Google Scholar 

  93. Hosken, N. A., Shibuya, K., Heath, A. W., Murphy, K. M. & O'Garra, A. The effect of antigen dose on CD4+ T helper cell phenotype development in a T cell receptor-αβ-transgenic model. J. Exp. Med. 182, 1579–1584 (1995).

    CAS  PubMed  Google Scholar 

  94. Constant, S., Pfeiffer, C., Woodard, A., Pasqualini, T. & Bottomly, K. Extent of T cell receptor ligation can determine the functional differentiation of naive CD4+ T cells. J. Exp. Med. 182, 1591–1596 (1995).

    CAS  PubMed  Google Scholar 

  95. Jorritsma, P. J., Brogdon, J. L. & Bottomly, K. Role of TCR-induced extracellular signal-regulated kinase activation in the regulation of early IL-4 expression in naive CD4+ T cells. J. Immunol. 170, 2427–2434 (2003).

    CAS  PubMed  Google Scholar 

  96. Ebinu, J. O. et al. RasGRP links T-cell receptor signaling to Ras. Blood 95, 3199–3203 (2000).

    CAS  PubMed  Google Scholar 

  97. Ranger, A. M., Oukka, M., Rengarajan, J. & Glimcher, L. H. Inhibitory function of two NFAT family members in lymphoid homeostasis and TH2 development. Immunity 9, 627–635 (1998).

    CAS  PubMed  Google Scholar 

  98. Xanthoudakis, S. et al. An enhanced immune response in mice lacking the transcription factor NFAT1. Science 272, 892–895 (1996).

    CAS  PubMed  Google Scholar 

  99. Hodge, M. R. et al. Hyperproliferation and dysregulation of IL-4 expression in NF-ATp-deficient mice. Immunity 4, 397–405 (1996).

    CAS  PubMed  Google Scholar 

  100. Brogdon, J. L., Leitenberg, D. & Bottomly, K. The potency of TCR signaling differentially regulates NFATc/p activity and early IL-4 transcription in naive CD4+ T cells. J. Immunol. 168, 3825–3832 (2002).

    CAS  PubMed  Google Scholar 

  101. Peng, S. L., Gerth, A. J., Ranger, A. M. & Glimcher, L. H. NFATc1 and NFATc2 together control both T and B cell activation and differentiation. Immunity 14, 13–20 (2001).

    CAS  PubMed  Google Scholar 

  102. Aguado, E. et al. Induction of T helper type 2 immunity by a point mutation in the LAT adaptor. Science 296, 2036–2040 (2002).

    CAS  PubMed  Google Scholar 

  103. Sommers, C. L. et al. A LAT mutation that inhibits T cell development yet induces lymphoproliferation. Science 296, 2040–2043 (2002).

    CAS  PubMed  Google Scholar 

  104. Hwang, E. S., Szabo, S. J., Schwartzberg, P. L. & Glimcher, L. H. T helper cell fate specified by kinase-mediated interaction of T-bet with GATA-3. Science 307, 430–433 (2005).

    CAS  PubMed  Google Scholar 

  105. Gadue, P. & Stein, P. L. NK T cell precursors exhibit differential cytokine regulation and require Itk for efficient maturation. J. Immunol. 169, 2397–2406 (2002).

    CAS  PubMed  Google Scholar 

  106. Stanic, A. K. et al. The ontogeny and function of Vα14Jα18 natural T lymphocytes require signal processing by protein kinase C θ and NF-κB. J. Immunol. 172, 4667–4671 (2004).

    CAS  PubMed  Google Scholar 

  107. Chan, G., Hanke, T. & Fischer, K. -D. Vav-1 regulates NK T cell development and NK cell cytotoxicity. Eur. J. Immunol. 31, 2403–2410 (2001).

    CAS  PubMed  Google Scholar 

  108. Liu, Y. et al. Protein kinase C θ is expressed in mast cells and is functionally involved in Fcε receptor 1 signaling. J. Leukoc. Biol. 69, 831–840 (2001).

    CAS  PubMed  Google Scholar 

  109. Kawakami, Y. et al. Activation and interaction with protein kinase C of a cytoplasmic tyrosine kinase, Itk/Tsk/Emt, on FcεRI cross-linking on mast cells. J. Immunol. 155, 3556–3562 (1995).

    CAS  PubMed  Google Scholar 

  110. Manetz, T. S. et al. Vav1 regulates phospholipase Cγ activation and calcium responses in mast cells. Mol. Cell. Biol. 21, 3763–3774 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. August, A. et al. CD28 is associated with and induces the immediate tyrosine phosphorylation and activation of the Tec family kinase ITK/EMT in the human Jurkat leukemic T-cell line. Proc. Natl Acad. Sci. USA 91, 9347–9351 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Yang, W. C. & Olive, D. Tec kinase is involved in transcriptional regulation of IL-2 and IL-4 in the CD28 pathway. Eur. J. Immunol. 29, 1842–1849 (1999).

    CAS  PubMed  Google Scholar 

  113. Liao, X. C. et al. Itk negatively regulates induction of T cell proliferation by CD28 costimulation. J. Exp. Med. 186, 221–228 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Michel, F., Attal-Bonnefoy, G., Mangino, G., Mise-Omata, S. & Acuto, O. CD28 as a molecular amplifier extending TCR ligation and signaling capabilities. Immunity 15, 935–945 (2001).

    CAS  PubMed  Google Scholar 

  115. Altman, A. et al. Positive feedback regulation of PLCγ1/Ca2+ signaling by PKCθ in restimulated T cells via a Tec kinase-dependent pathway. Eur. J. Immunol. 34, 2001–2011 (2004).

    CAS  PubMed  Google Scholar 

  116. Garcon, F., Bismuth, G., Isnardon, D., Olive, D. & Nunes, J. A. Tec kinase migrates to the T cell–APC interface independently of its pleckstrin homology domain. J. Immunol. 173, 770–775 (2004).

    CAS  PubMed  Google Scholar 

  117. Bachmann, M. F., Littman, D. R. & Liao, X. C. Antiviral immune responses in Itk-deficient mice. J. Virol. 71, 7253–7257 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Hollander, G. A., Bierer, B. E. & Burakoff, S. J. Molecular and biological actions of cyclosporin A and FK506 on T cell development and function. Transfus. Sci. 15, 207–220 (1994).

    CAS  PubMed  Google Scholar 

  119. Turner, M. et al. A requirement for the Rho-family GTP exchange factor Vav in positive and negative selection of thymocytes. Immunity 7, 451–460 (1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank R. Houghtling and members of the Schwartzberg laboratory for helpful discussions, and A. Altman for permission to cite unpublished results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela L. Schwartzberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

BMX

BTK

GATA3

ITK

MAF

NFATc1

PKC-θ

RLK

T-bet

TEC

VAV1

Glossary

X-LINKED AGAMMAGLOBULINAEMIA

(XLA). A human immunodeficiency that is caused by mutations in the gene encoding Bruton's tyrosine kinase (BTK), which is located on the X chromosome.These mutations result in a block in B-cell maturation and in poor antibody production. A naturally occurring mouse mutant of BTK, X-linked immunodeficiency (XID), is associated with less severe disease.

NON-RECEPTOR PROTEIN TYROSINE KINASES

Proteins that lack a transmembrane or extracellular domain, have no ligand, are found intracellularly and add a phosphate group to tyrosine residues in proteins. Tyrosine phosphorylation leads to a change in the ability of the phosphorylated protein to bind and activate downstream molecules.

T-HELPER-2-CELL RESPONSES

(TH2-cell responses). There are two main effector subsets of CD4+ T cells, which are characterized by distinct cytokine profiles and by functional activity. TH2 cells produce interleukin-4 (IL-4), IL-5, IL-9, IL-10 and IL-13, leading to activation of humoral immune responses. By contrast, TH1 cells produce interferon-γ, IL-2 and lymphotoxin, which support cell-mediated immunity. Appropriate differentiation of T cells into these subsets is important for mounting immune responses to different pathogens, whereas an imbalance between these subsets is associated with diseases, including asthma, hypersensitivity and autoimmune disorders.

ATOPIC DERMATITIS

A disease that is characterized by a scaly, itchy rash that is caused by inflammation of the skin and by increased production of T-helper-2 cytokines.

PHOSPHATIDYLINOSITOL-3,4,5-TRISPHOSPHATE

(PtdIns(3,4,5)P3). A product of phosphatidylinositol 3-kinase, which adds a phosphate group to phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) to yield PtdIns(3,4,5)P3. PtdIns(3,4,5)P3 binds pleckstrin-homology-domain-containing proteins, resulting in membrane recruitment of these proteins and initiation of signalling cascades.

PLECKSTRIN-HOMOLOGY DOMAIN

A protein–lipid interaction domain that usually consists of 100 amino-acid residues. Pleckstrin-homology domains have little overall sequence homology but have conserved motifs and tertiary structure. They are thought to be involved in anchoring of proteins to the membrane and have been found to bind the following: phospholipids (including phosphatidylinositol-4,5-bisphosphate and phosphatidylinositol-3,4,5-trisphosphate), proteins (including the β and γ subunits of heterotrimeric G proteins), phosphorylated serine or threonine residues, and membranes.

SH3

(SRC homology 3). A protein-interaction domain that is commonly found in signal-transduction molecules. It specifically interacts with certain proline-containing peptides (containing either (R/K)XXPXXP or PXXPXR motifs, where X denotes any amino acid) to facilitate protein– protein interactions that are required for protein function or subcellular localization.

SH2

(SRC homology 2). A protein-interaction domain that is commonly found in signal-transduction molecules. It specifically interacts with phosphotyrosine-containing peptides.

PEPTIDYLPROLYL ISOMERASE

An enzyme that converts the peptide bond that is amino terminal to proline residues between cis and trans conformations. Cyclophilin A is a peptidylprolyl isomerase that acts on a proline residue present in ITK (interleukin-2-inducible T-cell kinase).

CYCLOPHILIN A

A well-known binding partner of the immunosuppressant cyclosporin. The cyclosporin– cyclophilin complex inhibits activation of calcineurin, a phosphatase that activates the NFAT (nuclear factor of activated T cells) family of transcription factors. Cyclophilin A is also a peptidylprolyl isomerase, an enzyme that can affect the activity of ITK (interleukin-2-inducible T-cell kinase).

ACTIVATION-INDUCED CELL DEATH

(AICD). Apoptotic cell death that results from engagement of receptors at the cell surface of a lymphocyte to control clonal expansion. Defects in AICD result in lymphoproliferative disorders.

SMALL INTERFERING RNA

(siRNA). Short double-stranded RNAs of 19–23 nucleotides that induce RNA interference (RNAi), a post-transcriptional process that leads to gene silencing in a sequence-specific manner.

CHEMOKINES

Small, inducibly secreted proteins that induce activation and migration of lymphocytes.

ANTISENSE OLIGONUCLEOTIDES

Short, gene-specific sequences of nucleic acids that are of the opposite strand (complementary) to the targeted mRNA. Classical antisense oligonucleotides target specific strands of RNA within a cell, thereby preventing translation of these RNAs.

ALTERED PEPTIDE LIGANDS

Analogues that are derived from the original antigenic peptide. They commonly have amino-acid substitutions at T-cell receptor (TCR)-contact residues. TCR engagement by these altered peptide ligands usually leads to partial or incomplete T-cell activation. Some of these altered peptide ligands (antagonists) can specifically antagonize and inhibit T-cell activation that is induced by the wild-type antigenic peptide.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwartzberg, P., Finkelstein, L. & Readinger, J. TEC-family kinases: regulators of T-helper-cell differentiation. Nat Rev Immunol 5, 284–295 (2005). https://doi.org/10.1038/nri1591

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1591

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing