Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Type 1 diabetes as a relapsing–remitting disease?

Abstract

Chronic immunological processes that underlie persistent viral infections and autoimmune disorders such as multiple sclerosis can be relapsing–remitting in nature. The progressive loss of β-cell mass during the development of autoimmune type 1 diabetes (T1D) can also be non-linear, but the exact nature and kinetics of the immunological processes that govern T1D are not known. Here, we propose that the immunological process that is at the root of T1D is relapsing–remitting in nature and discuss the unresolved controversies and therapeutic implications of this hypothesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Type 1 diabetes as a relapsing–remitting disease?
Figure 2: Repertoire evolution in type 1 diabetes as a driver for relapses.

Similar content being viewed by others

References

  1. The Diabetes Control and Complications Trial Research Group. Effect of intensive therapy on residual β-cell function in patients with type 1 diabetes in the diabetes control and complications trial. A randomized, controlled trial. Ann. Intern. Med. 128, 517–523 (1998).

  2. Lundberg, K. et al. Citrullinated proteins have increased immunogenicity and arthritogenicity and their presence in arthritic joints correlates with disease severity. Arthritis. Res. Ther. 7, R458–R467 (2005).

    Article  CAS  Google Scholar 

  3. Makrygiannakis, D. et al. Citrullination is an inflammation-dependent process. Ann. Rheum. Dis. 65, 1219–1222 (2006).

    Article  CAS  Google Scholar 

  4. Yu, M., Johnson, J. M. & Tuohy, V. K. A predictable sequential determinant spreading cascade invariably accompanies progression of experimental autoimmune encephalomyelitis: a basis for peptide-specific therapy after onset of clinical disease. J. Exp. Med. 183, 1777–1788 (1996).

    Article  CAS  Google Scholar 

  5. Lehmann, P. V., Sercarz, E. E., Forsthuber, T., Dayan, C. M. & Gammon, G. Determinant spreading and the dynamics of the autoimmune T-cell repertoire. Immunol. Today 14, 203–208 (1993).

    Article  CAS  Google Scholar 

  6. Campbell, I. L., Kay, T. W., Oxbrow, L. & Harrison, L. C. Essential role for interferon-γ and interleukin-6 in autoimmune insulin-dependent diabetes in NOD/Wehi mice. J. Clin. Invest. 87, 739–742 (1991).

    Article  CAS  Google Scholar 

  7. Doyle, H. A. & Mamula, M. J. Posttranslational modifications of self-antigens. Ann. NY Acad. Sci. 1050, 1–9 (2005).

    Article  CAS  Google Scholar 

  8. Eizirik, D. L. Interleukin-1 induced impairment in pancreatic islet oxidative metabolism of glucose is potentiated by tumor necrosis factor. Acta. Endocrinol. (Copenh) 119, 321–325 (1988).

    Article  CAS  Google Scholar 

  9. Eizirik, D. L. & Darville, M. I. β-cell apoptosis and defense mechanisms: lessons from type 1 diabetes. Diabetes 50 (Suppl. 1), 64–69 (2001).

    Article  Google Scholar 

  10. Eizirik, D. L., Welsh, M., Strandell, E., Welsh, N. & Sandler, S. Interleukin-1β depletes insulin messenger ribonucleic acid and increases the heat shock protein hsp70 in mouse pancreatic islets without impairing the glucose metabolism. Endocrinology 127, 2290–2297 (1990).

    Article  CAS  Google Scholar 

  11. Sercarz, E. E. Driver clones and determinant spreading. J. Autoimmun. 14, 275–277 (2000).

    Article  CAS  Google Scholar 

  12. Lacher, M. D. et al. Transforming growth factor-β receptor inhibition enhances adenoviral infectability of carcinoma cells via up-regulation of coxsackie and adenovirus receptor in conjunction with reversal of epithelial-mesenchymal transition. Cancer Res. 66, 1648–1657 (2006).

    Article  CAS  Google Scholar 

  13. Dotta, F. et al. Coxsackie B4 virus infection of β cells and natural killer cell insulitis in recent-onset type 1 diabetic patients. Proc. Natl Acad. Sci. USA 104, 5115–5120 (2007).

    Article  CAS  Google Scholar 

  14. Kaniuk, N. A. et al. Ubiquitinated-protein aggregates form in pancreatic β-cells during diabetes-induced oxidative stress and are regulated by autophagy. Diabetes 56, 930–939 (2007).

    Article  CAS  Google Scholar 

  15. Pugliese, A. Central and peripheral autoantigen presentation in immune tolerance. Immunology 111, 138–146 (2004).

    Article  CAS  Google Scholar 

  16. Bonifacio, E., Scirpoli, M., Kredel, K., Fuchtenbusch, M. & Ziegler, A. G. Early autoantibody responses in prediabetes are IgG1 dominated and suggest antigen-specific regulation. J. Immunol. 163, 525–532 (1999).

    CAS  PubMed  Google Scholar 

  17. Kent, S. C. et al. Expanded T cells from pancreatic lymph nodes of type 1 diabetic subjects recognize an insulin epitope. Nature 435, 224–228 (2005).

    Article  CAS  Google Scholar 

  18. Nakayama, M. et al. Prime role for an insulin epitope in the development of type 1 diabetes in NOD mice. Nature 435, 220–223 (2005).

    Article  CAS  Google Scholar 

  19. Krishnamurthy, B. et al. Responses against islet antigens in NOD mice are prevented by tolerance to proinsulin but not IGRP. J. Clin. Invest. 116, 3258–3265 (2006).

    Article  CAS  Google Scholar 

  20. Yu, L. et al. Antiislet autoantibodies usually develop sequentially rather than simultaneously. J. Clin. Endocrinol. Metab. 81, 4264–4267 (1996).

    CAS  PubMed  Google Scholar 

  21. Skyler, J. S. et al. Effects of oral insulin in relatives of patients with type 1 diabetes: The Diabetes Prevention Trial—Type 1. Diabetes Care 28, 1068–1076 (2005).

    Article  CAS  Google Scholar 

  22. Lindley, S. et al. Defective suppressor function in CD4+CD25+ T-cells from patients with type 1 diabetes. Diabetes 54, 92–99 (2005).

    Article  CAS  Google Scholar 

  23. Arif, S. et al. Autoreactive T cell responses show proinflammatory polarization in diabetes but a regulatory phenotype in health. J. Clin. Invest. 113, 451–463 (2004).

    Article  CAS  Google Scholar 

  24. Salomon, B. et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12, 431–440 (2000).

    Article  CAS  Google Scholar 

  25. Tang, Q. et al. Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nature Immunol. 7, 83–92 (2006).

    Article  CAS  Google Scholar 

  26. Tang, Q. et al. In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J. Exp. Med. 199, 1455–1465 (2004).

    Article  CAS  Google Scholar 

  27. Green, E. A., Gorelik, L., McGregor, C. M., Tran, E. H. & Flavell, R. A. CD4+CD25+ T regulatory cells control anti-islet CD8+ T cells through TGF-β–TGF-β receptor interactions in type 1 diabetes. Proc. Natl Acad. Sci. USA 100, 10878–10883 (2003).

    Article  CAS  Google Scholar 

  28. Chatenoud, L., Thervet, E., Primo, J. & Bach, J. F. Anti-CD3 antibody induces long-term remission of overt autoimmunity in nonobese diabetic mice. Proc. Natl Acad. Sci. USA 91, 123–127 (1994).

    Article  CAS  Google Scholar 

  29. Peng, Y., Laouar, Y., Li, M. O., Green, E. A. & Flavell, R. A. TGF-β regulates in vivo expansion of Foxp3-expressing CD4+CD25+ regulatory T cells responsible for protection against diabetes. Proc. Natl Acad. Sci. USA 101, 4572–4577 (2004).

    Article  CAS  Google Scholar 

  30. Belghith, M. et al. TGF-β-dependent mechanisms mediate restoration of self-tolerance induced by antibodies to CD3 in overt autoimmune diabetes. Nature Med. 9, 1202–1208 (2003).

    Article  CAS  Google Scholar 

  31. Sreenan, S. et al. Increased β-cell proliferation and reduced mass before diabetes onset in the nonobese diabetic mouse. Diabetes 48, 989–996 (1999).

    Article  CAS  Google Scholar 

  32. Sherry, N. A. et al. Effects of autoimmunity and immune therapy on β-cell turnover in type 1 diabetes. Diabetes 55, 3238–3245 (2006).

    Article  CAS  Google Scholar 

  33. Zhao, R. Y. & Elder, R. T. Viral infections and cell cycle G2/M regulation. Cell Res. 15, 143–149 (2005).

    Article  CAS  Google Scholar 

  34. Chase, H. P. et al. Redefining the clinical remission period in children with type 1 diabetes. Pediatr. Diabetes 5, 16–19 (2004).

    Article  Google Scholar 

  35. Muhammad, B. J., Swift, P. G., Raymond, N. T. & Botha, J. L. Partial remission phase of diabetes in children younger than age 10 years. Arch. Dis. Child. 80, 367–369 (1999).

    Article  CAS  Google Scholar 

  36. Bober, E., Dundar, B. & Buyukgebiz, A. Partial remission phase and metabolic control in type 1 diabetes mellitus in children and adolescents. J. Pediatr. Endocrinol. Metab. 14, 435–441 (2001).

    Article  CAS  Google Scholar 

  37. Robles, D. T. et al. Millennium award recipient contribution. Identification of children with early onset and high incidence of anti-islet autoantibodies. Clin. Immunol. 102, 217–224 (2002).

    Article  CAS  Google Scholar 

  38. Palmer, J. P. et al. C-peptide is the appropriate outcome measure for type 1 diabetes clinical trials to preserve beta-cell function: report of an ADA workshop, 21–22 October 2001. Diabetes 53, 250–264 (2004).

    Article  CAS  Google Scholar 

  39. Schober, E., Schernthaner, G., Frisch, H. & Fink, M. β-cell function recovery is not the only factor responsible for remission in type I diabetics: evaluation of C-peptide secretion in diabetic children after first metabolic recompensation and at partial remission phase. J. Endocrinol. Invest. 7, 507–512 (1984).

    Article  CAS  Google Scholar 

  40. Diabetes Prevention Trial—Type 1 Diabetes Study Group. Effects of insulin in relatives of patients with type 1 diabetes mellitus. N. Engl. J. Med. 346, 1685–1691 (2002).

  41. Imagawa, A. et al. Immunological abnormalities in islets at diagnosis paralleled further deterioration of glycaemic control in patients with recent-onset type I (insulin-dependent) diabetes mellitus. Diabetologia 42, 574–578 (1999).

    Article  CAS  Google Scholar 

  42. Keymeulen, B. et al. Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes. N. Engl. J. Med. 352, 2598–2608 (2005).

    Article  CAS  Google Scholar 

  43. Raz, I. et al. β-cell function in new-onset type 1 diabetes and immunomodulation with a heat-shock protein peptide (DiaPep277): a randomised, double-blind, phase II trial. Lancet 358, 1749–1753 (2001).

    Article  CAS  Google Scholar 

  44. Herold, K. C. et al. A single course of anti-CD3 monoclonal antibody hOKT3γ1(Ala-Ala) results in improvement in C-peptide responses and clinical parameters for at least 2 years after onset of type 1 diabetes. Diabetes 54, 1763–1769 (2005).

    Article  CAS  Google Scholar 

  45. Agardh, C. D. et al. Clinical evidence for the safety of GAD65 immunomodulation in adult-onset autoimmune diabetes. J. Diabetes Complicat. 19, 238–246 (2005).

    Article  Google Scholar 

  46. Seyfert-Margolis, V. et al. Analysis of T-cell assays to measure autoimmune responses in subjects with type 1 diabetes: results of a blinded controlled study. Diabetes 55, 2588–2594 (2006).

    Article  CAS  Google Scholar 

  47. Bresson, D. et al. Anti-CD3 and nasal proinsulin combination therapy enhances remission from recent-onset autoimmune diabetes by inducing Tregs. J. Clin. Invest. 116, 1371–1381 (2006).

    Article  CAS  Google Scholar 

  48. Sherry, N. et al. Exendin-4 improves reversal of diabetes in NOD mice treated with anti-CD3 mAb by enhancing recovery of β cells. Endocrinology 148, 5136–5144 (2007).

    Article  CAS  Google Scholar 

  49. Ogawa, N., List, J. F., Habener, J. F. & Maki, T. Cure of overt diabetes in NOD mice by transient treatment with anti-lymphocyte serum and exendin-4. Diabetes 53, 1700–1705 (2004).

    Article  CAS  Google Scholar 

  50. Fife, B. T. et al. Insulin-induced remission in new-onset NOD mice is maintained by the PD-1–PD-L1 pathway. J. Exp. Med. 203, 2737–2747 (2006).

    Article  CAS  Google Scholar 

  51. Achenbach, P., Bonifacio, E., Koczwara, K. & Ziegler, A. G. Natural history of type 1 diabetes. Diabetes 54 (Suppl. 2), 25–31 (2005).

    Article  Google Scholar 

  52. McMahon, E. J., Bailey, S. L., Castenada, C. V., Waldner, H. & Miller, S. D. Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nature Med. 11, 335–339 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matthias von Herrath or Kevan Herold.

Related links

Related links

DATABASES

OMIM

Type 1 diabetes

FURTHER INFORMATION

Matthias von Herrath's homepage

DCCT

DPT-1

Glossary

Connecting peptide

(C-peptide). Insulin is synthesized by β-cells as a hormone precursor known as pro-insulin. When released from the pancreas into the blood, pro-insulin is cleaved into insulin and a small peptide known as C-peptide. C-peptide can be used as a measure of endogenous insulin secretion (one C-peptide is released for each insulin molecule secreted).

Cryptic epitope

A cryptic epitope is an antigenic peptide generated or 'unmasked' under altered conditions, such as inflammation or autophagy. When cryptic epitopes become visible to the immune system they become good candidates for eliciting an immune response responsible for autoimmune disease.

Epitope spreading

The de novo activation of (autoreactive) T cells by antigens that have been released after damage of target cells (in this context, β-cells) has occurred.

Glycaemic control

This is a medical term that refers to the typical levels of blood sugar (glucose) in a person with diabetes mellitus. Good glycaemic control, in the sense of a 'target' for treatment, has become an important goal of diabetes care.

Honeymoon phase

This is a partial remission phase in type 1 diabetes that usually begins within weeks of diagnosis, initiation of subcutaneous insulin therapy and correction of hyperglycaemia. It is characterized by a temporary reduction in insulin requirements (patients need less than 0.5 units per kg per day of insulin) and improved glycaemic control.

Intramolecular and intermolecular spreading

A term that refers to the recognition of new determinants or epitopes by T or B cells during the development of an (auto)immune response.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Herrath, M., Sanda, S. & Herold, K. Type 1 diabetes as a relapsing–remitting disease?. Nat Rev Immunol 7, 988–994 (2007). https://doi.org/10.1038/nri2192

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2192

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing