Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular pathogenesis of T-cell leukaemia and lymphoma

Key Points

  • T-cell acute lymphoblastic leukaemia (T-ALL) is a paediatric leukaemia associated with distinct clinical and biological characteristics. Historically linked with a poor prognosis, T-ALL represents approximately 15% and 25% of cases of newly diagnosed ALL in children and adults, respectively.

  • Abnormal karyotypes are identified in approximately 50% of T-ALL cases, which is less than is found in other ALL types. In 35% of T-ALL cases, the T-cell receptor loci are involved in translocations, probably occurring at the stage of T-cell differentiation when V(D)J recombination takes place.

  • Recently, it has been found that more than 50% of cases of T-ALL have activating mutations in the key regulator of T-cell fate NOTCH1.

  • Much of our current understanding of the molecular basis of T-cell malignancies has come from a detailed analysis of mouse models expressing oncogenes and carrying the translocations observed in the human disease.

  • It is currently accepted that Notch1 mutations can induce T-cell transformation through multiple signalling pathways (such as the MYC and nuclear factor-κB (NF-κB) pathways) that alter cell survival, proliferation and metabolism.

  • Oncogenic Notch1 is regulated by the ubiquitin–proteasome machinery. More specifically, nuclear Notch1 is ubiquitylated by the E3 ligase FBW7. T-ALL NOTCH1 mutations create mutant forms of the protein that is unable to recognize FBW7.

  • FBW7 can act as a tumour suppressor in T-ALL. It is inactivated by point mutations in a large fraction of T-ALL cases. T-cell-specific deletion of the Fbw7 gene in mice leads to the induction of aggressive T-cell tumours.

  • Although current treatment protocols have improved the overall outcome for patients with T-ALL, a significant number of patients remain at a high risk for relapse, and few patients survive when the disease recurs. The newly acquired knowledge of the molecular pathology of the disease will facilitate the design of novel targeted therapies.

Abstract

T-cell acute lymphoblastic leukaemia (T-ALL) is induced by the transformation of T-cell progenitors and mainly occurs in children and adolescents. Although treatment outcome in patients with T-ALL has improved in recent years, patients with relapsed disease continue to have a poor prognosis. It is therefore important to understand the molecular pathways that control both the induction of transformation and the treatment of relapsed disease. In this Review, we focus on the molecular mechanisms responsible for disease induction and maintenance. We also compare the physiological progression of T-cell differentiation with T-cell transformation, highlighting the close relationship between these two processes. Finally, we discuss potential new therapies that target oncogenic pathways in T-ALL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stages of haematopoiesis and T-cell development and T-cell-leukaemia-related oncogenes.
Figure 2: Physiological and proposed oncogenic Notch1 signalling pathways.
Figure 3: Mechanism of T-ALL oncogene recognition and degradation by FBW7.

Similar content being viewed by others

References

  1. Uckun, F. M. et al. Clinical features and treatment outcome of childhood T-lineage acute lymphoblastic leukemia according to the apparent maturational stage of T-lineage leukemic blasts: a Children's Cancer Group study. J. Clin. Oncol. 15, 2214–2221 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Crist, W. M. et al. Clinical features and outcome in childhood T-cell leukemia-lymphoma according to stage of thymocyte differentiation: a Pediatric Oncology Group Study. Blood 72, 1891–1897 (1988).

    CAS  PubMed  Google Scholar 

  3. Graux, C., Cools, J., Michaux, L., Vandenberghe, P. & Hagemeijer, A. Cytogenetics and molecular genetics of T-cell acute lymphoblastic leukemia: from thymocyte to lymphoblast. Leukemia 20, 1496–1510 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Clappier, E. et al. The C-MYB locus is involved in chromosomal translocation and genomic duplications in human T-cell acute leukemia (T-ALL), the translocation defining a new T-ALL subtype in very young children. Blood 110, 1251–1261 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Lahortiga, I. et al. Duplication of the MYB oncogene in T cell acute lymphoblastic leukemia. Nature Genet. 39, 593–595 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. O'Neil, J. et al. Alu elements mediate MYB gene tandem duplication in human T-ALL. J. Exp. Med. (2007).

  7. Weng, A. P. et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306, 269–271 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Akashi, K., Reya, T., Dalma-Weiszhausz, D. & Weissman, I. L. Lymphoid precursors. Curr. Opin. Immunol. 12, 144–150 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Petrie, H. T. & Zúñiga-Pflücker, J. C. Zoned out: functional mapping of stromal signaling microenvironments in the thymus. Annu. Rev. Immunol. 25, 649–679 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Scimone, M. L., Aifantis, I., Apostolou, I., von Boehmer, H. & von Andrian, U. H. A multistep adhesion cascade for lymphoid progenitor cell homing to the thymus. Proc. Natl Acad. Sci. USA 103, 7006–7011 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Von Boehmer, H. et al. Thymic selection revisited: how essential is it? Immunol. Rev. 191, 62–78 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Di Santo, J. P., Radtke, F. & Rodewald, H. R. To be or not to be a pro-T? Curr. Opin. Immunol. 12, 159–165 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. El Andaloussi, A. et al. Hedgehog signaling controls thymocyte progenitor homeostasis and differentiation in the thymus. Nature Immunol. 7, 418–426 (2006).

    Article  CAS  Google Scholar 

  14. Artavanis-Tsakonas, S. The molecular biology of the Notch locus and the fine tuning of differentiation in Drosophila. Trends Genet. 4, 95–100 (1988).

    CAS  PubMed  Google Scholar 

  15. Ilagan, M. X. & Kopan, R. SnapShot: notch signaling pathway. Cell 128, 1246 (2007).

    Article  PubMed  Google Scholar 

  16. Barrick, D. & Kopan, R. The Notch transcription activation complex makes its move. Cell 124, 883–885 (2006). This Review summarizes the papers that described for the first time the crystal structure of a Notch–CSL–MAML1 complex.

    Article  CAS  PubMed  Google Scholar 

  17. Ellisen, L. W. et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66, 649–661 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Robey, E. et al. An activated form of Notch influences the choice between CD4 and CD8 T cell lineages. Cell 87, 483–492 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Radtke, F. et al. Notch1 deficiency dissociates the intrathymic development of dendritic cells and T cells. J. Exp. Med. 191, 1085–1094 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pui, J. C. et al. Notch1 expression in early lymphopoiesis influences B versus T lineage determination. Immunity 11, 299–308 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Maillard, I. & Pear, W. S. Immunology. Keeping a tight leash on Notch. Science 316, 840–842 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Ciofani, M. & Zúñiga-Pflücker, J. C. Notch promotes survival of pre-T cells at the β-selection checkpoint by regulating cellular metabolism. Nature Immunol. 6, 881–888 (2005).

    Article  CAS  Google Scholar 

  23. Palomero, T. et al. NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc. Natl Acad. Sci. USA 103, 18261–18266 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Maillard, I. et al. The requirement for Notch signaling at the β-selection checkpoint in vivo is absolute and independent of the pre-T cell receptor. J. Exp. Med. 203, 2239–2245 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Borowski, C. et al. On the brink of becoming a T cell. Curr. Opin. Immunol. 14, 200–206 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Yokosuka, T. et al. Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nature Immunol. 6, 1253–1262 (2005).

    Article  CAS  Google Scholar 

  27. Ciofani, M. et al. Obligatory role for cooperative signaling by pre-TCR and Notch during thymocyte differentiation. J. Immunol. 172, 5230–5239 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Wolfer, A., Wilson, A., Nemir, M., MacDonald, H. R. & Radtke, F. Inactivation of Notch1 impairs VDJβ rearrangement and allows pre-TCR-independent survival of early αβ lineage thymocytes. Immunity 16, 869–879 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Aifantis, I., Mandal, M., Sawai, K., Ferrando, A. & Vilimas, T. Regulation of T-cell progenitor survival and cell-cycle entry by the pre-T-cell receptor. Immunol. Rev. 209, 159–169 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Reschly, E. J. et al. Notch1 promotes survival of E2A-deficient T cell lymphomas through Pre-T cell receptor dependent and independent mechanisms. Blood 107, 4115–4121 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Reizis, B. & Leder, P. Direct induction of T lymphocyte-specific gene expression by the mammalian Notch signaling pathway. Genes Dev. 16, 295–300 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Allman, D. et al. Separation of Notch1 promoted lineage commitment and expansion/transformation in developing T cells. J. Exp. Med. 194, 99–106 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vilimas, T. et al. Targeting the NF-κB signaling pathway in Notch1-induced T-cell leukemia. Nature Med. 13, 70–77 (2007). This report shows that the NF-κB pathway is a downstream target of Notch1 activation. It also suggests that drugs that affect NF-κB activation, including the proteasome inhibitor Velcade could be useful in T-ALL therapy.

    Article  CAS  PubMed  Google Scholar 

  34. Aifantis, I., Gounari, F., Scorrano, L., Borowski, C. & von Boehmer, H. Constitutive pre-TCR signaling promotes differentiation through Ca2+ mobilization and activation of NF-κB and NFAT. Nature Immunol. 2, 403–409 (2001).

    Article  CAS  Google Scholar 

  35. Medyouf, H. et al. Targeting calcineurin activation as a therapeutic strategy for T-cell acute lymphoblastic leukemia. Nature Med. 13, 736–741 (2007). This report identifies a potential role for the calcineurin–NFAT signalling pathway in T-cell leukaemia and suggests that drugs that target this pathway could affect disease progression.

    Article  CAS  PubMed  Google Scholar 

  36. Sicinska, E. et al. Requirement for cyclin D3 in lymphocyte development and T cell leukemias. Cancer Cell 4, 451–461 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Mandal, M. et al. The BCL2A1 gene as a pre-T cell receptor-induced regulator of thymocyte survival. J. Exp. Med. 201, 603–614 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Grabher, C., von Boehmer, H. & Look, A. T. Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukaemia. Nature Rev. Cancer 6, 347–359 (2006).

    Article  CAS  Google Scholar 

  39. Carroll, A. J. et al. The t(1;14)(p34;q11) is nonrandom and restricted to T-cell acute lymphoblastic leukemia: a Pediatric Oncology Group study. Blood 76, 1220–1224 (1990).

    CAS  PubMed  Google Scholar 

  40. Brown, L. et al. Site-specific recombination of the tal-1 gene is a common occurrence in human T cell leukemia. EMBO J. 9, 3343–3351 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Janssen, J. W., Ludwig, W. D., Sterry, W. & Bartram, C.R. SIL–TAL1 deletion in T-cell acute lymphoblastic leukemia. Leukemia 7, 1204–1210 (1993).

    CAS  PubMed  Google Scholar 

  42. Curtis, D. J., Robb, L., Strasser, A. & Begley, C. G. The CD2-scl transgene alters the phenotype and frequency of T-lymphomas in N-ras transgenic or p53 deficient mice. Oncogene 15, 2975–2983 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Elwood, N. J. & Begley, C. G. Reconstitution of mice with bone marrow cells expressing the SCL gene is insufficient to cause leukemia. Cell Growth Differ. 6, 19–25 (1995).

    CAS  PubMed  Google Scholar 

  44. Kelliher, M. A., Seldin, D. C. & Leder, P. Tal-1 induces T cell acute lymphoblastic leukemia accelerated by casein kinase IIα. EMBO J. 15, 5160–5166 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Larson, R. C. et al. Protein dimerization between Lmo2 (Rbtn2) and Tal1 alters thymocyte development and potentiates T cell tumorigenesis in transgenic mice. EMBO J. 15, 1021–1027 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Aplan, P. D. et al. An scl gene product lacking the transactivation domain induces bony abnormalities and cooperates with LMO1 to generate T-cell malignancies in transgenic mice. EMBO J. 16, 2408–2419 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chervinsky, D. S., Lam, D. H., Melman, M. P., Gross, K. W. & Aplan, P. D. Scid thymocytes with TCRβ gene rearrangements are targets for the oncogenic effect of SCL and LMO1 transgenes. Cancer Res. 61, 6382–6387 (2001).

    CAS  PubMed  Google Scholar 

  48. Chervinsky, D. S., Lam, D. H., Zhao, X. F., Melman, M. P. & Aplan, P. D. Development and characterization of T cell leukemia cell lines established from SCL/LMO1 double transgenic mice. Leukemia 15, 141–147 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Chervinsky, D. S. et al. Disordered T-cell development and T-cell malignancies in SCL LMO1 double-transgenic mice: parallels with E2A-deficient mice. Mol. Cell Biol. 19, 5025–5035 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Virgilio, L. et al. Deregulated expression of TCL1 causes T cell leukemia in mice. Proc. Natl Acad. Sci. USA 95, 3885–3889 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Condorelli, G. L. et al. T-cell-directed TAL-1 expression induces T-cell malignancies in transgenic mice. Cancer Res. 56, 5113–5119 (1996).

    CAS  PubMed  Google Scholar 

  52. Fasseu, M. et al. p16INK4A tumor suppressor gene expression and CD3ɛ deficiency but not pre-TCR deficiency inhibit TAL1-linked T-lineage leukemogenesis. Blood 110, 2610–2619 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shank-Calvo, J. A., Draheim, K., Bhasin, M. & Kelliher, M. A. p16Ink4a or p19Arf loss contributes to Tal1-induced leukemogenesis in mice. Oncogene 25, 3023–3031 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Ono, Y., Fukuhara, N. & Yoshie, O. Transcriptional activity of TAL1 in T cell acute lymphoblastic leukemia (T-ALL) requires RBTN1 or -2 and induces TALLA1, a highly specific tumor marker of T-ALL. J. Biol. Chem. 272, 4576–4581 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Cheng, Y., Zhang, Z., Slape, C. & Aplan, P. D. Cre-loxP-mediated recombination between the SIL and SCL genes leads to a block in T-cell development at the CD4 CD8 to CD4+ CD8+ transition. Neoplasia 9, 315–321 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Voronova, A. F. & Lee, F. The E2A and tal-1 helix-loop-helix proteins associate in vivo and are modulated by Id proteins during interleukin 6-induced myeloid differentiation. Proc. Natl Acad. Sci. USA 91, 5952–5956 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hsu, H. L., Cheng, J. T., Chen, Q. & Baer, R. Enhancer-binding activity of the tal-1 oncoprotein in association with the E47/E12 helix-loop-helix proteins. Mol. Cell Biol. 11, 3037–3042 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hsu, H. L., Wadman, I. & Baer, R. Formation of in vivo complexes between the TAL1 and E2A polypeptides of leukemic T cells. Proc. Natl Acad. Sci. USA 91, 3181–3185 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Park, S. T. & Sun, X. H. The Tal1 oncoprotein inhibits E47-mediated transcription. Mechanism of inhibition. J. Biol. Chem. 273, 7030–7037 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. O'Neil, J., Shank, J., Cusson, N., Murre, C. & Kelliher, M. TAL1/SCL induces leukemia by inhibiting the transcriptional activity of E47/HEB. Cancer Cell 5, 587–596 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Palomero, T. et al. Transcriptional regulatory networks downstream of TAL1/SCL in T-cell acute lymphoblastic leukemia. Blood 108, 986–992 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mellentin, J. D., Smith, S. D. & Cleary, M. L. lyl-1, a novel gene altered by chromosomal translocation in T cell leukemia, codes for a protein with a helix-loop-helix DNA binding motif. Cell 58, 77–83 (1989).

    Article  CAS  PubMed  Google Scholar 

  63. Giroux, S. et al. lyl-1 and tal-1/scl, two genes encoding closely related bHLH transcription factors, display highly overlapping expression patterns during cardiovascular and hematopoietic ontogeny. Gene Expr. Patterns 7, 215–226 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Zhong, Y., Jiang, L., Hiai, H., Toyokuni, S. & Yamada, Y. Overexpression of a transcription factor LYL1 induces T- and B-cell lymphoma in mice. Oncogene 26, 6937–6947 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Meng, Y. S., Khoury, H., Dick, J. E. & Minden, M. D. Oncogenic potential of the transcription factor LYL1 in acute myeloblastic leukemia. Leukemia 19, 1941–1947 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Boehm, T. et al. The mechanism of chromosomal translocation t(11;14) involving the T-cell receptor Cδ locus on human chromosome 14q11 and a transcribed region of chromosome 11p15. EMBO J. 7, 385–394 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Boehm, T., Foroni, L., Kaneko, Y., Perutz, M. F. & Rabbitts, T. H. The rhombotin family of cysteine-rich LIM-domain oncogenes: distinct members are involved in T-cell translocations to human chromosomes 11p15 and 11p13. Proc. Natl Acad. Sci. USA 88, 4367–4371 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Royer-Pokora, B., Loos, U. & Ludwig, W. D. TTG-2, a new gene encoding a cysteine-rich protein with the LIM motif, is overexpressed in acute T-cell leukaemia with the t(11;14)(p13;q11). Oncogene 6, 1887–1893 (1991).

    CAS  PubMed  Google Scholar 

  69. Hacein-Bey-Abina, S. et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302, 415–419 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Wadman, I. A. et al. The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J. 16, 3145–3157 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Valge-Archer, V., Forster, A. & Rabbitts, T. H. The LMO1 and LDB1 proteins interact in human T cell acute leukaemia with the chromosomal translocation t(11;14)(p15;q11). Oncogene 17, 3199–3202 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Valge-Archer, V. E. et al. The LIM protein RBTN2 and the basic helix-loop-helix protein TAL1 are present in a complex in erythroid cells. Proc. Natl Acad. Sci. USA 91, 8617–8621 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Osada, H., Grutz, G., Axelson, H., Forster, A. & Rabbitts, T. H. Association of erythroid transcription factors: complexes involving the LIM protein RBTN2 and the zinc-finger protein GATA1. Proc. Natl Acad. Sci. USA 92, 9585–9589 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Grutz, G. G. et al. The oncogenic T cell LIM-protein Lmo2 forms part of a DNA-binding complex specifically in immature T cells. EMBO J. 17, 4594–4605 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Owens, B. M. & Hawley, R. G. HOX and non-HOX homeobox genes in leukemic hematopoiesis. Stem Cells 20, 364–379 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Gehring, W. J. et al. Homeodomain-DNA recognition. Cell 78, 211–223 (1994).

    Article  CAS  PubMed  Google Scholar 

  77. Soulier, J. et al. HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). Blood 106, 274–286 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Speleman, F. et al. A new recurrent inversion, inv(7)(p15q34), leads to transcriptional activation of HOXA10 and HOXA11 in a subset of T-cell acute lymphoblastic leukemias. Leukemia 19, 358–366 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Look, A. T. Oncogenic transcription factors in the human acute leukemias. Science 278, 1059–1064 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Roberts, C. W., Shutter, J. R. & Korsmeyer, S. J. Hox11 controls the genesis of the spleen. Nature 368, 747–749 (1994).

    Article  CAS  PubMed  Google Scholar 

  81. Su, X. et al. Transforming potential of the T-cell acute lymphoblastic leukemia-associated homeobox genes HOXA13, TLX1, and TLX3. Genes Chromosomes Cancer 45, 846–855 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Hawley, R. G., Fong, A. Z., Lu, M. & Hawley, T. S. The HOX11 homeobox-containing gene of human leukemia immortalizes murine hematopoietic precursors. Oncogene 9, 1–12 (1994).

    CAS  PubMed  Google Scholar 

  83. Hawley, R. G. et al. Transforming function of the HOX11/TCL3 homeobox gene. Cancer Res. 57, 337–345 (1997).

    CAS  PubMed  Google Scholar 

  84. Dixon, D. N. et al. TLX1/HOX11 transcription factor inhibits differentiation and promotes a non-haemopoietic phenotype in murine bone marrow cells. Br. J. Haematol. 138, 54–67 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Pear, W. S. et al. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J. Exp. Med. 183, 2283–2291 (1996).

    Article  CAS  PubMed  Google Scholar 

  86. Rohn, J. L., Lauring, A. S., Linenberger, M. L. & Overbaugh, J. Transduction of Notch2 in feline leukemia virus-induced thymic lymphoma. J. Virol. 70, 8071–8080 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Bellavia, D. et al. Constitutive activation of NF-κB and T-cell leukemia/lymphoma in Notch3 transgenic mice. EMBO J. 19, 3337–3348 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bellavia, D. et al. Combined expression of pTα and Notch3 in T cell leukemia identifies the requirement of preTCR for leukemogenesis. Proc. Natl Acad. Sci. USA 99, 3788–3793 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Malecki, M. J. et al. Leukemia-associated mutations within the NOTCH1 heterodimerization domain fall into at least two distinct mechanistic classes. Mol. Cell Biol. 26, 4642–4651 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ferrando, A. A. et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 1, 75–87 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Klinakis, A. et al. Myc is a Notch1 transcriptional target and a requisite for Notch1-induced mammary tumorigenesis in mice. Proc. Natl Acad. Sci. USA 103, 9262–9267 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Weng, A. P. et al. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev. 20, 2096–2109 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sharma, V. M. et al. Notch1 contributes to mouse T-cell leukemia by directly inducing the expression of c-myc. Mol. Cell Biol. 26, 8022–8031 (2006). These three reports (references 91–93) together with Palomero et al . (reference 23) demonstrate that MYC is a direct transcriptional target of Notch1 in T-ALL and breast cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Palomero, T. et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nature Med. 13, 1203–1210 (2007). This report identifies PTEN mutations in patients with T-ALL and connects them to resistance to γ-secretase inhibitors.

    Article  CAS  PubMed  Google Scholar 

  95. Gupta-Rossi, N. et al. Functional interaction between SEL-10, an F-box protein, and the nuclear form of activated Notch1 receptor. J. Biol. Chem. 276, 34371–34378 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Hubbard, E. J., Wu, G., Kitajewski, J. & Greenwald, I. sel-10, a negative regulator of lin-12 activity in Caenorhabditis elegans, encodes a member of the CDC4 family of proteins. Genes Dev. 11, 3182–3193 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Tetzlaff, M. T. et al. Defective cardiovascular development and elevated cyclin E and Notch proteins in mice lacking the Fbw7 F-box protein. Proc. Natl Acad. Sci. USA 101, 3338–3345 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. O'Neil, J. et al. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to γ-secretase inhibitors. J. Exp. Med. 204, 1813–1824 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Thompson, B. J. et al. The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia. J. Exp. Med. 204, 1825–1835 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Maser, R. S. et al. Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers. Nature 447, 966–971 (2007). References 98–100 are the first to show that FBW7 is an E3 ubiquitin ligase specific for oncogenic Notch1 and identify FBW7 inactivating mutations in T-ALL patients.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Onoyama, I. et al. Conditional inactivation of Fbxw7 impairs cell-cycle exit during T cell differentiation and results in lymphomatogenesis. J. Exp. Med. 204, 2875–2888 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank W. Carroll, B. Mar and the members of the Aifantis laboratory for stimulating discussions and help with the preparation of the manuscript. Our work has been supported by the US National Institutes of Health (RO1CA105129), the American Cancer Society (RSG0806801), the Edward Mallinckrodt, Jr Foundation, the Sidney Kimmel Foundation for Cancer Research, The Cancer Research Institute, The Penelope London Fund, The Friedman Fund for Childhood Leukemia, and the G&P Foundation for Cancer Research. S.B. is supported by the New York University Molecular Oncology and Immunology training grant (T32 CA-09161) and by an American Society of Haematology scholar award. We apologize for any omissions of key citations due to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iannis Aifantis.

Related links

Related links

FURTHER INFORMATION

Iannis Aifantis' homepage

Glossary

Karyotype

The complete description of all the chromosomes present in a cell. Most cancers are characterized by numerical and structural abnormalities in karyotype.

Cryptic deletions

Deletions that cannot be detected with standard cytogenetic analysis.

Sonic hedgehog proteins

(SHH proteins). Members of the SHH signalling cascade, an evolutionarily conserved pathway that controls the proliferation and differentiation of multiple cell types.

Pre-T-cell receptor

(Pre-TCR). A receptor that is expressed on pre-T cells. It is formed by a TCR β-chain paired with a surrogate TCR-α chain (known as the invariant pre-Tα protein). The receptor complex includes CD3 proteins and transduces signals that allow further T-cell development.

ADAM family

(A disintegrin and metalloproteinase family). Members of this family contain disintegrin-like and metalloproteinase-like domains and are involved in the regulation of developmental processes, cell–cell interactions and protein processing, including ectodomain shedding.

γ-secretase complex

The enzyme complex that is responsible for cleavage at the S3 site of Notch proteins, thereby releasing the intracellular domain.

PEST domain

(Proline-, glutamic-acid-, serine- and threonine-rich domain). A protein sequence that is found in unstable cytosolic proteins that contain unusually high frequencies of proline, glutamine, serine and threonine residues. It results in rapid, proteasome-mediated degradation.

V(D)J recombination

Somatic rearrangement of variable (V), diversity (D) and joining (J) regions of the genes that encode antigen receptors, leading to repertoire diversity of both T-cell and B-cell receptors.

Allelic exclusion

A mechanism by which antigen receptors of a single specificity are expressed at the cell surface of a lymphocyte. This is an integral step in the clonal commitment of a cell lineage.

Fluorescence in situ hybridization

(FISH). The use of fluorescent probes to label specific DNA sequences in the nuclei of cells that are in the interphase or metaphase stages of mitosis.

Basic helix–loop–helix proteins

(bHLH proteins). A family of transcription factors with a basic domain that binds to a hexanucleotide sequence called the E-box, and a hydrophobic domain (the helix–;loop–helix) that allows the formation of homodimers and heterodimers. They can also have leucine repeats called a leucine zipper.

LIM-only (LMO) domain genes

A family of genes encoding DNA-binding factors that include several blood oncogenes (LMO1, LMO2, LMO3 and LMO4). The LMO domain is a unique double-zinc finger motif that is found in a variety of proteins such as homeodomain-containing transcription factors, kinases and adaptors.

CD2 enhancer

A lymphocyte-specific promoter that is usually active at the common lymphoid progenitor stage.

Latency

The time that separates the carcinogenic insult from the clinical detection of the tumour. A portion of the latency period can be attributed to the slow accumulation of genetic alterations that lead to immortalization and transformation.

LCK promoter

A T-cell-specific promoter that drives the expression of transgenes early in double-negative thymocytes.

Chromatin immunoprecipitation

(ChIP). The use of antibodies specific for transcription factors to precipitate nucleic-acid sequences from chromatin for amplification.

E3 ubiquitin ligase

The enzyme that is required to attach the molecular tag ubiquitin to proteins that are destined for degradation by the proteasomal complex.

SCF complex

(SKP1–Cullin-1–F-box protein complex). A multisubunit ubiquitin ligase that contains SKP1, a member of the Cullin family (CUL1), and an F-box protein, as well as a RING-finger-containing protein (ROC1 or RBX1).

Degron

A signal within a protein that targets it for rapid degradation.

Bortezomib

(Also known as Velcade). A proteasome inhibitor approved by the Food and Drug Administration for the treatment of multiple myeloma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aifantis, I., Raetz, E. & Buonamici, S. Molecular pathogenesis of T-cell leukaemia and lymphoma. Nat Rev Immunol 8, 380–390 (2008). https://doi.org/10.1038/nri2304

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2304

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing