Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Interleukin-1 and neuronal injury

Key Points

  • Interleukin-1 (IL-1) is a pro-inflammatory cytokine that mediates a diverse range of effects, in both the immune system and the central nervous system.

  • The tight regulatory control of the actions of IL-1 by several endogenous inhibitory molecules, including a receptor antagonist (IL-1RA), is an indicator of the biological importance of IL-1.

  • There is considerable experimental evidence supporting a role for IL-1 as a crucial mediator of neuronal injury in neurodegenerative disease. This includes both acute conditions, such as stroke and head injury, and chronic disorders, such as Alzheimer's disease and Parkinson's disease.

  • The mechanisms of IL-1 action in neuronal injury are not clearly defined and are the subject of intense research effort. There are discrepancies between in vitro and in vivo findings, and IL-1 seems to exert complex effects by influencing multiple cell types in the brain.

  • Clinical data also support a role for IL-1 in neurodegeneration. Consequently, a Phase IIa clinical trial involving IL-1RA treatment of patients who have suffered a stroke has just been completed.

  • Developing a greater understanding of the mechanisms of IL-1 action in neuronal injury, and developing interventions to target these effects, could lead to more effective treatments for stroke and other types of brain injury in the future.

Abstract

Interleukin-1 is a pro-inflammatory cytokine that has numerous biological effects, including activation of many inflammatory processes (through activation of T cells, for example), induction of expression of acute-phase proteins, an important function in neuroimmune responses and direct effects on the brain itself. There is now extensive evidence to support the direct involvement of interleukin-1 in the neuronal injury that occurs in both acute and chronic neurodegenerative disorders. This article discusses the key evidence of a role for interleukin-1 in acute neurodegeneration — for example, stroke and brain trauma — and provides a rationale for targeting the interleukin-1 system as a therapeutic strategy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The interleukin-1 family.
Figure 2: Regulation of interleukin-1β production and action.
Figure 3: Summary of proposed cellular actions of interleukin-1β in neuronal injury.
Figure 4: Therapeutic routes to targeting interleukin-1 in neurodegenerative disease.

Similar content being viewed by others

References

  1. Huising, M. O., Stet, R. J., Savelkoul, H. F. & Verburg-van Kemenade, B. M. The molecular evolution of the interleukin-1 family of cytokines; IL-18 in teleost fish. Dev. Comp. Immunol. 28, 395–413 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. March, C. J. et al. Cloning, sequence and expression of two distinct human interleukin-1 complementary DNAs. Nature 315, 641–647 (1985).

    Article  CAS  PubMed  Google Scholar 

  3. Thornberry, N. A. et al. A novel heterodimeric cysteine protease is required for interleukin-1β processing in monocytes. Nature 356, 768–774 (1992). A key paper that identified the enzyme that is responsible for cleavage of inactive pro-IL-1β to the mature biologically active protein.

    Article  CAS  PubMed  Google Scholar 

  4. Sims, J. E. et al. cDNA expression cloning of the IL-1 receptor, a member of the immunoglobulin superfamily. Science 241, 585–589 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. Korherr, C., Hofmeister, R., Wesche, H. & Falk, W. A critical role for interleukin-1 receptor accessory protein in interleukin-1 signaling. Eur. J. Immunol. 27, 262–267 (1997). An important paper that shows that recruitment of an accessory protein to the IL-1–IL-1R1 complex is essential for signal transduction to take place.

    Article  CAS  PubMed  Google Scholar 

  6. Subramaniam, S., Stansberg, C. & Cunningham, C. The interleukin 1 receptor family. Dev. Comp. Immunol. 28, 415–428 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Hannum, C. H. et al. Interleukin-1 receptor antagonist activity of a human interleukin-1 inhibitor. Nature 343, 336–340 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Malyak, M., Smith, M. F. Jr, Abel, A. A., Hance, K. R. & Arend, W. P. The differential production of three forms of IL-1 receptor antagonist by human neutrophils and monocytes. J. Immunol. 161, 2004–2010 (1998).

    CAS  PubMed  Google Scholar 

  9. Dinarello, C. A. et al. Overview of interleukin-18: more than an interferon-γ inducing factor. J. Leukoc. Biol. 63, 658–664 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Dunne, A. & O'Neill, L. A. The interleukin-1 receptor/Toll-like receptor superfamily: signal transduction during inflammation and host defense. Sci. STKE [online] 2003, RE3 (2003). A valuable updated review of the receptors of the IL-1-receptor and TLR family, and their signalling pathways.

    PubMed  Google Scholar 

  11. Sims, J. E. et al. A new nomenclature for IL-1-family genes. Trends Immunol. 22, 536–537 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Sims, J. E. IL-1 and IL-18 receptors, and their extended family. Curr. Opin. Immunol. 14, 117–122 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Vitkovic, L., Bockaert, J. & Jacque, C. 'Inflammatory' cytokines: neuromodulators in normal brain? J. Neurochem. 74, 457–471 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Watkins, L. R., Hansen, M. K., Nguyen, K. T., Lee, J. E. & Maier, S. F. Dynamic regulation of the proinflammatory cytokine, interleukin-1β: molecular biology for non-molecular biologists. Life Sci. 65, 449–481 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Hsu, H. Y. & Wen, M. H. Lipopolysaccharide-mediated reactive oxygen species and signal transduction in the regulation of interleukin-1 gene expression. J. Biol. Chem. 277, 22131–22139 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Perregaux, D. G., Bhavsar, K., Contillo, L., Shi, J. & Gabel, C. A. Antimicrobial peptides initiate IL-1β posttranslational processing: a novel role beyond innate immunity. J. Immunol. 168, 3024–3032 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Eriksson, C., Tehranian, R., Iverfeldt, K., Winblad, B. & Schultzberg, M. Increased expression of mRNA encoding interleukin-1β and caspase-1, and the secreted isoform of interleukin-1 receptor antagonist in the rat brain following systemic kainic acid administration. J. Neurosci. Res. 60, 266–279 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Liu, L., Li, Y., Van Eldik, L. J., Griffin, W. S. & Barger, S. W. S100B-induced microglial and neuronal IL-1 expression is mediated by cell type-specific transcription factors. J. Neurochem. 92, 546–553 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Relton, J. K. et al. Lipocortin-1 is an endogenous inhibitor of ischemic damage in the rat brain. J. Exp. Med. 174, 305–310 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. Kern, J. A., Warnock, L. J. & McCafferty, J. D. The 3′ untranslated region of IL-1β regulates protein production. J. Immunol. 158, 1187–1193 (1997).

    CAS  PubMed  Google Scholar 

  21. Hazuda, D. J., Strickler, J., Kueppers, F., Simon, P. L. & Young, P. R. Processing of precursor interleukin 1β and inflammatory disease. J. Biol. Chem. 265, 6318–6322 (1990).

    CAS  PubMed  Google Scholar 

  22. Perregaux, D. & Gabel, C. A. Interleukin-1β maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity. J. Biol. Chem. 269, 15195–15203 (1994).

    CAS  PubMed  Google Scholar 

  23. Le Feuvre, R. A., Brough, D., Iwakura, Y., Takeda, K. & Rothwell, N. J. Priming of macrophages with lipopolysaccharide potentiates P2X7-mediated cell death via a caspase-1-dependent mechanism, independently of cytokine production. J. Biol. Chem. 277, 3210–3218 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Brough, D. et al. Ca2+ stores and Ca2+ entry differentially contribute to the release of IL-1β and IL-1α from murine macrophages. J. Immunol. 170, 3029–3036 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Andrei, C. et al. Phospholipases C and A2 control lysosome-mediated IL-1β secretion: implications for inflammatory processes. Proc. Natl Acad. Sci. USA 101, 9745–9750 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Walev, I., Reske, K., Palmer, M., Valeva, A. & Bhakdi, S. Potassium-inhibited processing of IL-1β in human monocytes. EMBO J. 14, 1607–1614 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ferrari, D. et al. P2Z purinoreceptor ligation induces activation of caspases with distinct roles in apoptotic and necrotic alterations of cell death. FEBS Lett. 447, 71–75 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Elssner, A., Duncan, M., Gavrilin, M. & Wewers, M. D. A novel P2X7 receptor activator, the human cathelicidin-derived peptide LL37, induces IL-1β processing and release. J. Immunol. 172, 4987–4994 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Perregaux, D. G. et al. Identification and characterization of a novel class of interleukin-1 post-translational processing inhibitors. J. Pharmacol. Exp. Ther. 299, 187–197 (2001).

    CAS  PubMed  Google Scholar 

  30. Laliberte, R. E. et al. Glutathione S-transferase ω 1-1 is a target of cytokine release inhibitory drugs and may be responsible for their effect on interleukin-1β posttranslational processing. J. Biol. Chem. 278, 16567–16578 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Li, Y. J. et al. Glutathione S-transferase ω-1 modifies age-at-onset of Alzheimer disease and Parkinson disease. Hum. Mol. Genet. 12, 3259–3267 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Schneider, H. et al. A neuromodulatory role of interleukin-1β in the hippocampus. Proc. Natl Acad. Sci. USA 95, 7778–7783 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Kelley, K. W. et al. Cytokine-induced sickness behavior. Brain Behav. Immun. 17, S112–S118 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Berkenbosch, F., van Oers, J., del Rey, A., Tilders, F. & Besedovsky, H. Corticotropin-releasing factor-producing neurons in the rat activated by interleukin-1. Science 238, 524–526 (1987).

    Article  CAS  PubMed  Google Scholar 

  35. Boutin, H., Kimber, I., Rothwell, N. J. & Pinteaux, E. The expanding interleukin-1 family and its receptors: do alternative IL-1 receptor/signaling pathways exist in the brain? Mol. Neurobiol. 27, 239–248 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Debets, R. et al. Two novel IL-1 family members, IL-1δ and IL-1ε, function as an antagonist and agonist of NF-κB activation through the orphan IL- 1 receptor-related protein 2. J. Immunol. 167, 1440–1446 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Lovenberg, T. W. et al. Cloning of a cDNA encoding a novel interleukin-1 receptor related protein (IL1R-rp2). J. Neuroimmunol. 70, 113–122 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Berglof, E. et al. IL-1Rrp2 expression and IL-1F9 (IL-1H1) actions in brain cells. J. Neuroimmunol. 139, 36–43 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Wang, P. et al. The interleukin-1-related cytokine IL-1F8 is expressed in glial cells, but fails to induce IL-1β signalling responses. Cytokine 29, 245–250 (2005).

    PubMed  Google Scholar 

  40. Ching, S., He, L., Lai, W. & Quan, N. IL-1 type I receptor plays a key role in mediating the recruitment of leukocytes into the central nervous system. Brain Behav. Immun. 19, 127–137 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Loddick, S. A. et al. Endogenous interleukin-1 receptor antagonist is neuroprotective. Biochem. Biophys. Res. Commun. 234, 211–215 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Carvey, P. M. et al. Intra-parenchymal injection of tumor necrosis factor-α and interleukin 1-β produces dopamine neuron loss in the rat. J. Neural Transm. 112, 601–612 (2005). One of the few papers to show direct neurotoxic effects of IL-1.

    Article  CAS  PubMed  Google Scholar 

  43. Lawrence, C. B., Allan, S. M. & Rothwell, N. J. Interleukin-1β and the interleukin-1 receptor antagonist act in the striatum to modify excitotoxic brain damage in the rat. Eur. J. Neurosci. 10, 1188–1195 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Chao, C. C., Hu, S., Ehrlich, L. & Peterson, P. K. Interleukin-1 and tumor necrosis factor-α synergistically mediate neurotoxicity: involvement of nitric oxide and of N-methyl-D-aspartate receptors. Brain. Behav. Immun. 9, 355–365 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Hu, S., Peterson, P. K. & Chao, C. C. Cytokine-mediated neuronal apoptosis. Neurochem. Int. 30, 427–431 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Downen, M., Amaral, T. D., Hua, L. L., Zhao, M. L. & Lee, S. C. Neuronal death in cytokine-activated primary human brain cell culture: role of tumor necrosis factor-α. Glia 28, 114–127 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Yamasaki, Y. et al. Interleukin-1 as a pathogenetic mediator of ischemic brain damage in rats. Stroke 26, 676–681 (1995). The first study to show that administration of exogenous IL-1 can exacerbate experimental neuronal injury.

    Article  CAS  PubMed  Google Scholar 

  48. Relton, J. K. & Rothwell, N. J. Interleukin-1 receptor antagonist inhibits ischaemic and excitotoxic neuronal damage in the rat. Brain Res. Bull. 29, 243–246 (1992). The first paper to report the neuroprotective effects of IL-1RA in neuronal injury.

    Article  CAS  PubMed  Google Scholar 

  49. Rothwell, N. Interleukin-1 and neuronal injury: mechanisms, modification, and therapeutic potential. Brain Behav. Immun. 17, 152–157 (2003).

    Article  PubMed  Google Scholar 

  50. Vezzani, A. et al. Powerful anticonvulsant action of IL-1 receptor antagonist on intracerebral injection and astrocytic overexpression in mice. Proc. Natl Acad. Sci. USA 97, 11534–11539 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Lin, M. T., Kao, T. Y., Jin, Y. T. & Chen, C. F. Interleukin-1 receptor antagonist attenuates the heat stroke-induced neuronal damage by reducing the cerebral ischemia in rats. Brain Res. Bull. 37, 595–598 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Loscher, C. E., Mills, K. H. & Lynch, M. A. Interleukin-1 receptor antagonist exerts agonist activity in the hippocampus independent of the interleukin-1 type I receptor. J. Neuroimmunol. 137, 117–124 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Hara, H. et al. Inhibition of interleukin 1β converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage. Proc. Natl Acad. Sci. USA 94, 2007–2012 (1997). The first paper to show that inhibition of the enzyme responsible for production of the mature, active IL-1β protein provides neuroprotection.

    Article  CAS  PubMed  Google Scholar 

  54. Boutin, H. et al. Role of IL-1α and IL-1β in ischemic brain damage. J. Neurosci. 21, 5528–5534 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Boutin, H. & Rothwell, N. J. in Pharmacology of Cerebral Ischaemia (eds Krieglstein, J. & Klumpp, S.) 183–190 (Medpharm, Stuttgart, 2002).

    Google Scholar 

  56. Strijbos, P. J. & Rothwell, N. J. Interleukin-1β attenuates excitatory amino acid-induced neurodegeneration in vitro: involvement of nerve growth factor. J. Neurosci. 15, 3468–3474 (1995).

    Article  CAS  PubMed  Google Scholar 

  57. Carlson, N. G. et al. Inflammatory cytokines IL-1α, IL-1β, IL-6, and TNF-α impart neuroprotection to an excitotoxin through distinct pathways. J. Immunol. 163, 3963–3968 (1999).

    CAS  PubMed  Google Scholar 

  58. Viviani, B. et al. Interleukin-1β enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J. Neurosci. 23, 8692–8700 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Pringle, A. K., Niyadurupola, N., Johns, P., Anthony, D. C. & Iannotti, F. Interleukin-1β exacerbates hypoxia-induced neuronal damage, but attenuates toxicity produced by simulated ischaemia and excitotoxicity in rat organotypic hippocampal slice cultures. Neurosci. Lett. 305, 29–32 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Busto, R. et al. Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J. Cereb. Blood Flow Metab. 7, 729–738 (1987).

    Article  CAS  PubMed  Google Scholar 

  61. Azzimondi, G. et al. Fever in acute stroke worsens prognosis. A prospective study. Stroke 26, 2040–2043 (1995).

    Article  CAS  PubMed  Google Scholar 

  62. Monroy, M., Kuluz, J. W., He, D., Dietrich, W. D. & Schleien, C. L. Role of nitric oxide in the cerebrovascular and thermoregulatory response to interleukin-1β. Am. J. Physiol. Heart Circ. Physiol. 280, H1448–H1453 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Maher, C. O., Anderson, R. E., Martin, H. S., McClelland, R. L. & Meyer, F. B. Interleukin-1β and adverse effects on cerebral blood flow during long-term global hypoperfusion. J. Neurosurg. 99, 907–912 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Fassbender, K., Schmidt, R., Mossner, R., Daffertshofer, M. & Hennerici, M. Pattern of activation of the hypothalamic–pituitary–adrenal axis in acute stroke. Relation to acute confusional state, extent of brain damage, and clinical outcome. Stroke 25, 1105–1108 (1994).

    Article  CAS  PubMed  Google Scholar 

  65. Srinivasan, D., Yen, J. H., Joseph, D. J. & Friedman, W. Cell type-specific interleukin-1β signaling in the CNS. J. Neurosci. 24, 6482–6488 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Touzani, O. et al. Interleukin-1 influences ischemic brain damage in the mouse independently of the interleukin-1 type I receptor. J. Neurosci. 22, 38–43 (2002). The first report that IL-1β has effects in the CNS that are not mediated through binding IL-1R1, the classical IL-1 signalling receptor.

    Article  CAS  PubMed  Google Scholar 

  67. Basu, A. et al. Interleukin-1 and the interleukin-1 type 1 receptor are essential for the progressive neurodegeneration that ensues subsequent to a mild hypoxic/ischemic injury. J. Cereb. Blood Flow Metab. 25, 17–29 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Parker, L. C., Luheshi, G. N., Rothwell, N. J. & Pinteaux, E. IL-1β signalling in glial cells in wildtype and IL-1RI deficient mice. Br. J. Pharmacol. 136, 312–320 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Allan, S. M. & Rothwell, N. J. Cytokines and acute neurodegeneration. Nature Rev. Neurosci. 2, 734–744 (2001).

    Article  CAS  Google Scholar 

  70. Vezzani, A. et al. Interleukin-1β immunoreactivity and microglia are enhanced in the rat hippocampus by focal kainate application: functional evidence for enhancement of electrographic seizures. J. Neurosci. 19, 5054–5065 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Chen, Y. & Swanson, R. A. Astrocytes and brain injury. J. Cereb. Blood Flow Metab. 23, 137–149 (2003).

    Article  PubMed  Google Scholar 

  72. John, G. R., Lee, S. C., Song, X., Rivieccio, M. & Brosnan, C. F. IL-1-regulated responses in astrocytes: relevance to injury and recovery. Glia 49, 161–176 (2005).

    Article  PubMed  Google Scholar 

  73. Basu, A., Krady, J. K. & Levison, S. W. Interleukin-1: a master regulator of neuroinflammation. J. Neurosci. Res. 78, 151–156 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Aloisi, F. Immune function of microglia. Glia 36, 165–179 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Pinteaux, E., Parker, L. C., Rothwell, N. J. & Luheshi, G. N. Expression of interleukin-1 receptors and their role in interleukin-1 actions in murine microglial cells. J. Neurochem. 83, 754–763 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Vela, J. M., Molina-Holgado, E., Arevalo-Martin, A., Almazan, G. & Guaza, C. Interleukin-1 regulates proliferation and differentiation of oligodendrocyte progenitor cells. Mol. Cell. Neurosci. 20, 489–502 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Mason, J. L., Suzuki, K., Chaplin, D. D. & Matsushima, G. K. Interleukin-1β promotes repair of the CNS. J. Neurosci. 21, 7046–7052 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Konsman, J. P., Vigues, S., Mackerlova, L., Bristow, A. & Blomqvist, A. Rat brain vascular distribution of interleukin-1 type-1 receptor immunoreactivity: relationship to patterns of inducible cyclooxygenase expression by peripheral inflammatory stimuli. J. Comp. Neurol. 472, 113–129 (2004).

    Article  PubMed  Google Scholar 

  79. Proescholdt, M. G. et al. Intracerebroventricular but not intravenous interleukin-1β induces widespread vascular-mediated leukocyte infiltration and immune signal mRNA expression followed by brain-wide glial activation. Neuroscience 112, 731–749 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Bernardes-Silva, M., Anthony, D. C., Issekutz, A. C. & Perry, V. H. Recruitment of neutrophils across the blood–brain barrier: the role of E- and P-selectins. J. Cereb. Blood Flow Metab. 21, 1115–1124 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Anthony, D. et al. CXC chemokines generate age-related increases in neutrophil-mediated brain inflammation and blood–brain barrier breakdown. Curr. Biol. 8, 923–926 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Mazzotta, G. et al. Different cytokine levels in thrombolysis patients as predictors for clinical outcome. Eur. J. Neurol. 11, 377–381 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Fassbender, K. et al. Proinflammatory cytokines in serum of patients with acute cerebral ischemia: kinetics of secretion and relation to the extent of brain damage and outcome of disease. J. Neurol. Sci. 122, 135–139 (1994).

    Article  CAS  PubMed  Google Scholar 

  84. Tarkowski, E. et al. Early intrathecal production of interleukin-6 predicts the size of brain lesion in stroke. Stroke 26, 1393–1398 (1995). One of the earliest studies to show that concentrations of IL-1β are increased in patients who have suffered a clinical stroke.

    Article  CAS  PubMed  Google Scholar 

  85. Kostulas, N., Pelidou, S. H., Kivisakk, P., Kostulas, V. & Link, H. Increased IL-1β, IL-8, and IL-17 mRNA expression in blood mononuclear cells observed in a prospective ischemic stroke study. Stroke 30, 2174–2179 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Beamer, N. B., Coull, B. M., Clark, W. M., Hazel, J. S. & Silberger, J. R. Interleukin-6 and interleukin-1 receptor antagonist in acute stroke. Ann. Neurol. 37, 800–805 (1995).

    Article  CAS  PubMed  Google Scholar 

  87. Fassbender, K. et al. Inflammatory cytokines in subarachnoid haemorrhage: association with abnormal blood flow velocities in basal cerebral arteries. J. Neurol. Neurosurg. Psychiatry 70, 534–537 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mathiesen, T., Edner, G., Ulfarsson, E. & Andersson, B. Cerebrospinal fluid interleukin-1 receptor antagonist and tumor necrosis factor-α following subarachnoid hemorrhage. J. Neurosurg. 87, 215–220 (1997).

    Article  CAS  PubMed  Google Scholar 

  89. Gladstone, D. J., Black, S. E. & Hakim, A. M. Toward wisdom from failure: lessons from neuroprotective stroke trials and new therapeutic directions. Stroke 33, 2123–2136 (2002).

    Article  PubMed  Google Scholar 

  90. Bresnihan, B. The safety and efficacy of interleukin-1 receptor antagonist in the treatment of rheumatoid arthritis. Semin. Arthritis Rheum. 30, 17–20 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Fisher, C. J. Jr. et al. Initial evaluation of human recombinant interleukin-1 receptor antagonist in the treatment of sepsis syndrome: a randomized, open-label, placebo-controlled multicenter trial. The IL-1RA Sepsis Syndrome Study Group. Crit. Care Med. 22, 12–21 (1994).

    Article  PubMed  Google Scholar 

  92. Opal, S. M. et al. Confirmatory interleukin-1 receptor antagonist trial in severe sepsis: a Phase III, randomized, double-blind, placebo-controlled, multicenter trial. The Interleukin-1 Receptor Antagonist Sepsis Investigator Group. Crit. Care Med. 25, 1115–1124 (1997).

    Article  CAS  PubMed  Google Scholar 

  93. Stroke Therapy Academic Industry Roundtable II (STAIR-II). Recommendations for clinical trial evaluation of acute stroke therapies. Stroke 32, 1598–1606 (2001).

  94. Emsley, H. C. et al. A randomised Phase II study of interleukin-1 receptor antagonist in acute stroke patients. J. Neurol. Neurosurg. Psychiatry (in the press). The findings of the first clinical trial of IL-1RA for the treatment of patients who have suffered an acute stroke.

  95. Springborg, J. B., Frederiksen, H. J., Eskesen, V. & Olsen, N. V. Trends in monitoring patients with aneurysmal subarachnoid haemorrhage. Br. J. Anaesth. 94, 259–270 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Campbell, S. J. et al. CINC-1 is an acute-phase protein induced by focal brain injury causing leukocyte mobilization and liver injury. FASEB J. 17, 1168–1170 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Obal, F. Jr. et al. Interleukin 1α and an interleukin 1β fragment are somnogenic. Am. J. Physiol. 259, R439–R446 (1990).

    Article  CAS  PubMed  Google Scholar 

  98. Fang, J., Wang, Y. & Krueger, J. M. Effects of interleukin-1β on sleep are mediated by the type I receptor. Am. J. Physiol. 274, R655–R660 (1998).

    CAS  PubMed  Google Scholar 

  99. Avital, A. et al. Impaired interleukin-1 signaling is associated with deficits in hippocampal memory processes and neural plasticity. Hippocampus 13, 826–834 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Vamvakopoulos, J., Green, C. & Metcalfe, S. Genetic control of IL-1β bioactivity through differential regulation of the IL-1 receptor antagonist. Eur. J. Immunol. 32, 2988–2996 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Francis, S. E. et al. Interleukin-1 receptor antagonist gene polymorphism and coronary artery disease. Circulation 99, 861–866 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Worrall, B. B. et al. Interleukin-1 receptor antagonist gene polymorphisms in carotid atherosclerosis. Stroke 34, 790–793 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Dominici, R. et al. Cloning and functional analysis of the allelic polymorphism in the transcription regulatory region of interleukin-1α. Immunogenetics 54, 82–86 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Um, J. Y. et al. Association of interleukin-1α gene polymorphism with cerebral infarction. Brain Res. Mol. Brain Res. 115, 50–54 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Seripa, D. et al. Relevance of interleukin-1 receptor antagonist intron-2 polymorphism in ischemic stroke. Cerebrovasc. Dis. 15, 276–281 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Lee, B. C. et al. Susceptibility for ischemic stroke in Korean population is associated with polymorphisms of the interleukin-1 receptor antagonist and tumor necrosis factor-α genes, but not the interleukin-1β gene. Neurosci. Lett. 357, 33–36 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Iacoviello, L. et al. Polymorphisms of the interleukin-1β gene affect the risk of myocardial infarction and ischemic stroke at young age and the response of mononuclear cells to stimulation in vitro. Arterioscler. Thromb. Vasc. Biol. 25, 222–227 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Cullup, H., Middleton, P. G., Duggan, G., Conn, J. S. & Dickinson, A. M. Environmental factors and not genotype influence the plasma level of interleukin-1 receptor antagonist in normal individuals. Clin. Exp. Immunol. 137, 351–358 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ooboshi, H., Ibayashi, S., Takada, J., Kumai, Y. & Iida, M. Brain ischemia as a potential target of gene therapy. Exp. Gerontol. 38, 183–187 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Spera, P. A., Ellison, J. A., Feuerstein, G. Z. & Barone, F. C. IL-10 reduces rat brain injury following focal stroke. Neurosci. Lett. 251, 189–192 (1998).

    Article  CAS  PubMed  Google Scholar 

  111. Molina-Holgado, F. et al. Endogenous interleukin-1 receptor antagonist mediates anti-inflammatory and neuroprotective actions of cannabinoids in neurons and glia. J. Neurosci. 23, 6470–6474 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart M. Allan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

caspase-1

IL-1α

IL-1β

IL-1RA

IL-1RAcP

IL-1R1

IL-1R2

OMIM

Alzheimer's disease

FURTHER INFORMATION

Neurosciences at The University of Manchester

Glossary

ALZHEIMER'S DISEASE

A degenerative neurological disease that is characterized by progressive deterioration of the brain, dementia, and the presence of senile plaques, neurofibrillary tangles and neuropil threads. Disease onset can occur at any age, and women seem to be affected more frequently than men.

MICROGLIAL CELL

A macrophage-lineage cell that is derived from bone marrow and is present in the central nervous system.

ASTROCYTE

A type of glial cell that is found in vertebrate brain and is named for its characteristic star-like shape. These cells provide both mechanical and metabolic support for neurons, thereby regulating the environment in which neurons function.

ACUTE-PHASE PROTEIN

One of the group of proteins that are secreted into the blood in increased or decreased quantities by hepatocytes in response to trauma, inflammation or disease. These proteins can be inhibitors or mediators of inflammatory processes.

EICOSANOID

A fatty-acid derivative. These molecules are mainly derived from arachidonic-acid precursors and have a wide variety of biological activities. There are four main classes of eicosanoid: prostaglandins, prostacyclins, thromboxanes and leukotrienes. They are derived from the activities of cyclooxygenases and lipoxygenases on membrane-associated fatty-acid precursors.

CALPAIN

One of a group of calcium-activated cytoplasmic proteases that are found in many tissues and that hydrolyse various endogenous proteins, including neuropeptides and cytoskeletal proteins, as well as proteins from smooth muscle, cardiac muscle, liver, platelets and erythrocytes. Two subclasses are known: one with high calcium sensitivity, and one with low calcium sensitivity.

CASPASE

One of a group of enzymes that have a role in promoting apoptosis (that is, programmed cell death). Inhibition of such enzymes might be useful for combating cell and tissue damage in conditions such as myocardial infarction, stroke, inflammatory diseases and neurodegenerative disease. Augmentation of such enzymes, through the production of pro-apoptotic proteins, might be useful for combating proliferative conditions, such as cancer.

DECOY RECEPTOR

A receptor that can bind a ligand and thereby prevent the ligand from associating with the conventional signalling receptor.

TOLL/IL-1 RECEPTOR DOMAIN

(Toll/interleukin-1-receptor domain; TIR domain). An intracellular-signalling domain that is found in IL-1 receptors, Toll-like receptors and several adaptor proteins, including MyD88 (myeloid differentiation primary-response protein 88).

ISCHAEMIC INJURY

Damage to neurons that results from a deficiency in blood supply to that region of the brain, owing to functional constriction or physical obstruction of a blood vessel.

GLIAL CELL

A specialized cell that surrounds neurons. These cells provide mechanical and physical support for neurons and electrical insulation between neurons.

LONG-TERM POTENTIATION

A long-lasting increase in the efficacy of synaptic transmission. It is commonly elicited by high-frequency stimulation.

SLOW-WAVE SLEEP

A phase of sleep in which there is slow oscillation of the eyes (also known as non-rapid-eye-movement sleep, non-REM sleep).

HYPOTHALAMIC–PITUITARY–ADRENAL AXIS (HPA axis).

An important part of the neuroendocrine system. It controls reactions to stress and involves the interactions of the hypothalamus, the pituitary gland and the adrenal glands.

NEUROTOXIC STIMULUS

A form of challenge that is damaging to neurons.

TRAUMATIC STIMULUS

A form of challenge that causes damage of a physical nature by accidental means and not through disease or illness.

EXCITOTOXIC STIMULUS

A challenge provided by excitotoxins: that is, glutamate or related compounds. Excessive exposure to this type of molecule results in the death of neurons, presumably through overstimulation.

INTRACEREBROVENTRICULAR

The administration of drugs or chemicals into the ventricular system of the brain. This route is often used in animal studies and is occasionally used in humans for the introduction of anti-infectives that do not penetrate the blood–brain barrier and therefore cannot usually enter the brain.

ORGANOTYPIC SLICE CULTURE

An in vitro preparation in which tissue from a particular brain region is cut into thin slices and maintained under culture conditions so that the architecture of the organ is preserved and all of the cell types are present.

OLIGODENDROCYTE

A type of glial cell that creates the myelin sheath that insulates axons and improves the speed and reliability of signal transmission by neurons.

MATRIX METALLOPROTEINASE (MMP).

An enzyme that degrades matrix proteins. In rheumatoid arthritis, MMP1 (also known as interstitial collagenase) can degrade type I collagen, and MMP3 (also known as stromelysin-1) can degrade proteoglycans.

MYELINATION

The formation of an insulating layer (that is, a myelin sheath) around a nerve fibre or axon to increase the speed at which action potentials are conducted.

INTRATHECAL

The administration of substances into the thin space between the lining of the spinal cord and the brain. This space contains cerebrospinal fluid.

SUBARACHNOID HAEMORRHAGE

An acute condition in which there is bleeding into the space between the meningeal layers (that is, the arachnoid membrane and the pia mater), which are adjacent to the brain.

MICRODIALYSIS

A technique for measuring the extracellular concentrations of substances in tissues, usually in vivo, using a small probe that is equipped with a semipermeable membrane. Substances can also be introduced into the extracellular fluid through the membrane of the probe.

PHASE IIa TRIAL

A pilot clinical trial to evaluate efficacy and safety in a relatively small number of patients who have the disease or condition to be treated, diagnosed or prevented. Such studies often involve hospitalized patients, because they can be closely monitored. The trial objectives might focus on dose–response, type of patient, frequency of dosing or several other issues that are involved in safety and efficacy.

C-REACTIVE PROTEIN

A protein that belongs to the pentraxin family. It is produced in the liver during inflammation.

BARTHEL INDEX AND MODIFIED RANKIN SCALE

Measures of a person's daily functioning and, more specifically, the ability to carry out the activities of daily living and the extent of mobility (Barthel Index) or disability (Modified Rankin Scale). These assessments are used to determine a baseline level of function after an individual has suffered a stroke, and they allow the monitoring of recovery over time.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allan, S., Tyrrell, P. & Rothwell, N. Interleukin-1 and neuronal injury. Nat Rev Immunol 5, 629–640 (2005). https://doi.org/10.1038/nri1664

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1664

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing