Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

CD3-specific antibodies: a portal to the treatment of autoimmunity

Key Points

  • This Review summarizes the results from preclinical and clinical studies that use CD3-specific monoclonal antibody therapy and highlights future combination opportunities to enhance the efficacy of this promising immunotherapeutic.

  • CD3-specific monoclonal antibodies inactivate pathogenic cells by inducing rapid internalization of the T-cell receptor (TCR)–CD3 complex from the cell surface. Upon TCR re-expression and exposure to the autoantigen, an 'altered' TCR signal causes the T cells to die, become anergic or even change from a pathogenic to a regulatory T-cell phenotype.

  • Preclinical studies strongly suggested that the long-term therapeutic effect of CD3-specific monoclonal antibodies in non-obese diabetic (NOD) mice could not be explained solely by their capacity to eliminate and/or inactivate pathogenic T cells. Evidence suggests that this long-term effect results as a consequence of a significant increase in the number of transforming growth factor-β (TGFβ)-dependent adaptive regulatory T cells, as well as an increased sensitivity of pathogenic T cells to the effects of regulatory T cells.

  • At variance with presently available therapies for autoimmunity and transplantation, CD3-specific monoclonal antibodies afford long-term effects following a short administration — a capacity that is directly linked to their tolerogenic properties. The present challenge is to build on this experience; first to attain the use of CD3-specific monoclonal antibodies as an established therapy in well-selected subsets of patients with autoimmune diabetes; second, to adapt CD3-specific monoclonal antibody treatment to other autoimmune disorders in which it could also prove beneficial; and third, to use CD3-specific monoclonal antibody therapies in combination with other treatments for increased efficiency.

Abstract

Targeted immunotherapies hold great promise for the treatment and cure of autoimmune diseases. The efficacy of CD3-specific monoclonal antibody therapy in mice and humans stems from its ability to re-establish immune homeostasis in treated individuals. This occurs through modulation of the T-cell receptor (TCR)–CD3 complex (also termed antigenic modulation) and/or induction of apoptosis of activated autoreactive T cells, which leaves behind 'space' for homeostatic reconstitution that favours selective induction, survival and expansion of adaptive regulatory T cells, which establishes long-term tolerance. This Review summarizes the pre-clinical and clinical studies of CD3-specific monoclonal antibody therapy and highlights future opportunities to enhance the efficacy of this potent immunotherapeutic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Postulated mode of action of FcR-non-binding CD3-specific monoclonal antibodies in type 1 diabetes.
Figure 2: Potential therapeutic window for CD3-specific monoclonal antibody in type 1 diabetes.

Similar content being viewed by others

References

  1. Kaufman, D. L. et al. Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes. Nature 366, 69–72 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Tisch, R. et al. Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice. Nature 366, 72–75 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Atkinson, M. A., Maclaren, N. K. & Luchetta, R. Insulitis and diabetes in NOD mice reduced by prophylactic insulin therapy. Diabetes 39, 933–937 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Daniel, D. & Wegmann, D. R. Protection of nonobese diabetic mice from diabetes by intranasal or subcutaneous administration of insulin peptide B-(9–23). Proc. Natl Acad. Sci. USA 93, 956–960 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Harrison, L. C., Dempseycollier, M., Kramer, D. R. & Takahashi, K. Aerosol insulin induces regulatory CD8 γδ T cells that prevent murine insulin-dependent diabetes. J. Exp. Med. 184, 2167–2174 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Karounos, D. G., Bryson, J. S. & Cohen, D. A. Metabolically inactive insulin analog prevents type I diabetes in prediabetic NOD mice. J. Clin. Invest. 100, 1344–1348 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Elias, D. & Cohen, I. R. Peptide therapy for diabetes in NOD mice. Lancet 343, 704–706 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Metzler, B. & Wraith, D. C. Inhibition of experimental autoimmune encephalomyelitis by inhalation but not oral administration of the encephalitogenic peptide: influence of MHC binding affinity. Int. Immunol. 5, 1159–1165 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Khoury, S. J., Hancock, W. W. & Weiner, H. L. Oral tolerance to myelin basic protein and natural recovery from experimental autoimmune encephalomyelitis are associated with downregulation of inflammatory cytokines and differential upregulation of transforming growth factor β, interleukin 4, and prostaglandin E expression in the brain. J. Exp. Med. 176, 1355–1364 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Nussenblatt, R. B. et al. Inhibition of S-antigen induced experimental autoimmune uveoretinitis by oral induction of tolerance with S-antigen. J. Immunol. 144, 1689–1695 (1990).

    CAS  PubMed  Google Scholar 

  11. Al Sabbagh, A., Nelson, P. A., Akselband, Y., Sobel, R. A. & Weiner, H. L. Antigen-driven peripheral immune tolerance: suppression of experimental autoimmune encephalomyelitis and collagen- induced arthritis by aerosol administration of myelin basic protein or type II collagen. Cell. Immunol. 171, 111–119 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Khare, S. D., Krco, C. J., Griffiths, M. M., Luthra, H. S. & David, C. S. Oral administration of an immunodominant human collagen peptide modulates collagen-induced arthritis. J. Immunol. 155, 3653–3659 (1995).

    CAS  PubMed  Google Scholar 

  13. Chaillous, L. et al. Oral insulin administration and residual β-cell function in recent-onset type 1 diabetes: a multicentre randomised controlled trial. Lancet 356, 545–549 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Ergun-Longmire, B. et al. Oral insulin therapy to prevent progression of immune-mediated (type 1) diabetes. Ann. NY Acad. Sci. 1029, 260–277 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Diabetes Prevention Trial — Type 1 Diabetes Study Group. Effects of insulin in relatives of patients with type 1 diabetes mellitus. N. Engl. J. Med. 346, 1685–1691 (2002).

  16. Sospedra, M. & Martin, R. Antigen-specific therapies in multiple sclerosis. Int. Rev. Immunol. 24, 393–413 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Lehmann, P. V., Forsthuber, T., Miller, A. & Sercarz, E. E. Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen. Nature 358, 155–157 (1992). This is an early demonstration of epitope spreading, which supports a need for active immunosuppression to suppress ongoing immunity.

    Article  CAS  PubMed  Google Scholar 

  18. Miller, S. D. et al. Persistent infection with Theiler's virus leads to CNS autoimmunity via epitope spreading. Nature Med. 3, 1133–1136 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Al Sabbagh, A., Miller, A., Santos, L. M. & Weiner, H. L. Antigen-driven tissue-specific suppression following oral tolerance: orally administered myelin basic protein suppresses proteolipid protein-induced experimental autoimmune encephalomyelitis in the SJL mouse. Eur. J. Immunol. 24, 2104–2109 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Tian, J., Lehmann, P. V. & Kaufman, D. L. Determinant spreading of T helper cell 2 (Th2) responses to pancreatic islet autoantigens. J. Exp. Med. 186, 2039–2043 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chatenoud, L. Immune therapies of autoimmune diseases: are we approaching a real cure? Curr. Opin. Immunol. 18, 710–717 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Holgate, S. T. & Polosa, R. The mechanism, diagnosis, and management of severe asthma in adults. Lancet 368, 780–793 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Pascual, M., Theruvath, T., Kawai, T., Tolkoff-Rubin, N. & Cosimi, A. B. Strategies to improve long-term outcomes after renal transplantation. N. Engl. J. Med. 346, 580–590 (2002).

    Article  PubMed  Google Scholar 

  24. Magliocca, J. F. & Knechtle, S. J. The evolving role of alemtuzumab (Campath-1H) for immunosuppressive therapy in organ transplantation. Transpl. Int. 19, 705–714 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Morris, P. J. & Russell, N. K. Alemtuzumab (Campath-1H): a systematic review in organ transplantation. Transplantation 81, 1361–1367 (2006).

    Article  PubMed  Google Scholar 

  26. Herold, K. C. et al. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N. Engl. J. Med. 346, 1692–1698 (2002). This paper provides the first demonstration of CD3-specific monoclonal antibody therapy for the treatment of type 1 diabetes.

    Article  CAS  PubMed  Google Scholar 

  27. Keymeulen, B. et al. Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes. N. Engl. J. Med. 352, 2598–2608 (2005). This paper provides a definitive demonstration in a Phase II placebo-controlled trial of the efficacy of CD3-specific monoclonal antibody therapy for the treatment of type 1 diabetes.

    Article  CAS  PubMed  Google Scholar 

  28. Herold, K. C. et al. A single course of anti-CD3 monoclonal antibody hOKT3γ1(Ala-Ala) results in improvement in C-peptide responses and clinical parameters for at least 2 years after onset of type 1 diabetes. Diabetes 54, 1763–1769 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chatenoud, L. et al. Human in vivo antigenic modulation induced by the anti-T cell OKT3 monoclonal antibody. Eur. J. Immunol. 12, 979–982 (1982).

    Article  CAS  PubMed  Google Scholar 

  30. Smith, J. A., Tso, J. Y., Clark, M. R., Cole, M. S. & Bluestone, J. A. Nonmitogenic anti-CD3 monoclonal antibodies deliver a partial T cell receptor signal and induce clonal anergy. J. Exp. Med. 185, 1413–1422 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Smith, J. A., Tang, Q. & Bluestone, J. A. Partial TCR signals delivered by FcR-nonbinding anti-CD3 monoclonal antibodies differentially regulate individual Th subsets. J. Immunol. 160, 4841–4849 (1998).

    CAS  PubMed  Google Scholar 

  32. Herold, K. C. et al. Activation of human T cells by FcR nonbinding anti-CD3 mAb, hOKT3γ1(Ala-Ala). J. Clin. Invest. 111, 409–418 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Boussiotis V. A., Freeman G.J., Berezovskaya A., Barber D. L., Nadler L.M . Maintenance of human T cell anergy: blocking of IL-2 gene transcription by activated Rap1. Science 278, 124–128 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Chatenoud, L., Thervet, E., Primo, J. & Bach, J. F. Anti-CD3 antibody induces long-term remission of overt autoimmunity in nonobese diabetic mice. Proc. Natl Acad. Sci. USA 91, 123–127 (1994). This paper provides the first demonstration in mice of the induction of remission by CD3-specific monoclonal antibody in an NOD mouse model of autoimmune diabetes.

    Article  CAS  PubMed  Google Scholar 

  35. Chatenoud, L., Primo, J. & Bach, J. F. CD3 antibody-induced dominant self tolerance in overtly diabetic NOD mice. J. Immunol. 158, 2947–2954 (1997).

    CAS  PubMed  Google Scholar 

  36. Ferran, C. et al. Cytokine-related syndrome following injection of anti-CD3 monoclonal antibody: further evidence for transient in vivo T cell activation. Eur. J. Immunol. 20, 509–515 (1990).

    Article  CAS  PubMed  Google Scholar 

  37. Alegre, M. et al. Hypothermia and hypoglycemia induced by anti-CD3 monoclonal antibody in mice: role of tumor necrosis factor. Eur. J. Immunol. 20, 707–710 (1990).

    Article  CAS  PubMed  Google Scholar 

  38. McCaffrey, P. G., Kim, P. K., Valge-Archer, V. E., Sen, R. & Rao, A. Cyclosporin A sensitivity of the NF-κB site of the IL2Rα promoter in untransformed murine T cells. Nucleic Acids Res. 22, 2134–2142 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Abramowicz, D. et al. Release of tumor necrosis factor, interleukin-2, and γ-interferon in serum after injection of OKT3 monoclonal antibody in kidney transplant recipients. Transplantation 47, 606–608 (1989).

    Article  CAS  PubMed  Google Scholar 

  40. Chatenoud, L. et al. Systemic reaction to the anti-T-cell monoclonal antibody OKT3 in relation to serum levels of tumor necrosis factor and interferon-γ. N. Engl. J. Med. 320, 1420–1421 (1989).

    Article  CAS  PubMed  Google Scholar 

  41. Chatenoud, L. et al. In vivo cell activation following OKT3 administration. Systemic cytokine release and modulation by corticosteroids. Transplantation 49, 697–702 (1990).

    Article  CAS  PubMed  Google Scholar 

  42. Tran, G. T. et al. Reversal of experimental allergic encephalomyelitis with non-mitogenic, non-depleting anti-CD3 mAb therapy with a preferential effect on Th1 cells that is augmented by IL-4. Int. Immunol. 13, 1109–1120 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Kohm, A. P. et al. Treatment with nonmitogenic anti-CD3 monoclonal antibody induces CD4+ T cell unresponsiveness and functional reversal of established experimental autoimmune encephalomyelitis. J. Immunol. 174, 4525–4534 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Chatenoud, L. CD3-specific antibody-induced active tolerance: from bench to bedside. Nature Rev. Immunol. 3, 123–132 (2003).

    Article  CAS  Google Scholar 

  45. Belghith, M. et al. TGF-β-dependent mechanisms mediate restoration of self-tolerance induced by antibodies to CD3 in overt autoimmune diabetes. Nature Med. 9, 1202–1208 (2003). This reference shows that tolerance induced by CD3-specific monoclonal antibodies depends on TGFβ-producing regulatory T cells in NOD mice.

    Article  CAS  PubMed  Google Scholar 

  46. You, S., Thieblemont, N., Alyanakian, M. A., Bach, J. F. & Chatenoud, L. Transforming growth factor-β and T-cell-mediated immunoregulation in the control of autoimmune diabetes. Immunol. Rev. 212, 185–202 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. You, S. et al. Adaptive TGF-β-dependent regulatory T cells control autoimmune diabetes and are a privileged target of anti-CD3 antibody treatment. Proc. Natl Acad. Sci. USA 104, 6335–6340 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Xu, D. et al. In vitro characterization of five humanized OKT3 effector function variant antibodies. Cell. Immunol. 200, 16–26 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Bolt, S. et al. The generation of a humanized, non-mitogenic CD3 monoclonal antibody which retains in vitro immunosuppressive properties. Eur. J. Immunol. 23, 403–411 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. Bisikirska, B., Colgan, J., Luban, J., Bluestone, J. A. & Herold, K. C. TCR stimulation with modified anti-CD3 mAb expands CD8+ T cell population and induces CD8+CD25+ Tregs. J. Clin. Invest. 115, 2904–2913 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Woodle, E. S. et al. Phase I trial of a humanized, Fc receptor nonbinding OKT3 antibody, huOKT3γ1 (Ala-Ala) in the treatment of acute renal allograft rejection. Transplantation 68, 608–616 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Friend, P. J. et al. Phase I study of an engineered aglycosylated humanized CD3 antibody in renal transplant rejection. Transplantation 68, 1632–1637 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Ferran, C. et al. Reduction of morbidity and cytokine release in anti-CD3 MoAb-treated mice by corticosteroids. Transplantation 50, 642–648 (1990).

    Article  CAS  PubMed  Google Scholar 

  54. Ferran, C. et al. Cascade modulation by anti-tumor necrosis factor monoclonal antibody of interferon-γ, interleukin 3 and interleukin 6 release after triggering of the CD3/T cell receptor activation pathway. Eur. J. Immunol. 21, 2349–2353 (1991).

    Article  CAS  PubMed  Google Scholar 

  55. Ferran, C. et al. Anti-tumor necrosis factor modulates anti-CD3-triggered T cell cytokine gene expression in vivo. J. Clin. Invest. 93, 2189–2196 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Charpentier, B. et al. Evidence that antihuman tumor necrosis factor monoclonal antibody prevents OKT3-induced acute syndrome. Transplantation 54, 997–1002 (1992).

    Article  CAS  PubMed  Google Scholar 

  57. Bingley, P. J. & Gale, E. A. Progression to type 1 diabetes in islet cell antibody-positive relatives in the European Nicotinamide Diabetes Intervention Trial: the role of additional immune, genetic and metabolic markers of risk. Diabetologia 49, 881–890 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Assan, R. et al. Plasma C-peptide levels and clinical remissions in recent-onset type I diabetic patients treated with cyclosporin A and insulin. Diabetes 39, 768–774 (1990).

    Article  CAS  PubMed  Google Scholar 

  59. Feutren, G. et al. Cyclosporin increases the rate and length of remissions in insulin-dependent diabetes of recent onset. Results of a multicentre double-blind trial. Lancet 2, 119–124 (1986).

    Article  CAS  PubMed  Google Scholar 

  60. Wajchenberg, B. L. β-cell failure in diabetes and preservation by clinical treatment. Endocr. Rev. 28, 187–218 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Ogawa, N., List, J. F., Habener, J. F. & Maki, T. Cure of overt diabetes in NOD mice by transient treatment with anti-lymphocyte serum and exendin-4. Diabetes 53, 1700–1705 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Bresson, D. et al. Anti-CD3 and nasal proinsulin combination therapy enhances remission from recent-onset autoimmune diabetes by inducing Tregs. J. Clin. Invest. 116, 1371–1381 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Serreze, D. V. & Silveira, P. A. The role of B lymphocytes as key antigen-presenting cells in the development of T cell-mediated autoimmune type 1 diabetes. Curr. Dir. Autoimmun. 6, 212–227 (2003).

    Article  PubMed  Google Scholar 

  64. Bluestone, J. A., St. Clair, E. W. & Turka, L. A. CTLA4Ig: Bridging the basic immunology with clinical application. Immunity 24, 233–238 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Abrams, J. R. et al. CTLA4Ig-mediated blockade of T-cell costimulation in patients with psoriasis vulgaris. J. Clin. Invest. 103, 1243–1252 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Abrams, J. R. et al. Blockade of T lymphocyte costimulation with cytotoxic T lymphocyte-associated antigen 4-immunoglobulin (CTLA4Ig) reverses the cellular pathology of psoriatic plaques, including the activation of keratinocytes, dendritic cells, and endothelial cells. J. Exp. Med. 192, 681–694 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Genovese, M. C. et al. Abatacept for rheumatoid arthritis refractory to tumor necrosis factor α inhibition. N. Engl. J. Med. 353, 1114–1123 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Kremer, J. M. et al. Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig. N. Engl. J. Med. 349, 1907–1915 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Kremer, J. M. et al. Treatment of rheumatoid arthritis with the selective costimulation modulator abatacept: twelve-month results of a phase iib, double-blind, randomized, placebo-controlled trial. Arthritis Rheum. 52, 2263–2271 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Mackie, S. L., Vital, E. M., Ponchel, F. & Emery, P. Co-stimulatory blockade as therapy for rheumatoid arthritis. Curr. Rheumatol. Rep. 7, 400–406 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Feldmann, M. Development of anti-TNF therapy for rheumatoid arthritis. Nature Rev. Immunol. 2, 364–371 (2002).

    Article  CAS  Google Scholar 

  72. Fleischmann, R. M. et al. Anakinra, a recombinant human interleukin-1 receptor antagonist (r-metHuIL-1ra), in patients with rheumatoid arthritis: a large, international, multicenter, placebo-controlled trial. Arthritis Rheum. 48, 927–934 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Nuki, G., Bresnihan, B., Bear, M. B. & McCabe, D. Long-term safety and maintenance of clinical improvement following treatment with anakinra (recombinant human interleukin-1 receptor antagonist) in patients with rheumatoid arthritis: extension phase of a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 46, 2838–2846 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Kolarich, D. et al. Biochemical, molecular characterization, and glycoproteomic analyses of α1-proteinase inhibitor products used for replacement therapy. Transfusion 46, 1959–1977 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Hackstein, H. & Thomson, A. W. Dendritic cells: emerging pharmacological targets of immunosuppressive drugs. Nature Rev. Immunol. 4, 24–34 (2004).

    Article  CAS  Google Scholar 

  76. Young, D. A. & Nickerson-Nutter, C. L. mTOR—beyond transplantation. Curr. Opin. Pharmacol. 5, 418–423 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Li, Y. et al. Blocking both signal 1 and signal 2 of T-cell activation prevents apoptosis of alloreactive T cells and induction of peripheral allograft tolerance. Nature Med. 5, 1298–1302 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Battaglia, M. et al. Rapamycin promotes expansion of functional CD4+CD25+FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients. J. Immunol. 177, 8338–8347 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Valmori, D. et al. Rapamycin-mediated enrichment of T cells with regulatory activity in stimulated CD4+ T cell cultures is not due to the selective expansion of naturally occurring regulatory T cells but to the induction of regulatory functions in conventional CD4+ T cells. J. Immunol. 177, 944–949 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Rabinovitch, A., Suarez-Pinzon, W. L., Shapiro, A. M., Rajotte, R. V. & Power, R. Combination therapy with sirolimus and interleukin-2 prevents spontaneous and recurrent autoimmune diabetes in NOD mice. Diabetes 51, 638–645 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Nicolls, M. R. et al. Induction of long-term specific tolerance to allografts in rats by therapy with an anti-CD3-like monoclonal antibody. Transplantation 55, 459–468 (1993).

    Article  CAS  PubMed  Google Scholar 

  82. Plain, K. M., Chen, J., Merten, S., He, X. Y. & Hall, B. M. Induction of specific tolerance to allografts in rats by therapy with non-mitogenic, non-depleting anti-CD3 monoclonal antibody: association with TH2 cytokines not anergy. Transplantation 67, 605–613 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Ochi, H. et al. Oral CD3-specific antibody suppresses autoimmune encephalomyelitis by inducing CD4+CD25LAP+ T cells. Nature Med. 12, 627–635 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Hughes, C., Wolos, J. A., Giannini, E. H. & Hirsch, R. Induction of T helper cell hyporesponsiveness in an experimental model of autoimmunity by using nonmitogenic anti-CD3 monoclonal antibody. J. Immunol. 153, 3319–3325 (1994).

    CAS  PubMed  Google Scholar 

  85. Ludviksson, B. R., Ehrhardt, R. O. & Strober, W. TGF-β production regulates the development of the 2,4,6-trinitrophenol-conjugated keyhole limpet hemocyanin-induced colonic inflammation in IL-2-deficient mice. J. Immunol. 159, 3622–3628 (1997).

    CAS  PubMed  Google Scholar 

  86. Utset, T. O. et al. Modified anti-CD3 therapy in psoriatic arthritis: a phase I/II clinical trial. J. Rheumatol. 29, 1907–1913 (2002).

    CAS  PubMed  Google Scholar 

  87. St Clair, E. W. et al. New reagents on the horizon for immune tolerance. Annu. Rev. Med. 58, 329–346 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. D'Haens, G. & Daperno, M. Advances in biologic therapy for ulcerative colitis and Crohn's disease. Curr. Gastroenterol. Rep. 8, 506–512 (2006).

    Article  PubMed  Google Scholar 

  89. Carpenter, P. A. et al. A humanized non-FcR-binding anti-CD3 antibody, visilizumab, for treatment of steroid-refractory acute graft-versus-host disease. Blood 99, 2712–2719 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Gomez-Reino, J. J., Carmona, L., Valverde, V. R., Mola, E. M. & Montero, M. D. Treatment of rheumatoid arthritis with tumor necrosis factor inhibitors may predispose to significant increase in tuberculosis risk: a multicenter active-surveillance report. Arthritis Rheum. 48, 2122–2127 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Keane, J. et al. Tuberculosis associated with infliximab, a tumor necrosis factor α-neutralizing agent. N. Engl. J. Med. 345, 1098–1104 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Langer-Gould, A., Atlas, S. W., Green, A. J., Bollen, A. W. & Pelletier, D. Progressive multifocal leukoencephalopathy in a patient treated with natalizumab. N. Engl. J. Med. 353, 375–381 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Van Assche, G. et al. Progressive multifocal leukoencephalopathy after natalizumab therapy for Crohn's disease. N. Engl. J. Med. 353, 362–368 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Hering, B. J. et al. Transplantation of cultured islets from two-layer preserved pancreases in type 1 diabetes with anti-CD3 antibody. Am. J. Transplant. 4, 390–401 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Blazar, B. R. et al. Anti-CD3 εF(ab′)2 fragments inhibit T cell expansion in vivo during graft-versus-host disease or the primary immune response to nominal antigen. J. Immunol. 159, 5821–5833 (1997).

    CAS  PubMed  Google Scholar 

  96. Blazar, B. R., Taylor, P. A. & Vallera, D. A. In vivo or in vitro anti-CD3 ε chain monoclonal antibody therapy for the prevention of lethal murine graft-versus-host disease across the major histocompatibility barrier in mice. J. Immunol. 152, 3665–3674 (1994).

    CAS  PubMed  Google Scholar 

  97. Sreenan, S. et al. Increased β-cell proliferation and reduced mass before diabetes onset in the nonobese diabetic mouse. Diabetes 48, 989–996 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Debray-sachs, M. et al. Prevention of diabetes in NOD mice treated with antibody to murine IFNγ. J. Autoimmun. 4, 237–248 (1991).

    Article  CAS  PubMed  Google Scholar 

  99. Trembleau, S. et al. Interleukin 12 administration induces T helper type 1 cells and accelerates autoimmune diabetes in NOD mice. J. Exp. Med. 181, 817–821 (1995).

    Article  CAS  PubMed  Google Scholar 

  100. Trembleau, S., Penna, G., Gregori, S., Gately, M. K. & Adorini, L. Deviation of pancreas-infiltrating cells to Th2 by interleukin-12 antagonist administration inhibits autoimmune diabetes. Eur. J. Immunol. 27, 2330–2339 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the many students, postdoctoral researchers and colleagues who have participated in the development, mechanistic understanding and clinical application of CD3-specific monoclonal anitbodies. In particular, we wish to acknowledge the contributions of J.-F. Bach, K. Herold and H. Waldmann without whose support and insights none of these studies would have been possible.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

J.A.B. has a financial interest in one of the CD3-specific monoclonal antibodies, teplizumab, and is a consultant for the company developing the drug, MacroGenics Inc.

Related links

Related links

FURTHER INFORMATION

Jeffrey Bluestone's homepage

Immune Tolerance Network

Juvenile Diabetes Research Foundation

Glossary

Multiple sclerosis

A chronic inflammatory and demyelinating disease of the central nervous system. It is an autoimmune response against components of myelin, which is thought to contribute to disease pathogenesis. Self glycolipids are autoantigens that are recognized by T cells in this disease.

Epitope spreading

This term was used to describe how a self-directed immune response induced by a single peptide (or epitope) could spread to include other peptides (or epitopes) not only on the same autoantigen (intramolecular spreading) but also on other self-molecules clustered in close vicinity within the target cell (intermolecular spreading). A good example for epitope spreading is the de novo activation of autoreactive T cells by self-antigens that have been released after β-cell damage.

Bystander suppression

The extension of tolerogen-induced suppression to immune responses that are directed against antigens not structurally related to the tolerogen but expressed by the same target tissue.

Anergy

A state of unresponsiveness that is sometimes observed in T and B cells that are chronically stimulated or that are stimulated through the antigen receptor in the absence of co-stimulatory signals.

Immunological synapse

A region that can form between two cells of the immune system in close contact. The immunological synapse originally referred to the interaction between a T cell and an antigen-presenting cell. It involves adhesion molecules, as well as antigen receptors and cytokine receptors.

Activation-induced cell death

A pathway of T-cell apoptosis that often involves the upregulation of CD95 ligand that binds to the cell-death receptor CD95.

Connecting peptide

(C-peptide). Insulin is synthesized by β-cells as a hormone precursor pro-insulin. When released from the pancreas into the blood pro-insulin is cleaved into insulin and a small peptide known as C-peptide. C-peptide can be used as a measure of endogenous insulin secretion (one C-peptide is released for each insulin molecule secreted).

Lymphocytosis

An increase in the number of lymphocytes in the blood, which is usually associated with chronic infections or inflammation.

Anti-idiotypic antibody

An antibody that is directed against the antigen-specific binding site of an immunoglobulin or a T-cell receptor and therefore may compete with antigen for binding.

Secretagogues

Molecules, often peptides, that stimulate the secretion of a variety of substances including hormones and enzymes.

Rheumatoid arthritis

An immunological disorder that is characterized by symmetrical polyarthritis, often progressing to crippling deformation after years of synovitis. It is associated with systemic immune activation, with acute-phase reactants being present in the peripheral blood, as well as rheumatoid factor (immunoglobulins specific for IgG), which forms immune complexes that are deposited in many tissues.

Crohn's disease

A form of chronic inflammatory bowel disease that can affect the entire gastrointestinal tract, but is most common in the colon and terminal ileum. It is characterized by transmural inflammation, strictures and granuloma formation, and is believed to result from an abnormal T-cell-mediated immune response to commensal bacteria.

Adjuvant

An agent that is mixed with an antigen for the purpose of increasing the immune response to that antigen following immunization.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatenoud, L., Bluestone, J. CD3-specific antibodies: a portal to the treatment of autoimmunity. Nat Rev Immunol 7, 622–632 (2007). https://doi.org/10.1038/nri2134

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2134

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing