Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

SLP76 and SLP65: complex regulation of signalling in lymphocytes and beyond

Key Points

  • Adaptor proteins are key intermediates in signal cascades downstream of several receptors. SLP76 (SH2-domain-containing leukocyte protein of 76 kDa) regulates signals from immunoreceptors, such as T-cell receptors, the high-affinity receptor for IgG (FcγRI), the low-affinity receptor for IgG (FcγRIII) and glycoprotein VI (GPVI), whereas SLP65 mediates B-cell-receptor signalling.

  • In addition to immunoreceptors, SLP76 is also required for signalling by integrins in neutrophils and platelets. There are, however, key differences between SLP76 function in immunoreceptor versus integrin signalling.

  • Translocation of SLP76 and SLP65 to the cell membrane is crucial for regulating the formation of multimolecular signalling complexes that link receptor signals to cellular responses. The mechanism(s) by which SLP76 and SLP65 are localized to the plasma membrane seem to differ.

  • Recent studies have indicated that SLP76, SLP65 and other adaptors might function by enhancing cooperative binding of other signalling intermediates to form stable signalling complexes.

  • The absence of SLP76 has profound effects on T-cell development as well as platelet, neutrophil and mast-cell function, whereas loss of SLP65 undermines B-cell development. In addition, absence of SLP76 results in mixture of blood and lymphatic vasculature.

  • Future studies of SLP76 and SLP65 should focus on determining their spatial and temporal localization, specifically in comparison with other signalling intermediates. Lineage- and temporal-specific regulation of SLP76 and SLP65 expression will be required to understand their roles in mature T- and B-cell development and in the function of other haematopoietic lineages in vivo.

Abstract

SLP76 and SLP65 are adaptor proteins that lack intrinsic enzymatic activity but contain multiple protein-binding domains. These proteins are essential for signalling downstream of integrins and receptors that contain immunoreceptor tyrosine-based activation motifs. The absence of these adaptor proteins profoundly affects various lineages in the haematopoietic compartment and severely compromises vascular development, highlighting their importance as regulators of signalling cascades. In this Review, we discuss the role of SLP76 and SLP65 in several signalling pathways in haematopoietic cells, with an emphasis on recent studies that provide insight into their mechanisms of action.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural features of SLP76 and SLP65.
Figure 2: Role of SLP76 in signalling through the T-cell receptor and of SLP65 through the B-cell receptor.
Figure 3: Role of SLP76 in immunoreceptor and integrin signalling.
Figure 4: Vascular separation during development is defective in the absence of SLP76.

Similar content being viewed by others

References

  1. Clark, S. G., Stern, M. J. & Horvitz, H. R. C. elegans cell-signalling gene sem-5 encodes a protein with SH2 and SH3 domains. Nature 356, 340–344 (1992). Together with references 2 and 3, this study describes the consequences of GRB2 deficiency, the first adaptor protein to be identified.

    CAS  PubMed  Google Scholar 

  2. Lowenstein, E. J. et al. The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signalling. Cell 70, 431–442 (1992).

    CAS  PubMed  Google Scholar 

  3. Olivier, J. P. et al. A Drosophila SH2–SH3 adaptor protein implicated in coupling the sevenless tyrosine kinase to an activator of Ras guanine nucleotide exchange, Sos. Cell 73, 179–191 (1993).

    CAS  PubMed  Google Scholar 

  4. Schlessinger, J. How receptor tyrosine kinases activate Ras. Trends Biochem. Sci. 18, 273–275 (1993).

    CAS  PubMed  Google Scholar 

  5. Clements, J. L., Ross-Barta, S. E., Tygrett, L. T., Waldschmidt, T. J. & Koretzky, G. A. SLP-76 expression is restricted to hemopoietic cells of monocyte, granulocyte, and T lymphocyte lineage and is regulated during T cell maturation and activation. J. Immunol. 161, 3880–3889 (1998).

    CAS  PubMed  Google Scholar 

  6. Su, Y. W. & Jumaa, H. LAT links the pre-BCR to calcium signalling. Immunity 19, 295–305 (2003).

    CAS  PubMed  Google Scholar 

  7. Jumaa, H. et al. Abnormal development and function of B lymphocytes in mice deficient for the signalling adaptor protein SLP-65. Immunity 11, 547–554 (1999).

    CAS  PubMed  Google Scholar 

  8. Jackman, J. K. et al. Molecular cloning of SLP-76, a 76-kDa tyrosine phosphoprotein associated with Grb2 in T cells. J. Biol. Chem. 270, 7029–7032 (1995).

    CAS  PubMed  Google Scholar 

  9. Fu, C., Turck, C. W., Kurosaki, T. & Chan, A. C. BLNK: a central linker protein in B cell activation. Immunity 9, 93–103 (1998).

    CAS  PubMed  Google Scholar 

  10. Gangi-Peterson, L. et al. bca: an activation-related B-cell gene. Mol. Immunol. 35, 55–63 (1998).

    CAS  PubMed  Google Scholar 

  11. Goitsuka, R. et al. BASH, a novel signalling molecule preferentially expressed in B cells of the bursa of Fabricius. J. Immunol. 161, 5804–5808 (1998).

    CAS  PubMed  Google Scholar 

  12. Wienands, J. et al. SLP-65: a new signalling component in B lymphocytes which requires expression of the antigen receptor for phosphorylation. J. Exp. Med. 188, 791–795 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bonilla, F. A., Fujita, R. M., Pivniouk, V. I., Chan, A. C. & Geha, R. S. Adapter proteins SLP-76 and BLNK both are expressed by murine macrophages and are linked to signalling via Fcγ receptors I and II/III. Proc. Natl Acad. Sci. USA 97, 1725–1730 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zamoyska, R. et al. The influence of the Src-family kinases, Lck and Fyn, on T cell differentiation, survival and activation. Immunol. Rev. 191, 107–118 (2003).

    CAS  PubMed  Google Scholar 

  15. Wardenburg, J. B. et al. Phosphorylation of SLP-76 by the ZAP-70 protein-tyrosine kinase is required for T-cell receptor function. J. Biol. Chem. 271, 19641–19644 (1996).

    CAS  Google Scholar 

  16. Zhang, W., Sloan-Lancaster, J., Kitchen, J., Trible, R. P. & Samelson, L. E. LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell 92, 83–92 (1998).

    CAS  PubMed  Google Scholar 

  17. Jordan, M. S., Singer, A. L. & Koretzky, G. A. Adaptors as central mediators of signal transduction in immune cells. Nature Immunol. 4, 110–116 (2003).

    CAS  Google Scholar 

  18. Abraham, R. T. & Weiss, A. Jurkat T cells and development of the T-cell receptor signalling paradigm. Nature Rev. Immunol. 4, 301–308 (2004).

    CAS  Google Scholar 

  19. Motto, D. G., Ross, S. E., Wu, J., Hendricks-Taylor, L. R. & Koretzky, G. A. Implication of the GRB2-associated phosphoprotein SLP-76 in T cell receptor-mediated interleukin 2 production. J. Exp. Med. 183, 1937–1943 (1996).

    CAS  PubMed  Google Scholar 

  20. Yablonski, D., Kuhne, M. R., Kadlecek, T. & Weiss, A. Uncoupling of nonreceptor tyrosine kinases from PLC-g1 in an SLP-76-deficient T cell. Science 281, 413–416 (1998).

    CAS  PubMed  Google Scholar 

  21. Raab, M., da Silva, A. J., Findell, P. R. & Rudd, C. E. Regulation of Vav-SLP-76 binding by ZAP-70 and its relevance to TCR ζ/CD3 induction of interleukin-2. Immunity 6, 155–164 (1997).

    CAS  PubMed  Google Scholar 

  22. Onodera, H., Motto, D. G., Koretzky, G. A. & Rothstein, D. M. Differential regulation of activation-induced tyrosine phosphorylation and recruitment of SLP-76 to Vav by distinct isoforms of the CD45 protein-tyrosine phosphatase. J. Biol. Chem. 271, 22225–22230 (1996).

    CAS  PubMed  Google Scholar 

  23. Tuosto, L., Michel, F. & Acuto, O. p95vav associates with tyrosine-phosphorylated SLP-76 in antigen-stimulated T cells. J. Exp. Med. 184, 1161–1166 (1996).

    CAS  PubMed  Google Scholar 

  24. Wu, J., Motto, D. G., Koretzky, G. A. & Weiss, A. Vav and SLP-76 interact and functionally cooperate in IL-2 gene activation. Immunity 4, 593–602 (1996).

    CAS  PubMed  Google Scholar 

  25. Bubeck Wardenburg, J. et al. Regulation of PAK activation and the T cell cytoskeleton by the linker protein SLP-76. Immunity 9, 607–616 (1998).

    CAS  PubMed  Google Scholar 

  26. Wunderlich, L., Farago, A., Downward, J. & Buday, L. Association of Nck with tyrosine-phosphorylated SLP-76 in activated T lymphocytes. Eur. J. Immunol. 29, 1068–1075 (1999).

    CAS  PubMed  Google Scholar 

  27. Shim, E. K. et al. Association of the Src homology 2 domain-containing leukocyte phosphoprotein of 76 kD (SLP-76) with the p85 subunit of phosphoinositide 3-kinase. FEBS Lett. 575, 35–40 (2004).

    CAS  PubMed  Google Scholar 

  28. Su, Y. W. et al. Interaction of SLP adaptors with the SH2 domain of Tec family kinases. Eur. J. Immunol. 29, 3702–3711 (1999).

    CAS  PubMed  Google Scholar 

  29. Bunnell, S. C. et al. Biochemical interactions integrating Itk with the T cell receptor-initiated signalling cascade. J. Biol. Chem. 275, 2219–2230 (2000).

    CAS  PubMed  Google Scholar 

  30. Liu, S. K., Fang, N., Koretzky, G. A. & McGlade, C. J. The hematopoietic-specific adaptor protein Gads functions in T-cell signalling via interactions with the SLP-76 and LAT adaptors. Curr. Biol. 9, 67–75 (1999).

    CAS  PubMed  Google Scholar 

  31. Liu, Q., et al. Structural basis for the specific binding of the Gads SH3 domain to an RxxK motif-containing SLP-76 peptide: a novel mode of peptide recognition. Mol. Cell 11, 471–481 (2003). This study identifies a unique SH3 binding motif present in SLP76 that mediates interaction with GADS.

    CAS  PubMed  Google Scholar 

  32. Yablonski, D., Kadlecek, T. & Weiss, A. Identification of a phospholipase C-γ1 (PLC-γ1) SH3 domain-binding site in SLP-76 required for T-cell receptor-mediated activation of PLC-γ1 and NFAT. Mol. Cell. Biol. 21, 4208–4218 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sanzenbacher, R., Kabelitz, D. & Janssen, O. SLP-76 binding to p56lck: a role for SLP-76 in CD4-induced desensitization of the TCR/CD3 signalling complex. J. Immunol. 163, 3143–3152 (1999).

    CAS  PubMed  Google Scholar 

  34. da Silva, A. J. et al. Cloning of a novel T-cell protein FYB that binds FYN and SH2-domain-containing leukocyte protein 76 and modulates interleukin 2 production. Proc. Natl Acad. Sci. USA 94, 7493–7498 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Musci, M. A. et al. Molecular cloning of SLAP-130, an SLP-76-associated substrate of the T cell antigen receptor-stimulated protein tyrosine kinases. J. Biol. Chem. 272, 11674–11677 (1997).

    CAS  PubMed  Google Scholar 

  36. Sauer, K. et al. Hematopoietic progenitor kinase 1 associates physically and functionally with the adaptor proteins B cell linker protein and SLP-76 in lymphocytes. J. Biol. Chem. 276, 45207–45216 (2001).

    CAS  PubMed  Google Scholar 

  37. Fang, N., Motto, D. G., Ross, S. E. & Koretzky, G. A. Tyrosines 113, 128, and 145 of SLP-76 are required for optimal augmentation of NFAT promoter activity. J. Immunol. 157, 3769–3773 (1996).

    CAS  PubMed  Google Scholar 

  38. Takata, M. & Kurosaki, T. A role for Bruton's tyrosine kinase in B cell antigen receptor-mediated activation of phospholipase C-γ2. J. Exp. Med. 184, 31–40 (1996).

    CAS  PubMed  Google Scholar 

  39. Martelli, M. P., Lin, H., Zhang, W., Samelson, L. E. & Bierer, B. E. Signalling via LAT (linker for T-cell activation) and Syk/ZAP70 is required for ERK activation and NFAT transcriptional activation following CD2 stimulation. Blood 96, 2181–2190 (2000).

    CAS  PubMed  Google Scholar 

  40. Ching, K. A. et al. TCR/CD3-Induced activation and binding of Emt/Itk to linker of activated T cell complexes: requirement for the Src homology 2 domain. J. Immunol. 165, 256–262 (2000).

    CAS  PubMed  Google Scholar 

  41. Zhang, W. et al. Association of Grb2, Gads, and phospholipase C-γ1 with phosphorylated LAT tyrosine residues. Effect of LAT tyrosine mutations on T cell antigen receptor-mediated signalling. J. Biol. Chem. 275, 23355–23361 (2000).

    CAS  PubMed  Google Scholar 

  42. Reynolds, L. F. et al. Vav1 transduces T cell receptor signals to the activation of phospholipase C-γ1 via phosphoinositide 3-kinase-dependent and-independent pathways. J. Exp. Med. 195, 1103–1114 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Dombroski, D. et al. Kinase-independent functions for Itk in TCR-induced regulation of Vav and the actin cytoskeleton. J. Immunol. 174, 1385–1392 (2005).

    CAS  PubMed  Google Scholar 

  44. Bokoch, G. M. et al. Interaction of the Nck adapter protein with p21-activated kinase (PAK1). J. Biol. Chem. 271, 25746–25749 (1996).

    CAS  PubMed  Google Scholar 

  45. Galisteo, M. L., Chernoff, J., Su, Y. C., Skolnik, E. Y. & Schlessinger, J. The adaptor protein Nck links receptor tyrosine kinases with the serine-threonine kinase Pak1. J. Biol. Chem. 271, 20997–21000 (1996).

    CAS  PubMed  Google Scholar 

  46. Lu, W., Katz, S., Gupta, R. & Mayer, B. J. Activation of Pak by membrane localization mediated by an SH3 domain from the adaptor protein Nck. Curr. Biol. 7, 85–94 (1997).

    CAS  PubMed  Google Scholar 

  47. Rivero-Lezcano, O. M., Marcilla, A., Sameshima, J. H. & Robbins, K. C. Wiskott-Aldrich syndrome protein physically associates with Nck through Src homology 3 domains. Mol. Cell. Biol. 15, 5725–5731 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Zeng, R. et al. SLP-76 coordinates Nck-dependent Wiskott-Aldrich syndrome protein recruitment with Vav-1/Cdc42-dependent Wiskott-Aldrich syndrome protein activation at the T cell-APC contact site. J. Immunol. 171, 1360–1368 (2003).

    CAS  PubMed  Google Scholar 

  49. Ku, G. M., Yablonski, D., Manser, E., Lim, L. & Weiss, A. A PAK1-PIX-PKL complex is activated by the T-cell receptor independent of Nck, Slp-76 and LAT. EMBO J. 20, 457–465 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Phee, H., Abraham, R. T. & Weiss, A. Dynamic recruitment of PAK1 to the immunological synapse is mediated by PIX independently of SLP-76 and Vav1. Nature Immunol. 6, 608–617 (2005).

    CAS  Google Scholar 

  51. Berry, D. M., Nash, P., Liu, S. K., Pawson, T. & McGlade, C. J. A high-affinity Arg-X-X-Lys SH3 binding motif confers specificity for the interaction between Gads and SLP-76 in T cell signalling. Curr. Biol. 12, 1336–1341 (2002).

    CAS  PubMed  Google Scholar 

  52. Singer, A. L. et al. Roles of the proline-rich domain in SLP-76 subcellular localization and T cell function. J. Biol. Chem. 279, 15481–15490 (2004).

    CAS  PubMed  Google Scholar 

  53. Gonen, R., Beach, D., Ainey, C. & Yablonski, D. T cell receptor-induced activation of phospholipase C-γ1 depends on a sequence-independent function of the P-I region of SLP-76. J. Biol. Chem. 280, 8364–8370 (2005).

    CAS  PubMed  Google Scholar 

  54. Hashimoto, S. et al. Identification of the SH2 domain binding protein of Bruton's tyrosine kinase as BLNK — functional significance of Btk-SH2 domain in B-cell antigen receptor-coupled calcium signalling. Blood 94, 2357–2364 (1999).

    CAS  PubMed  Google Scholar 

  55. Fusaki, N. et al. BLNK is associated with the CD72/SHP-1/Grb2 complex in the WEHI231 cell line after membrane IgM crosslinking. Eur. J. Immunol. 30, 1326–1330 (2000).

    CAS  PubMed  Google Scholar 

  56. Ishiai, M., Sugawara, H., Kurosaki, M. & Kurosaki, T. Cutting edge: association of phospholipase C-γ2 Src homology 2 domains with BLNK is critical for B cell antigen receptor signalling. J. Immunol. 163, 1746–1749 (1999).

    CAS  PubMed  Google Scholar 

  57. Ishiai, M. et al. BLNK required for coupling Syk to PLC γ2 and Rac1-JNK in B cells. Immunity 10, 117–125 (1999).

    CAS  PubMed  Google Scholar 

  58. Rodriguez, R., Matsuda, M., Storey, A. & Katan, M. Requirements for distinct steps of phospholipase Cγ2 regulation, membrane-raft-dependent targeting and subsequent enzyme activation in B-cell signalling. Biochem. J. 374, 269–280 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Pappu, R. et al. Requirement for B cell linker protein (BLNK) in B cell development. Science 286, 1949–1954 (1999). This study, together with references 91, 92, 115 and 116, describes the generation of SLP65- and SLP76-deficient mice.

    CAS  PubMed  Google Scholar 

  60. Tan, J. E., Wong, S. C., Gan, S. K., Xu, S. & Lam, K. P. The adaptor protein BLNK is required for B cell antigen receptor-induced activation of nuclear factor-κB and cell cycle entry and survival of B lymphocytes. J. Biol. Chem. 276, 20055–20063 (2001).

    CAS  PubMed  Google Scholar 

  61. Fujikawa, K. et al. Vav1/2/3-null mice define an essential role for Vav family proteins in lymphocyte development and activation but a differential requirement in MAPK signalling in T and B cells. J. Exp. Med. 198, 1595–1608 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Johmura, S. et al. Regulation of Vav localization in membrane rafts by adaptor molecules Grb2 and BLNK. Immunity 18, 777–787 (2003). Together with reference 64, this study shows the importance of SLP76 and SLP65 in the localization of other signal-transduction molecules.

    CAS  PubMed  Google Scholar 

  63. Wu, J. N. & Koretzky, G. A. The SLP-76 family of adapter proteins. Semin. Immunol. 16, 379–393 (2004).

    CAS  PubMed  Google Scholar 

  64. Charvet, C., Canonigo, A. J., Billadeau, D. D. & Altman, A. Membrane localization and function of Vav3 in T cells depend on its association with the adapter SLP-76. J. Biol. Chem. 280, 15289–15299 (2005).

    CAS  PubMed  Google Scholar 

  65. Simons, K. & Toomre, D. Lipid rafts and signal transduction. Nature Rev. Mol. Cell Biol. 1, 31–39 (2000).

    CAS  Google Scholar 

  66. Samelson, L. E. Signal transduction mediated by the T cell antigen receptor: the role of adapter proteins. Annu. Rev. Immunol. 20, 371–394 (2002).

    CAS  PubMed  Google Scholar 

  67. Boerth, N. J. et al. Recruitment of SLP-76 to the membrane and glycolipid-enriched membrane microdomains replaces the requirement for linker for activation of T cells in T cell receptor signalling. J. Exp. Med. 192, 1047–1058 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Bunnell, S. C. et al. T cell receptor ligation induces the formation of dynamically regulated signalling assemblies. J. Cell Biol. 158, 1263–1275 (2002). In this study, the authors investigate the temporal and spatial localization of proximal signalling molecules and highlight the potential of use of microscopy for investigation of these important aspects of signalling.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Wong, J., Ishiai, M., Kurosaki, T. & Chan, A. C. Functional complementation of BLNK by SLP-76 and LAT linker proteins. J. Biol. Chem. 275, 33116–33122 (2000).

    CAS  PubMed  Google Scholar 

  70. Pierce, S. K. Lipid rafts and B-cell activation. Nature Rev. Immunol. 2, 96–105 (2002).

    CAS  Google Scholar 

  71. Dykstra, M., Cherukuri, A., Sohn, H. W., Tzeng, S. J. & Pierce, S. K. Location is everything: lipid rafts and immune cell signalling. Annu. Rev. Immunol. 21, 457–481 (2003).

    CAS  PubMed  Google Scholar 

  72. Janssen, E., Zhu, M., Zhang, W. & Koonpaew, S. LAB: a new membrane-associated adaptor molecule in B cell activation. Nature Immunol. 4, 117–123 (2003).

    CAS  Google Scholar 

  73. Brdicka, T. et al. Non-T cell activation linker (NTAL): a transmembrane adaptor protein involved in immunoreceptor signalling. J. Exp. Med. 196, 1617–1626 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang, Y. et al. Single and combined deletions of the NTAL/LAB and LAT adaptors minimally affect B-cell development and function. Mol. Cell. Biol. 25, 4455–4465 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Ishiai, M. et al. Involvement of LAT, Gads, and Grb2 in compartmentation of SLP-76 to the plasma membrane. J. Exp. Med. 192, 847–856 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Engels, N., Wollscheid, B. & Wienands, J. Association of SLP-65/BLNK with the B cell antigen receptor through a non-ITAM tyrosine of Ig-α. Eur. J. Immunol. 31, 2126–2134 (2001).

    CAS  PubMed  Google Scholar 

  77. Kabak, S. et al. The direct recruitment of BLNK to immunoglobulin-α couples the B-cell antigen receptor to distal signalling pathways. Mol. Cell. Biol. 22, 2524–2535 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Kohler, F. et al. A leucine zipper in the N terminus confers membrane association to SLP-65. Nature Immunol. 6, 204–210 (2005). This study identifies a newly identified mechanism for SLP65 recruitment to the plasma membrane, which potentially explains the dispensability of LAT and NTAL to SLP65 function.

    Google Scholar 

  79. Munro, S. Lipid rafts: elusive or illusive? Cell 115, 377–388 (2003).

    CAS  PubMed  Google Scholar 

  80. Lichtenberg, D., Goni, F. M. & Heerklotz, H. Detergent-resistant membranes should not be identified with membrane rafts. Trends Biochem. Sci. 30, 430–436 (2005).

    CAS  PubMed  Google Scholar 

  81. Zhu, M., Shen, S., Liu, Y., Granillo, O. & Zhang, W. Cutting Edge: Localization of linker for activation of T cells to lipid rafts is not essential in T cell activation and development. J. Immunol. 174, 31–35 (2005).

    CAS  PubMed  Google Scholar 

  82. Douglass, A. D. & Vale, R. D. Single-molecule microscopy reveals plasma-membrane microdomains created by protein-protein networks that exclude or trap signalling molecules in T cells. Cell 121, 937–950 (2005). A technically powerful study indicates that the key regulator of plasma-membrane microdomains is protein-interaction networks as opposed to lipid rafts.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Chiu, C. W., Dalton, M., Ishiai, M., Kurosaki, T. & Chan, A. C. BLNK: molecular scaffolding through 'cis'-mediated organization of signalling proteins. EMBO J. 21, 6461–6472 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Houtman, J. C. et al. Binding specificity of multiprotein signalling complexes is determined by both cooperative interactions and affinity preferences. Biochemistry 43, 4170–4178 (2004). Results from this study indicate that interaction with multiple binding partners by a single SLP65 molecule is required for function.

    CAS  PubMed  Google Scholar 

  85. Ladbury, J. E. & Arold, S. Searching for specificity in SH domains. Chem. Biol. 7, R3–R8 (2000).

    CAS  PubMed  Google Scholar 

  86. Obergfell, A. et al. The molecular adapter SLP-76 relays signals from platelet integrin αΙΙbβ3 to the actin cytoskeleton. J. Biol. Chem. 276, 5916–5923 (2001).

    CAS  PubMed  Google Scholar 

  87. Newbrough, S. A. et al. SLP-76 regulates Fcγ receptor and integrin signalling in neutrophils. Immunity 19, 761–769 (2003).

    PubMed  Google Scholar 

  88. Obergfell, A. et al. Coordinate interactions of Csk, Src, and Syk kinases with αΙΙbβ3 initiate integrin signalling to the cytoskeleton. J. Cell Biol. 157, 265–275 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Inoue, O., Suzuki-Inoue, K., Dean, W. L., Frampton, J. & Watson, S. P. Integrin α2β1 mediates outside-in regulation of platelet spreading on collagen through activation of Src kinases and PLCγ2. J. Cell Biol. 160, 769–780 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Judd, B. A. et al. Differential requirement for LAT and SLP-76 in GPVI versus T cell receptor signalling. J. Exp. Med. 195, 705–717 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Clements, J. L. et al. Requirement for the leukocyte-specific adapter protein SLP-76 for normal T cell development. Science 281, 416–419 (1998).

    CAS  PubMed  Google Scholar 

  92. Pivniouk, V. et al. Impaired viability and profound block in thymocyte development in mice lacking the adaptor protein SLP-76. Cell 94, 229–238 (1998).

    CAS  PubMed  Google Scholar 

  93. Aifantis, I. et al. Allelic exclusion of the T cell receptor-β locus requires the SH2 domain-containing leukocyte protein (SLP)-76 adaptor protein. J. Exp. Med. 190, 1093–1102 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Myung, P. S. et al. Differential requirement for SLP-76 domains in T cell development and function. Immunity 15, 1011–1026 (2001). This study identifies a requirement for SLP76 in thymocyte development past the DN3 stage and proves that lineage-specific SLP76 deletion, and possibly temporally controlled SLP76 deletion, is feasible for the study of SLP76 function at later stages in thymocyte development.

    CAS  PubMed  Google Scholar 

  95. Kumar, L., Pivniouk, V., de la Fuente, M. A., Laouini, D. & Geha, R. S. Differential role of SLP-76 domains in T cell development and function. Proc. Natl Acad. Sci. USA 99, 884–889 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Maltzman, J. S., Kovoor, L., Clemens, J. L. & Koretzky, G. A. Conditional deletion of SLP-76 reveals a cell autonomous requirement for thymocyte selection. J. Exp. Med. 202, 893–900 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Jouvin, M. H. et al. Differential control of the tyrosine kinases Lyn and Syk by the two signalling chains of the high affinity immunoglobulin E receptor. J. Biol. Chem. 269, 5918–5925 (1994).

    CAS  PubMed  Google Scholar 

  98. Hendricks-Taylor, L. R., Motto, D. G., Zhang, J., Siraganian, R. P. & Koretzky, G. A. SLP-76 is a substrate of the high affinity IgE receptor-stimulated protein tyrosine kinases in rat basophilic leukemia cells. J. Biol. Chem. 272, 1363–1367 (1997).

    CAS  PubMed  Google Scholar 

  99. Pivniouk, V. I. et al. SLP-76 deficiency impairs signalling via the high-affinity IgE receptor in mast cells. J. Clin. Invest. 103, 1737–1743 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Kettner, A. et al. Structural requirements of SLP-76 in signalling via the high-affinity immunoglobulin E receptor (FcεRI) in mast cells. Mol. Cell Biol. 23, 2395–2406 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Wu, J. N., Jordan, M. S., Silverman, M. A., Peterson, E. J. & Koretzky, G. A. Differential requirement for adapter proteins Src homology 2 domain-containing leukocyte phosphoprotein of 76 kDa and adhesion- and degranulation-promoting adapter protein in FcεRI signalling and mast cell function. J. Immunol. 172, 6768–6774 (2004).

    CAS  PubMed  Google Scholar 

  102. Parravicini, V. et al. Fyn kinase initiates complementary signals required for IgE-dependent mast cell degranulation. Nature Immunol. 3, 741–748 (2002).

    CAS  Google Scholar 

  103. Clements, J. L. et al. Fetal hemorrhage and platelet dysfunction in SLP-76-deficient mice. J. Clin. Invest. 103, 19–25 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Gross, B. S. et al. Tyrosine phosphorylation of SLP-76 is downstream of Syk following stimulation of the collagen receptor in platelets. J. Biol. Chem. 274, 5963–5971 (1999).

    CAS  PubMed  Google Scholar 

  105. Berton, G. Tyrosine kinases in neutrophils. Curr. Opin. Hematol. 6, 51–58 (1999).

    CAS  PubMed  Google Scholar 

  106. Nichols, K. E. et al. Macrophage activation and Fcγ receptor-mediated signalling do not require expression of the SLP-76 and SLP-65 adaptors. J. Leukoc. Biol. 75, 541–552 (2004).

    CAS  PubMed  Google Scholar 

  107. Myung, P. S. et al. In vitro and in vivo macrophage function can occur independently of SLP-76. Int. Immunol. 12, 887–897 (2000).

    CAS  PubMed  Google Scholar 

  108. Cohen-Solal, J. F., Cassard, L., Fridman, W. H. & Sautes-Fridman, C. Fcγ receptors. Immunol. Lett. 92, 199–205 (2004).

    CAS  PubMed  Google Scholar 

  109. Shivdasani, R. A. et al. Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoietin/MGDF in megakaryocyte development. Cell 81, 695–704 (1995).

    CAS  PubMed  Google Scholar 

  110. Abtahian, F. et al. Regulation of blood and lymphatic vascular separation by signalling proteins SLP-76 and Syk. Science 299, 247–251 (2003). This study reports the intriguing finding that points to a newly discovered role for SLP76 and SYK in regulating lymphatic vessel separation from blood vasculature.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Cheng, A. M. et al. Syk tyrosine kinase required for mouse viability and B-cell development. Nature 378, 303–306 (1995).

    CAS  PubMed  Google Scholar 

  112. Turner, M. et al. Perinatal lethality and blocked B-cell development in mice lacking the tyrosine kinase Syk. Nature 378, 298–302 (1995).

    CAS  PubMed  Google Scholar 

  113. Wang, D. et al. Phospholipase Cγ2 is essential in the functions of B cell and several Fc receptors. Immunity 13, 25–35 (2000).

    PubMed  Google Scholar 

  114. Zhang, W. et al. Essential role of LAT in T cell development. Immunity 10, 323–332 (1999).

    CAS  PubMed  Google Scholar 

  115. Hayashi, K. et al. The B cell-restricted adaptor BASH is required for normal development and antigen receptor-mediated activation of B cells. Proc. Natl Acad. Sci. USA 97, 2755–2760 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Xu, S. et al. B cell development and activation defects resulting in xid-like immunodeficiency in BLNK/SLP-65-deficient mice. Int. Immunol. 12, 397–404 (2000).

    CAS  PubMed  Google Scholar 

  117. Xu, S., Wong, S. C. & Lam, K. P. Cutting edge: B cell linker protein is dispensable for the allelic exclusion of immunoglobulin heavy chain locus but required for the persistence of CD5+ B cells. J. Immunol. 165, 4153–4157 (2000).

    CAS  PubMed  Google Scholar 

  118. Engel, P. et al. Abnormal B lymphocyte development, activation, and differentiation in mice that lack or overexpress the CD19 signal transduction molecule. Immunity 3, 39–50 (1995).

    CAS  PubMed  Google Scholar 

  119. Rickert, R. C., Rajewsky, K. & Roes, J. Impairment of T-cell-dependent B-cell responses and B-1 cell development in CD19-deficient mice. Nature 376, 352–355 (1995).

    CAS  PubMed  Google Scholar 

  120. Hayashi, K., Yamamoto, M., Nojima, T., Goitsuka, R. & Kitamura, D. Distinct signalling requirements for Dμ selection, IgH allelic exclusion, pre-B cell transition, and tumour suppression in B cell progenitors. Immunity 18, 825–836 (2003).

    CAS  PubMed  Google Scholar 

  121. Minegishi, Y. et al. An essential role for BLNK in human B cell development. Science 286, 1954–1957 (1999).

    CAS  PubMed  Google Scholar 

  122. Conley, M. E., Rohrer, J., Rapalus, L., Boylin, E. C. & Minegishi, Y. Defects in early B-cell development: comparing the consequences of abnormalities in pre-BCR signalling in the human and the mouse. Immunol. Rev. 178, 75–90 (2000).

    CAS  PubMed  Google Scholar 

  123. Flemming, A., Brummer, T., Reth, M. & Jumaa, H. The adaptor protein SLP-65 acts as a tumour suppressor that limits pre-B cell expansion. Nature Immunol. 4, 38–43 (2003).

    CAS  Google Scholar 

  124. Jumaa, H. et al. Deficiency of the adaptor SLP-65 in pre-B-cell acute lymphoblastic leukaemia. Nature 423, 452–456 (2003). This study raises the possibility that SLP65 might function as a tumour suppressor and could potentially be a marker of transformation. A larger study described in reference 125 implies that SLP65 expression might be dysregulated in only a subset of patients with B-cell ALL.

    CAS  PubMed  Google Scholar 

  125. Imai, C. et al. Expression of the adaptor protein BLNK/SLP-65 in childhood acute lymphoblastic leukemia. Leukemia 18, 922–925 (2004).

    CAS  PubMed  Google Scholar 

  126. Gerlach, J. et al. B cell defects in SLP65/BLNK-deficient mice can be partially corrected by the absence of CD22, an inhibitory coreceptor for BCR signalling. Eur. J. Immunol. 33, 3418–3426 (2003).

    CAS  PubMed  Google Scholar 

  127. Mizuno, K., Tagawa, Y., Watanabe, N., Ogimoto, M. & Yakura, H. SLP-76 is recruited to CD22 and dephosphorylated by SHP-1, thereby regulating B cell receptor-induced c-Jun N-terminal kinase activation. Eur. J. Immunol. 35, 644–654 (2005).

    CAS  PubMed  Google Scholar 

  128. Gerke, C., Falkow, S. & Chien, Y. H. The adaptor molecules LAT and SLP-76 are specifically targeted by Yersinia to inhibit T cell activation. J. Exp. Med. 201, 361–371 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Kwon, J. et al. Receptor-stimulated oxidation of SHP-2 promotes T-cell adhesion through SLP-76-ADAP. EMBO J. 24, 2331–2341 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Chiang, Y. J. et al. Inactivation of c-Cbl reverses neonatal lethality and T cell developmental arrest of SLP-76-deficient mice. J. Exp. Med. 200, 25–34 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Kahn, Division of Cardiology, Department of Medicine, University of Pennsylvania, for thoughtful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary A. Koretzky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Gary Koretzky's laboratory

Glossary

Guanine-nucleotide-exchange factor

Proteins that activate low-molecular-mass GTPases, such as RHO-family GTPases and RAS, by stimulating the dissociation of GDP, and thereby promoting formation of the active GTP-bound state of these GTPases.

Immunoreceptor tyrosine-based activation motif

(ITAM). A sequence that is present in the cytoplasmic domains of the invariant chains of various cell-surface immune receptors, such as T- and B-cell receptors, the receptor for IgE (FcεR) and natural-killer-cell activating receptors. Following phosphorylation of their tyrosine residue, ITAMs function as docking sites for SRC homology 2-domain-containing tyrosine kinases and adaptor molecules, thereby facilitating intracellular-signalling cascades.

Lipid rafts

An area of the plasma membrane that is rich in cholesterol, glycosphingolipids, several signalling proteins — such as SRC-family kinases, RAS and LAT (linker for activation of T cells) — and glycosylphosphatidylinositol-anchored proteins. These domains are also known as glycolipid-enriched membrane domains, detergent-insoluble glycolipid-enriched membranes and detergent-resistant membranes.

Live-cell confocal imaging

A technique whereby cells expressing fluorescently tagged molecules can be visualized in real time. This technique offers temporal and spatial resolution (6 μm) of tagged proteins. Colocalization of multiple tagged proteins by confocal microscopy indicates the potential for direct or indirect interactions, but requires confirmation by more sensitive techniques, such as fluorescence resonance energy transfer.

Fluorescence resonance energy transfer

A technique that is used to measure protein–protein interactions either by microscopy or flow cytometry. Proteins fused to cyan, yellow or red fluorescent proteins are expressed and assessed for interaction by measuring the energy transfer between fluorophores, which can only occur if proteins physically interact.

Reactive oxygen intermediates

(ROIs). Toxic free-radicals that are produced in neutrophils by univalent reduction of oxygen through NADPH oxidase to superoxide anions. Superoxide anions can subsequently leave the cell through anion channels and can be converted to hydrogen peroxide by superoxide dismutases. Both superoxide and hydrogen peroxide can be used to generate other types of ROI.

Allelic exclusion

In theory, every B cell has the potential to produce two immunoglobulin heavy chains and two immunoglobulin light chains, and every T cell can generate two different T-cell receptors (TCRs). In practice, however, a B cell produces only one immunoglobulin heavy chain and one immunoglobulin light chain and each T cell only one TCR α-chain and one TCR β-chain. The process by which the production of two different chains is prevented is known as allelic exclusion.

β-selection

Successful rearrangement and expression of the T-cell receptor (TCR) β-chain, which can then pair with the pre-TCR α-chain and support signal transduction from the pre-TCR.

Cre-loxP approach

A site-specific recombination system. Two short DNA sequences (loxP sites) are engineered to flank the target DNA. Expression of Cre recombinase leads to excision of the intervening sequence. Depending on the type of promoter, Cre can be expressed at specific times during development or in specific sets of cells.

Anastomosis

The site of connection between two separate spaces, such that they intercommunicate. This can arise during normal embryonic development, during pathological processes or artificially through surgical means.

B1 cells

Peripheral B cells exist as two populations, CD5+ B1 cells or CD5 B1 cells. Peritoneal B1a cells are thought to have a role not only in adaptive immunity but also innate immunity.

T-cell-independent antigens

Antigens, such as polysaccharides and lipids, that directly activate B cells without the requirement for T-cell help.

Acute lymphoblastic leukaemia

The most common cancer in children that results from oncogenic transformation in a lymphocyte precursor population. Malignant cells can have either a B- or T-cell phenotype.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koretzky, G., Abtahian, F. & Silverman, M. SLP76 and SLP65: complex regulation of signalling in lymphocytes and beyond. Nat Rev Immunol 6, 67–78 (2006). https://doi.org/10.1038/nri1750

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1750

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing