Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Transcriptional networks in developing and mature B cells

Key Points

  • B cells are generated in the bone marrow from pluripotent haematopoietic stem cells, which can give rise to all blood-cell types.

  • The development of B cells can be divided into several stages that are identified by the expression of various cell-surface markers or other molecules, as well as by the extent of rearrangement of immunoglobulin genes. The first 'functional' B cells are known as immature B cells and are defined by expression of IgM at the cell surface.

  • Immature B cells exit the bone marrow and enter the spleen, where they further differentiate through several transitional stages and eventually become mature follicular or marginal-zone B cells. These cells can also undergo terminal differentiation to become plasma cells.

  • Along the B-cell-differentiation pathway, several check-points have been defined on the basis of genetic studies: these check-points are initial commitment to lymphocytic progenitors, specification of pre-B cells, entry to the peripheral B-cell pool, maturation of B cells and differentiation into plasma cells.

  • Many transcription factors have been identified to be crucial at the various regulatory nodes. In some cases, hierarchical networks of interdependent transcription factors have been defined; the best example is the E2A–EBF (early B-cell factor)–PAX5 (paired box protein 5) circuit, which controls commitment to pro- and pre-B cells.

  • Other networks, which control later stages of B-cell development or function, have been uncovered, but their precise 'wiring' has not yet been rigorously dissected.

Abstract

The development of B cells from haematopoietic stem cells proceeds along a highly ordered, yet flexible, pathway. At multiple steps along this pathway, cells are instructed by transcription factors on how to further differentiate, and several check-points have been identified. These check-points are initial commitment to lymphocytic progenitors, specification of pre-B cells, entry to the peripheral B-cell pool, maturation of B cells and differentiation into plasma cells. At each of these regulatory nodes, there are transcriptional networks that control the outcome, and much progress has recently been made in dissecting these networks. This article reviews our current understanding of this exciting field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: B cells develop from early haematopoietic progenitors.
Figure 2: Transcription factors important for B-cell development and function.
Figure 3: The genetic control of B-cell specification and commitment in the bone marrow.
Figure 4: The genetic control of B-cell maturation and function in the periphery.

Similar content being viewed by others

References

  1. Medina, K. L. et al. Identification of very early lymphoid precursors in bone marrow and their regulation by estrogen. Nature Immunol. 2, 718–724 (2001).

    CAS  Google Scholar 

  2. Igarashi, H., Gregory, S. C., Yokota, T., Sakaguchi, N. & Kincade, P. W. Transcription from the RAG1 locus marks the earliest lymphocyte progenitors in bone marrow. Immunity 17, 117–130 (2002).

    CAS  PubMed  Google Scholar 

  3. Allman, D. et al. Thymopoiesis independent of common lymphoid progenitors. Nature Immunol. 4, 168–174 (2003).

    CAS  Google Scholar 

  4. Martin, C. H. et al. Efficient thymic immigration of B220+ lymphoid-restricted bone marrow cells with T precursor potential. Nature Immunol. 4, 866–873 (2003).

    CAS  Google Scholar 

  5. Loffert, D., Ehlich, A., Muller, W. & Rajewsky, K. Surrogate light chain expression is required to establish immunoglobulin heavy chain allelic exclusion during early B cell development. Immunity 4, 133–144 (1996).

    CAS  PubMed  Google Scholar 

  6. Shimizu, T., Mundt, C., Licence, S., Melchers, F. & Martensson, I. L. VpreB1/VpreB2/λ5 triple-deficient mice show impaired B cell development but functional allelic exclusion of the IgH locus. J. Immunol. 168, 6286–6293 (2002).

    CAS  PubMed  Google Scholar 

  7. Nemazee, D. & Weigert, M. Revising B cell receptors. J. Exp. Med. 191, 1813–1817 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Loder, F. et al. B cell development in the spleen takes place in discrete steps and is determined by the quality of B cell receptor-derived signals. J. Exp. Med. 190, 75–89 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Montecino-Rodriguez, E., Leathers, H. & Dorshkind, K. Bipotential B-macrophage progenitors are present in adult bone marrow. Nature Immunol. 2, 83–88 (2001).

    CAS  Google Scholar 

  10. McKercher, S. R. et al. Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J. 15, 5647–5658 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Scott, E. W., Simon, M. C., Anastasi, J. & Singh, H. Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 265, 1573–1577 (1994). This was the first study to show that PU.1 is required for the earliest stages of lymphocyte development.

    CAS  PubMed  Google Scholar 

  12. Scott, E. W. et al. PU.1 functions in a cell-autonomous manner to control the differentiation of multipotential lymphoid-myeloid progenitors. Immunity 6, 437–447 (1997).

    CAS  PubMed  Google Scholar 

  13. DeKoter, R. P., Walsh, J. C. & Singh, H. PU.1 regulates both cytokine-dependent proliferation and differentiation of granulocyte/macrophage progenitors. EMBO J. 17, 4456–4468 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. DeKoter, R. P., Lee, H. J. & Singh, H. PU.1 regulates expression of the interleukin-7 receptor in lymphoid progenitors. Immunity 16, 297–309 (2002).

    CAS  PubMed  Google Scholar 

  15. Schweitzer, B. L. & DeKoter, R. P. Analysis of gene expression and Ig transcription in PU.1/Spi-B-deficient progenitor B cell lines. J. Immunol. 172, 144–154 (2004).

    CAS  PubMed  Google Scholar 

  16. Su, G. H. et al. Defective B cell receptor-mediated responses in mice lacking the Ets protein, Spi-B. EMBO J. 16, 7118–7129 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Dahl, R., Ramirez-Bergeron, D. L., Rao, S. & Simon, M. C. Spi-B can functionally replace PU.1 in myeloid but not lymphoid development. EMBO J. 21, 2220–2230 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. DeKoter, R. P. & Singh, H. Regulation of B lymphocyte and macrophage development by graded expression of PU.1. Science 288, 1439–1441 (2000).

    CAS  PubMed  Google Scholar 

  19. Rosenbauer, F. et al. Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1. Nature Genet. 36, 624–630 (2004).

    CAS  PubMed  Google Scholar 

  20. Georgopoulos, K., Winandy, S. & Avitahl, N. The role of the Ikaros gene in lymphocyte development and homeostasis. Annu. Rev. Immunol. 15, 155–176 (1997).

    CAS  PubMed  Google Scholar 

  21. Kelley, C. M. et al. Helios, a novel dimerization partner of Ikaros expressed in the earliest hematopoietic progenitors. Curr. Biol. 8, 508–515 (1998).

    CAS  PubMed  Google Scholar 

  22. Morgan, B. et al. Aiolos, a lymphoid restricted transcription factor that interacts with Ikaros to regulate lymphocyte differentiation. EMBO J. 16, 2004–2013 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Koipally, J., Renold, A., Kim, J. & Georgopoulos, K. Repression by Ikaros and Aiolos is mediated through histone deacetylase complexes. EMBO J. 18, 3090–3100 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim, J. et al. Ikaros DNA-binding proteins direct formation of chromatin remodeling complexes in lymphocytes. Immunity 10, 345–355 (1999).

    CAS  PubMed  Google Scholar 

  25. Georgopoulos, K. et al. The Ikaros gene is required for the development of all lymphoid lineages. Cell 79, 143–156 (1994). This work showed the crucial role of Ikaros for the generation of all lymphocytic lineages.

    CAS  PubMed  Google Scholar 

  26. Wang, J. H. et al. Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation. Immunity 5, 537–549 (1996).

    CAS  PubMed  Google Scholar 

  27. Nichogiannopoulou, A., Trevisan, M., Neben, S., Friedrich, C. & Georgopoulos, K. Defects in hemopoietic stem cell activity in Ikaros mutant mice. J. Exp. Med. 190, 1201–1214 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kirstetter, P., Thomas, M., Dierich, A., Kastner, P. & Chan, S. Ikaros is critical for B cell differentiation and function. Eur. J. Immunol. 32, 720–730 (2002).

    CAS  PubMed  Google Scholar 

  29. Papathanasiou, P. et al. Widespread failure of hematolymphoid differentiation caused by a recessive niche-filling allele of the Ikaros transcription factor. Immunity 19, 131–144 (2003). This interesting paper showed that an Ikaros gene with a point mutation in the region encoding the DNA-binding domain has a stronger phenotype in mice than a null mutant, presumably because it inactivates several Ikaros-containing complexes.

    CAS  PubMed  Google Scholar 

  30. Trinh, L. A. et al. Down-regulation of TDT transcription in CD4+CD8+ thymocytes by Ikaros proteins in direct competition with an Ets activator. Genes Dev. 15, 1817–1832 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Sabbattini, P. et al. Binding of Ikaros to the λ5 promoter silences transcription through a mechanism that does not require heterochromatin formation. EMBO J. 20, 2812–2822 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Harker, N. et al. The CD8α gene locus is regulated by the Ikaros family of proteins. Mol. Cell 10, 1403–1415 (2002).

    CAS  PubMed  Google Scholar 

  33. Bain, G. et al. E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell 79, 885–892 (1994). This paper, together with references 37 and 41, was the first to identify the crucial role of E2A proteins in the earliest stages of B-cell development.

    CAS  PubMed  Google Scholar 

  34. Kee, B. L., Quong, M. W. & Murre, C. E2A proteins: essential regulators at multiple stages of B-cell development. Immunol. Rev. 175, 138–149 (2000).

    CAS  PubMed  Google Scholar 

  35. Bain, G. et al. E2A deficiency leads to abnormalities in αβ T-cell development and to rapid development of T-cell lymphomas. Mol. Cell. Biol. 17, 4782–4791 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhuang, Y., Jackson, A., Pan, L., Shen, K. & Dai, M. Regulation of E2A gene expression in B-lymphocyte development. Mol. Immunol. 40, 1165–1177 (2004).

    CAS  PubMed  Google Scholar 

  37. Zhuang, Y., Soriano, P. & Weintraub, H. The helix–loop–helix gene E2A is required for B cell formation. Cell 79, 875–884 (1994).

    CAS  PubMed  Google Scholar 

  38. Massari, M. E. et al. A conserved motif present in a class of helix–loop–helix proteins activates transcription by direct recruitment of the SAGA complex. Mol. Cell 4, 63–73 (1999).

    CAS  PubMed  Google Scholar 

  39. Zhuang, Y., Cheng, P. & Weintraub, H. B-lymphocyte development is regulated by the combined dosage of three basic helix–loop–helix genes, E2A, E2-2, and HEB. Mol. Cell. Biol. 16, 2898–2905 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhuang, Y., Barndt, R. J., Pan, L., Kelley, R. & Dai, M. Functional replacement of the mouse E2A gene with a human HEB cDNA. Mol. Cell. Biol. 18, 3340–3349 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Sun, X. H. Constitutive expression of the Id1 gene impairs mouse B cell development. Cell 79, 893–900 (1994).

    CAS  PubMed  Google Scholar 

  42. Hagman, J., Gutch, M. J., Lin, H. & Grosschedl, R. EBF contains a novel zinc coordination motif and multiple dimerization and transcriptional activation domains. EMBO J. 14, 2907–2916 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lin, H. & Grosschedl, R. Failure of B-cell differentiation in mice lacking the transcription factor EBF. Nature 376, 263–267 (1995). The was the first report to identify the crucial role of EBF at the pro-B-cell stage of development.

    CAS  PubMed  Google Scholar 

  44. Seet, C. S., Brumbaugh, R. L. & Kee, B. L. Early B cell factor promotes B lymphopoiesis with reduced interleukin 7 responsiveness in the absence of E2A. J. Exp. Med. 199, 1689–1700 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Smith, E. M., Gisler, R. & Sigvardsson, M. Cloning and characterization of a promoter flanking the early B cell factor (EBF) gene indicates roles for E-proteins and autoregulation in the control of EBF expression. J. Immunol. 169, 261–270 (2002).

    CAS  PubMed  Google Scholar 

  46. O'Riordan, M. & Grosschedl, R. Coordinate regulation of B cell differentiation by the transcription factors EBF and E2A. Immunity 11, 21–31 (1999).

    CAS  PubMed  Google Scholar 

  47. Sigvardsson, M., O'Riordan, M. & Grosschedl, R. EBF and E47 collaborate to induce expression of the endogenous immunoglobulin surrogate light chain genes. Immunity 7, 25–36 (1997).

    CAS  PubMed  Google Scholar 

  48. Romanow, W. J. et al. E2A and EBF act in synergy with the V(D)J recombinase to generate a diverse immunoglobulin repertoire in nonlymphoid cells. Mol. Cell 5, 343–353 (2000).

    CAS  PubMed  Google Scholar 

  49. Medina, K. L. et al. Assembling a gene regulatory network for specification of the B cell fate. Dev. Cell 7, 607–617 (2004).

    CAS  PubMed  Google Scholar 

  50. Sigvardsson, M. et al. Early B-cell factor, E2A, and Pax-5 cooperate to activate the early B cell-specific mb-1 promoter. Mol. Cell. Biol. 22, 8539–8551 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Maier, H. et al. Early B cell factor cooperates with Runx1 and mediates epigenetic changes associated with mb-1 transcription. Nature Immunol. 5, 1069–1077 (2004). This interesting paper describes the hierarchical involvement of RUNX1 and EBF in activation of the Mb-1 promoter, allowing PAX5, in turn, to activate the Mb-1 gene. The data presented agree with the model proposed in reference 49, which describes the genetic control of pre-B-cell specification.

    CAS  Google Scholar 

  52. Nutt, S. L., Morrison, A. M., Dorfler, P., Rolink, A. & Busslinger, M. Identification of BSAP (Pax-5) target genes in early B-cell development by loss- and gain-of-function experiments. EMBO J. 17, 2319–2333 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Urbanek, P., Wang, Z. Q., Fetka, I., Wagner, E. F. & Busslinger, M. Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking Pax5/BSAP. Cell 79, 901–912 (1994).

    CAS  PubMed  Google Scholar 

  54. Kosak, S. T. et al. Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science 296, 158–162 (2002).

    CAS  PubMed  Google Scholar 

  55. Fuxa, M. et al. Pax5 induces V-to-DJ rearrangements and locus contraction of the immunoglobulin heavy-chain gene. Genes Dev. 18, 411–422 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Nutt, S. L., Heavey, B., Rolink, A. G. & Busslinger, M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 401, 556–562 (1999).

    CAS  PubMed  Google Scholar 

  57. Rolink, A. G., Nutt, S. L., Melchers, F. & Busslinger, M. Long-term in vivo reconstitution of T-cell development by Pax5-deficient B-cell progenitors. Nature 401, 603–606 (1999). References 56 and 57 were the first to identify the essential role of PAX5 in B-cell identity. It was shown that Pax5−/− B cells can have alternative cell fates, such as development into T cells or macrophages.

    CAS  PubMed  Google Scholar 

  58. Schaniel, C., Bruno, L., Melchers, F. & Rolink, A. G. Multiple hematopoietic cell lineages develop in vivo from transplanted Pax5-deficient pre-BI-cell clones. Blood 99, 472–478 (2002).

    CAS  PubMed  Google Scholar 

  59. Mikkola, I., Heavey, B., Horcher, M. & Busslinger, M. Reversion of B cell commitment upon loss of Pax5 expression. Science 297, 110–113 (2002). This paper elegantly showed that ablation of PAX5 in already committed pro-B cells allows these cells to regain plasticity and differentiate into diverse cell types, such as T cells or macrophages.

    CAS  PubMed  Google Scholar 

  60. Horcher, M., Souabni, A. & Busslinger, M. Pax5/BSAP maintains the identity of B cells in late B lymphopoiesis. Immunity 14, 779–790 (2001).

    CAS  PubMed  Google Scholar 

  61. Souabni, A., Cobaleda, C., Schebesta, M. & Busslinger, M. Pax5 promotes B lymphopoiesis and blocks T cell development by repressing Notch1. Immunity 17, 781–793 (2002).

    CAS  PubMed  Google Scholar 

  62. Eberhard, D., Jimenez, G., Heavey, B. & Busslinger, M. Transcriptional repression by Pax5 (BSAP) through interaction with corepressors of the Groucho family. EMBO J. 19, 2292–2303 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Linderson, Y. et al. Corecruitment of the Grg4 repressor by PU.1 is critical for Pax5-mediated repression of B-cell-specific genes. EMBO Rep. 5, 291–296 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Radtke, F., Wilson, A., Mancini, S. J. & MacDonald, H. R. Notch regulation of lymphocyte development and function. Nature Immunol. 5, 247–253 (2004).

    CAS  Google Scholar 

  65. Hoflinger, S. et al. Analysis of Notch1 function by in vitro T cell differentiation of Pax5 mutant lymphoid progenitors. J. Immunol. 173, 3935–3944 (2004).

    PubMed  Google Scholar 

  66. Xie, H., Ye, M., Feng, R. & Graf, T. Stepwise reprogramming of B cells into macrophages. Cell 117, 663–676 (2004).

    CAS  PubMed  Google Scholar 

  67. Schilham, M. W. et al. Defects in cardiac outflow tract formation and pro-B-lymphocyte expansion in mice lacking Sox-4. Nature 380, 711–714 (1996).

    CAS  PubMed  Google Scholar 

  68. Schilham, M. W. & Clevers, H. HMG box containing transcription factors in lymphocyte differentiation. Semin. Immunol. 10, 127–132 (1998).

    CAS  PubMed  Google Scholar 

  69. Staal, F. J. & Clevers, H. C. WNT signalling and haematopoiesis: a WNT–WNT situation. Nature Rev. Immunol. 5, 21–30 (2005).

    CAS  Google Scholar 

  70. Reya, T. et al. Wnt signaling regulates B lymphocyte proliferation through a LEF-1 dependent mechanism. Immunity 13, 15–24 (2000).

    CAS  PubMed  Google Scholar 

  71. Taniguchi, T., Ogasawara, K., Takaoka, A. & Tanaka, N. IRF family of transcription factors as regulators of host defense. Annu. Rev. Immunol. 19, 623–655 (2001).

    CAS  PubMed  Google Scholar 

  72. Mittrucker, H. W. et al. Requirement for the transcription factor LSIRF/IRF4 for mature B and T lymphocyte function. Science 275, 540–543 (1997).

    CAS  PubMed  Google Scholar 

  73. Holtschke, T. et al. Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene. Cell 87, 307–317 (1996).

    CAS  PubMed  Google Scholar 

  74. Lu, R., Medina, K. L., Lancki, D. W. & Singh, H. IRF-4,8 orchestrate the pre-B-to-B transition in lymphocyte development. Genes Dev. 17, 1703–1708 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Sun, J., Matthias, G., Mihatsch, M. J., Georgopoulos, K. & Matthias, P. Lack of the transcriptional coactivator OBF-1 prevents the development of systemic lupus erythematosus-like phenotypes in Aiolos mutant mice. J. Immunol. 170, 1699–1706 (2003).

    CAS  PubMed  Google Scholar 

  76. Shapiro-Shelef, M. & Calame, K. Regulation of plasma-cell development. Nature Rev. Immunol. 5, 230–242 (2005).

    CAS  Google Scholar 

  77. Boehm, J., He, Y., Greiner, A., Staudt, L. & Wirth, T. Regulation of BOB.1/OBF.1 stability by SIAH. EMBO J. 20, 4153–4162 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Tiedt, R., Bartholdy, B. A., Matthias, G., Newell, J. W. & Matthias, P. The RING finger protein Siah-1 regulates the level of the transcriptional coactivator OBF-1. EMBO J. 20, 4143–4152 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Yu, X., Wang, L., Luo, Y. & Roeder, R. G. Identification and characterization of a novel OCA-B isoform: implications for a role in B cell signaling pathways. Immunity 14, 157–167 (2001).

    CAS  PubMed  Google Scholar 

  80. Corcoran, L. M. et al. Oct-2, although not required for early B-cell development, is critical for later B-cell maturation and for postnatal survival. Genes Dev. 7, 570–582 (1993).

    CAS  PubMed  Google Scholar 

  81. Kim, U. et al. The B-cell-specific transcription coactivator OCA-B/OBF-1/Bob-1 is essential for normal production of immunoglobulin isotypes. Nature 383, 542–547 (1996).

    CAS  PubMed  Google Scholar 

  82. Nielsen, P. J., Georgiev, O., Lorenz, B. & Schaffner, W. B lymphocytes are impaired in mice lacking the transcriptional co-activator Bob1/OCA-B/OBF1. Eur. J. Immunol. 26, 3214–3218 (1996).

    CAS  PubMed  Google Scholar 

  83. Schubart, D. B., Rolink, A., Kosco-Vilbois, M. H., Botteri, F. & Matthias, P. B-cell-specific coactivator OBF-1/OCA-B/Bob1 required for immune response and germinal centre formation. Nature 383, 538–542 (1996). References 81–83 showed that the co-activator OBF1 is not essential for immunoglobulin gene transcription but rather for robust humoral immune responses and germinal-centre formation. In addition, reference 85 showed that immunoglobulin gene transcription is normal even when OBF1 and OCT2 are both absent.

    CAS  PubMed  Google Scholar 

  84. Matthias, P. Lymphoid-specific transcription mediated by the conserved octamer site: who is doing what? Semin. Immunol. 10, 155–163 (1998).

    CAS  PubMed  Google Scholar 

  85. Schubart, K. et al. B cell development and immunoglobulin gene transcription in the absence of Oct-2 and OBF-1. Nature Immunol. 2, 69–74 (2001).

    CAS  Google Scholar 

  86. Casellas, R. et al. OcaB is required for normal transcription and V(D)J recombination of a subset of immunoglobulin κ genes. Cell 110, 575–585 (2002).

    CAS  PubMed  Google Scholar 

  87. Wang, J. H. et al. Aiolos regulates B cell activation and maturation to effector state. Immunity 9, 543–553 (1998).

    CAS  PubMed  Google Scholar 

  88. Hess, J., Nielsen, P. J., Fischer, K. D., Bujard, H. & Wirth, T. The B lymphocyte-specific coactivator BOB.1/OBF.1 is required at multiple stages of B-cell development. Mol. Cell. Biol. 21, 1531–1539 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Schubart, D. B., Rolink, A., Schubart, K. & Matthias, P. Lack of peripheral B cells and severe agammaglobulinemia in mice simultaneously lacking Bruton's tyrosine kinase and the B cell-specific transcriptional coactivator OBF-1. J. Immunol. 164, 18–22 (2000).

    CAS  PubMed  Google Scholar 

  90. Samardzic, T., Marinkovic, D., Nielsen, P. J., Nitschke, L. & Wirth, T. BOB.1/OBF.1 deficiency affects marginal-zone B-cell compartment. Mol. Cell. Biol. 22, 8320–8331 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Corcoran, L. M. & Karvelas, M. Oct-2 is required early in T cell-independent B cell activation for G1 progression and for proliferation. Immunity 1, 635–645 (1994).

    CAS  PubMed  Google Scholar 

  92. Humbert, P. O. & Corcoran, L. M. Oct-2 gene disruption eliminates the peritoneal B-1 lymphocyte lineage and attenuates B-2 cell maturation and function. J. Immunol. 159, 5273–5284 (1997).

    CAS  PubMed  Google Scholar 

  93. Wang, V. E., Tantin, D., Chen, J. & Sharp, P. A. B cell development and immunoglobulin transcription in Oct-1-deficient mice. Proc. Natl Acad. Sci. USA 101, 2005–2010 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Ghosh, S., May, M. J. & Kopp, E. B. NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16, 225–260 (1998).

    CAS  PubMed  Google Scholar 

  95. Ghosh, S. & Karin, M. Missing pieces in the NF-κB puzzle. Cell 109, S81–S96 (2002).

    CAS  PubMed  Google Scholar 

  96. Hayden, M. S. & Ghosh, S. Signaling to NF-κB. Genes Dev. 18, 2195–2224 (2004).

    CAS  PubMed  Google Scholar 

  97. Sha, W. C., Liou, H. C., Tuomanen, E. I. & Baltimore, D. Targeted disruption of the p50 subunit of NF-κB leads to multifocal defects in immune responses. Cell 80, 321–330 (1995). This was the first study to identify the multiple in vivo roles of NF-κB. This paper also revealed that NF-κB is not required for Igκ light-chain rearrangement and transcription.

    CAS  PubMed  Google Scholar 

  98. Cariappa, A., Liou, H. C., Horwitz, B. H. & Pillai, S. Nuclear factor κB is required for the development of marginal zone B lymphocytes. J. Exp. Med. 192, 1175–1182 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Chen, C., Edelstein, L. C. & Gelinas, C. The Rel/NF-κB family directly activates expression of the apoptosis inhibitor Bcl-xL . Mol. Cell. Biol. 20, 2687–2695 (2000).

    PubMed  PubMed Central  Google Scholar 

  100. Hsu, B. L., Harless, S. M., Lindsley, R. C., Hilbert, D. M. & Cancro, M. P. BLyS enables survival of transitional and mature B cells through distinct mediators. J. Immunol. 168, 5993–5996 (2002).

    CAS  PubMed  Google Scholar 

  101. Weih, D. S., Yilmaz, Z. B. & Weih, F. Essential role of RelB in germinal center and marginal zone formation and proper expression of homing chemokines. J. Immunol. 167, 1909–1919 (2001).

    CAS  PubMed  Google Scholar 

  102. Franzoso, G. et al. Requirement for NF-κB in osteoclast and B-cell development. Genes Dev. 11, 3482–3496 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Grossmann, M. et al. The anti-apoptotic activities of Rel and RelA required during B-cell maturation involve the regulation of Bcl-2 expression. EMBO J. 19, 6351–6360 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Cariappa, A. et al. The follicular versus marginal zone B lymphocyte cell fate decision is regulated by Aiolos, Btk, and CD21. Immunity 14, 603–615 (2001). This paper proposed a model in which the level of BCR signalling is a key determinant of differentiation into marginal-zone B cells, and it identified Aiolos as one of the essential factors in this process.

    CAS  PubMed  Google Scholar 

  105. Radtke, F. et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 10, 547–558 (1999).

    CAS  PubMed  Google Scholar 

  106. Tanigaki, K. et al. Notch–RBP-J signaling is involved in cell fate determination of marginal zone B cells. Nature Immunol. 3, 443–450 (2002).

    CAS  Google Scholar 

  107. Kuroda, K. et al. Regulation of marginal zone B cell development by MINT, a suppressor of Notch/RBP-J signaling pathway. Immunity 18, 301–312 (2003).

    CAS  PubMed  Google Scholar 

  108. Saito, T. et al. Notch2 is preferentially expressed in mature B cells and indispensable for marginal zone B lineage development. Immunity 18, 675–685 (2003).

    CAS  PubMed  Google Scholar 

  109. Garrett-Sinha, L. A. et al. PU.1 and Spi-B are required for normal B cell receptor-mediated signal transduction. Immunity 10, 399–408 (1999).

    CAS  PubMed  Google Scholar 

  110. Hu, C. J. et al. PU.1/Spi-B regulation of c-rel is essential for mature B cell survival. Immunity 15, 545–555 (2001).

    CAS  PubMed  Google Scholar 

  111. Bergman, Y. & Cedar, H. A stepwise epigenetic process controls immunoglobulin allelic exclusion. Nature Rev. Immunol. 4, 753–761 (2004).

    CAS  Google Scholar 

  112. Schwarz, B. A. & Bhandoola, A. Circulating hematopoietic progenitors with T lineage potential. Nature Immunol. 5, 953–960 (2004).

    CAS  Google Scholar 

  113. Hardy, R. R. & Hayakawa, K. B cell development pathways. Annu. Rev. Immunol. 19, 595–621 (2001).

    CAS  PubMed  Google Scholar 

  114. Sugai, M. et al. Essential role of Id2 in negative regulation of IgE class switching. Nature Immunol. 4, 25–30 (2002).

    Google Scholar 

Download references

Acknowledgements

Work in the laboratory of P.M. is supported by Novartis Research Foundation. A.G.R. is holder of the Roche Chair of Immunology, endowed by F. Hoffman-La Roche Ltd. Work in the laboratory of A.G.R. is supported by grants from the Swiss National Science Foundation. We apologize to colleagues whose articles could not be cited because of space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Matthias.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

Aiolos

E2A

EBF

Ikaros

IRF4

IRF8

LEF1

Notch-1

Notch-2

OBF1

OCT2

PAX5

PU.1

RBP-Jκ

SOX4

SPI-B

FURTHER INFORMATION

Patrick Matthias's homepage

Glossary

ALLELIC EXCLUSION

In theory, every B cell has the potential to produce two immunoglobulin heavy chains and two immunoglobulin light chains. In practice, however, a B cell produces only one immunoglobulin heavy chain and one immunoglobulin light chain. The process by which production of two different chains is prevented is known as allelic exclusion.

FOLLICULAR B CELLS

A recirculating, mature B-cell subset that populates the follicles of the spleen and lymph nodes.

MARGINAL-ZONE B CELLS

A static, mature B-cell subset that is enriched mainly in the marginal zone of the spleen, which is located at the border of the white pulp.

ETS FAMILY

A family of transcription factors that have a DNA-binding domain with homology to the avian leukosis virus E26.

ZINC-FINGER TRANSCRIPTION FACTORS

A class of transcription factors that contain a DNA-binding domain in which cysteine and histidine residues are coordinated by zinc atoms and thereby form 'fingers' that bind DNA.

CHROMATIN-REMODELLING COMPLEXES

Multiprotein complexes that are recruited to the regulatory elements of genes and remodel chromatin in an ATP-dependent manner, thereby increasing the accessibility of chromatin to molecules that regulate transcription.

DOMINANT-NEGATIVE PROTEIN

A defective protein that retains interaction capabilities and thereby distorts or competes with normal proteins.

HYPOMORPHIC

A type of mutation in which either the altered gene product has a decreased level of activity or the wild-type gene product is expressed at a decreased level.

BASIC HELIX-LOOP–HELIX GENE FAMILY

(bHLH gene family). A family that encodes transcription factors with a conserved DNA-binding domain that consists of an HLH motif, which mediates dimerization, adjacent to a basic region, which is responsible for binding to DNA.

E BOX

A DNA element with a conserved sequence that was initially found in the IgH enhancer on the basis of in vivo footprinting assays. E boxes have the consensus sequence CANNTG (where N denotes any nucleotide) and are binding sites for basic helix–loop–helix proteins.

STERILE IGH RNA

(Sterile immunoglobulin heavy-chain RNA). A transcript of an unrearranged IgH locus, which does not result in functional protein. Its presence is thought to reflect the accessibility of the locus for recombination.

HOMEODOMAIN PROTEIN

A member of a class of transcription factors that contains a DNA-binding domain with homology to the Drosophila melanogaster homeodomain regulatory proteins. This DNA-binding domain contains a helix–turn–helix motif, which was initially found in bacterial repressor proteins.

GROUCHO FAMILY

A family of transcriptional repressors that were named after the neurogenic Drosophila melanogaster gene groucho. These repressors interact with various transcription factors — such as members of the basic helix–loop–helix family, T-cell factors (TCFs) and lymphoid-enhancer-binding factor 1 (LEF1) and paired box protein 5 (PAX5) — thereby repressing the expression of target genes of these factors.

HIGH-MOBILITY GROUP BOX FAMILY

(HMG-box family). A class of transcription factors with a DNA-binding domain that has homology to a motif found in the HMG of DNA-binding proteins. Unlike most transcription factors, HMG-box proteins bind in the minor groove of DNA.

POU DOMAIN

A class of bipartite DNA-binding domains that is characterized by a carboxy-terminal variant homeodomain separated by a flexible linker from an amino-terminal POU (Pit1, Oct1, Unc86)-specific domain. Because of this unique structure, the POU domain can bind DNA when the domain itself is in many different configurations.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matthias, P., Rolink, A. Transcriptional networks in developing and mature B cells. Nat Rev Immunol 5, 497–508 (2005). https://doi.org/10.1038/nri1633

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1633

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing