Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases

Key Points

  • The mammalian innate immune system seems to have developed three distinct systems to sense viral infection through the recognition of nucleic acids. These are the endosomal Toll-like receptor 7 (TLR7)/TLR8/TLR9 signalling pathway through MyD88 (myeloid differentiation primary-response gene 88), the endosomal TLR3 signalling pathway through TRIF (Toll/interleukin-1 (IL-1) receptor-domain-containing adaptor protein inducing interferon-β) and the cytosolic RIG-I (retinoic-acid-inducible gene I) signalling pathway.

  • The endosomal TLR7/TLR9–MyD88 pathway is exclusively used by plasmacytoid dendritic cells (pDCs). pDCs use neither the endosomal TLR8–MyD88 pathway nor the TLR3–TRIF pathway, which are instead mainly used by myeloid cells, such as myeloid DCs, to detect viral RNA. In addition, pDCs do not use the cytosolic RIG-I pathway, which is widely used by myeloid cells and all non-haematopoietic cells to detect viral double-stranded RNA.

  • pDCs seem to detect A-type CpG-containing DNA in the early endosomes through TLR9 that is coupled to interferon-regulatory factor 7 (IRF7) activation and leads to type I interferon (IFN) production. By contrast, pDCs sense B-type CpG-containing DNA in the late endosomes through TLR9 that is coupled to nuclear factor-κB (NF-κB) activation and leads to tumour-necrosis factor and IL-6 production, as well as to the maturation of the pDCs into mature antigen-presenting cells.

  • Several host factors, including DNA-specific antibodies, the antimicrobial peptide LL37, the nuclear DNA-binding protein HMGB1 (high-mobility group box 1 protein) or small ribonucleoprotein, allow self DNA or self RNA to activate both autoreactive B cells and pDCs through endosomal TLR9 or TLR7, leading to the development of autoimmune diseases, such as systemic lupus erythematosus and psoriasis.

  • pDCs may detect self DNA and self RNA frequently and mount low level of type I IFN responses when cell death occurs in normal tissues during tissue renewal, stress and repair processes.

  • This unwanted pDC response is potentially under tight control by rapid clearance of dying cells by macrophages; by degradation of self DNA and self RNA by DNases and RNases, respectively; by compartmentalization of TLR7 and TLR9 within the endosomes; and by receptor-mediated negative regulation of TLR7- or TLR9-induced IFN responses in pDCs.

Abstract

Plasmacytoid dendritic cells (pDCs) are important mediators of antiviral immunity through their ability to produce large amounts of type I interferons (IFNs) on viral infection. This function of pDCs is linked to their expression of Toll-like receptor 7 (TLR7) and TLR9, which sense viral nucleic acids within the early endosomes. Exclusion of self nucleic acids from TLR-containing early endosomes normally prevents pDC responses to them. However, in some autoimmune diseases, self nucleic acids can be modified by host factors and gain entrance to pDC endosomes, where they activate TLR signalling. Several pDC receptors negatively regulate type I IFN responses by pDCs during viral infection and for normal homeostasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the human TLR family.
Figure 2: Intracellular nucleic-acid sensors and signalling pathways.
Figure 3: Activation pathway in plasmacytoid dendritic cells responding to nucleic acids.
Figure 4: Signalling of CpG ODN classes in different endosomal compartments.
Figure 5: A model for sensing self DNA.
Figure 6: Dendritic-cell regulatory receptors and the ITAM pathway in the regulation of TLR responses.

Similar content being viewed by others

References

  1. Facchetti, F. & Vergoni, F. The plasmacytoid monocyte: from morphology to function. Adv. Clin. Path. 4, 187–190 (2000).

    CAS  PubMed  Google Scholar 

  2. Fitzgerald-Bocarsly, P. Human natural interferon-α producing cells. Pharmacol. Ther. 60, 39–62 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Grouard, G. et al. The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand. J. Exp. Med. 185, 1101–1112 (1997). This paper describes the first purification and characterization of pDCs from human tonsils and blood.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rissoan, M. C. et al. Reciprocal control of T helper cell and dendritic cell differentiation. Science 283, 1183–1186 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. O'Doherty, U. et al. Human blood contains two subsets of dendritic cells, one immunologically mature and the other immature. Immunology 82, 487–493 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Olweus, J. et al. Dendritic cell ontogeny: a human dendritic cell lineage of myeloid origin. Proc. Natl Acad. Sci. USA 94, 12551–12556 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Siegal, F. P. et al. The nature of the principal type 1 interferon-producing cells in human blood. Science 284, 1835–1837 (1999). This paper was the first to show that pDCs correspond to the long-sought natural type-I- IFN-producing cells.

    Article  CAS  PubMed  Google Scholar 

  8. Liu, Y. J. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu. Rev. Immunol. 23, 275–306 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Colonna, M., Trinchieri, G. & Liu, Y. J. Plasmacytoid dendritic cells in immunity. Nature Immunol. 5, 1219–1226 (2004).

    Article  CAS  Google Scholar 

  10. Krieg, A. M. The role of CpG motifs in innate immunity. Curr. Opin. Immunol. 12, 35–43 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Jacobs, B. L. & Langland, J. O. When two strands are better than one: the mediators and modulators of the cellular responses to double-stranded RNA. Virology 219, 339–349 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Kadowaki, N., Antonenko, S. & Liu, Y. J. Distinct CpG DNA and polyinosinic-polycytidylic acid double-stranded RNA, respectively, stimulate CD11c type 2 dendritic cell precursors and CD11c+ dendritic cells to produce type I IFN. J. Immunol. 166, 2291–2295 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Verthelyi, D., Ishii, K. J., Gursel, M., Takeshita, F. & Klinman, D. M. Human peripheral blood cells differentially recognize and respond to two distinct CpG motifs. J. Immunol. 166, 2372–2377 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Vollmer, J. et al. Characterization of three CpG oligodeoxynucleotide classes with distinct immunostimulatory activities. Eur. J. Immunol. 34, 251–262 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Hornung, V. et al. Quantitative expression of Toll-like receptor 1–10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J. Immunol. 168, 4531–4537 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Gerosa, F. et al. The reciprocal interaction of NK cells with plasmacytoid or myeloid dendritic cells profoundly affects innate resistance functions. J. Immunol. 174, 727–734 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Hanabuchi, S. et al. Human plasmacytoid predendritic cells activate NK cells through glucocorticoid-induced tumor necrosis factor receptor-ligand (GITRL). Blood 107, 3617–3623 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Ito, T., Kanzler, H., Duramad, O., Cao, W. & Liu, Y. J. Specialization, kinetics, and repertoire of type 1 interferon responses by human plasmacytoid predendritic cells. Blood 107, 2423–2431 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M. & Hoffmann, J. A. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973–983 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Medzhitov, R., Preston-Hurlburt, P. & Janeway, C. A. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–397 (1997). This paper was the first to describe a mammalian TLR.

    Article  CAS  PubMed  Google Scholar 

  21. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998). This paper shows that TLR4 recognizes lipopolysaccharide from Gram-negative bacteria.

    Article  CAS  PubMed  Google Scholar 

  22. Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Schwandner, R., Dziarski, R., Wesche, H., Rothe, M. & Kirschning, C. J. Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by Toll-like receptor 2. J. Biol. Chem. 274, 17406–17409 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Aliprantis, A. O. et al. Cell activation and apoptosis by bacterial lipoproteins through Toll-like receptor-2. Science 285, 736–739 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Takeuchi, O. et al. Differential roles of TLR2 and TLR4 in recognition of Gram-negative and Gram-positive bacterial cell wall components. Immunity 11, 443–451 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Akira, S. & Takeda, K. Toll-like receptor signalling. Nature Rev. Immunol. 4, 499–511 (2004).

    Article  CAS  Google Scholar 

  27. Alexopoulou, L., Holt, A. C., Medzhitov, R. & Flavell, R. A. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413, 732–738 (2001). This paper shows that TLR3 recognizes viral dsRNA.

    Article  CAS  PubMed  Google Scholar 

  28. Lund, J. M. et al. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc. Natl Acad. Sci. USA 101, 5598–5603 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Heil, F. et al. Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science 303, 1526–1529 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Jurk, M. et al. Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nature Immunol. 3, 499–499 (2002).

    Article  CAS  Google Scholar 

  31. Heil, F. et al. The Toll-like receptor 7 (TLR7)-specific stimulus loxoribine uncovers a strong relationship within the TLR7, 8 and 9 subfamily. Eur. J. Immunol. 33, 2987–2997 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).This paper shows that TLR9 recognizes DNA that contains CpG motifs.

    Article  CAS  PubMed  Google Scholar 

  33. Beutler, B. et al. Genetic analysis of resistance to viral infection. Nature Rev. Immunol. 7, 753–766 (2007).

    Article  CAS  Google Scholar 

  34. Uematsu, S. & Akira, S. Toll-like receptors and type I interferons. J. Biol. Chem. 282, 15319–15323 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Kawai, T. & Akira, S. Innate immune recognition of viral infection. Nature Immunol. 7, 131–137 (2006).

    Article  CAS  Google Scholar 

  36. Roach, J. C. et al. The evolution of vertebrate Toll-like receptors. Proc. Natl Acad. Sci. USA 102, 9577–9582 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wagner, H. The immunobiology of the TLR9 subfamily. Trends Immunol. 25, 381–386 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Diebold, S. S., Kaisho, T., Hemmi, H., Akira, S. & Reis e Sousa, C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303, 1529–1531 (2004). This paper, along with references 28 and 29, shows that TLR7 and TLR8 recognize ssRNA.

    Article  CAS  PubMed  Google Scholar 

  39. Bauer, S. et al. Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc. Natl Acad. Sci. USA 98, 9237–9242 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Latz, E. et al. Ligand-induced conformational changes allosterically activate Toll-like receptor 9. Nature Immunol. 8, 772–779 (2007).

    Article  CAS  Google Scholar 

  41. Kaisho, T. & Akira, S. Toll-like receptor function and signaling. J. Allergy Clin. Immunol. 117, 979–987 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Adachi, O. et al. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 9, 143–150 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Yamamoto, M. et al. Cutting Edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-β promoter in the Toll-like receptor signaling. J. Immunol. 169, 6668–6672 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Yamamoto, M. et al. Role of adaptor TRIF in the MyD88-independent Toll-like receptor signaling pathway. Science 301, 640–643 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Yoneyama, M. & Fujita, T. Function of RIG-I-like receptors in antiviral innate immunity. J. Biol. Chem. 282, 15315–15318 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Stetson, D. B. & Medzhitov, R. Antiviral defense: interferons and beyond. J. Exp. Med. 8, 1837–1841 (2006).

    Article  CAS  Google Scholar 

  47. Yoneyama, M. et al. Shared and unique functions of the DExD/H-Box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J. Immunol. 175, 2851–2858 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Hornung, V. et al. 5′-triphosphate RNA is the ligand for RIG-I. Science 314, 994–997 (2006).

    Article  PubMed  Google Scholar 

  49. Pichlmair, A. et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314, 997–1001 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Meylan, E. et al. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437, 1167–1172 (2005).

    CAS  PubMed  Google Scholar 

  51. Kawai, T. et al. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nature Immunol. 6, 981–988 (2005).

    Article  CAS  Google Scholar 

  52. Seth, R. B., Sun, L., Ea, C. K. & Chen, Z. J. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3. Cell 122, 669–682 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Matsui, K. et al. Cutting Edge: role of TANK-binding kinase 1 and inducible IκB kinase in IFN responses against viruses in innate immune cells. J. Immunol. 177, 5785–5789 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Malathi, K., Dong, B., Gale, M. & Silverman, R. H. Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature 448, 816–819 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ishii, K. J. et al. TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. Nature 451, 725–729 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Muruve, D. A. et al. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature 452, 103–107 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Stetson, D. B. & Medzhitov, R. Type I interferons in host defense. Immunity 25, 373–381 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. García-Sastre, A. & Biron, C. A. Type 1 interferons and the virus-host relationship: a lesson in détente. Science 312, 879–882 (2006).

    Article  PubMed  CAS  Google Scholar 

  59. Nallagatla, S. R. et al. 5′-triphosphate-dependent activation of PKR by RNAs with short stem-loops. Science 318, 1455–1458 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Kadowaki, N. et al. Subsets of human dendritic cell precursors express different Toll-like receptors and respond to different microbial antigens. J. Exp. Med. 194, 863–870 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jarrossay, D., Napolitani, G., Colonna, M., Sallusto, F. & Lanzavecchia, A. Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells. Eur. J. Immunol. 31, 3388–3393 (2001). This paper, along with reference 15, defines the distinct expression of TLRs by human pDCs and mDCs and their functional specialization in innate immune defence.

    Article  CAS  PubMed  Google Scholar 

  62. Hemmi, H., Kaisho, T., Takeda, K. & Akira, S. The roles of Toll-like receptor 9, MyD88, and DNA-dependent protein kinase catalytic subunit in the effects of two distinct CpG DNAs on dendritic cell subsets. J. Immunol. 170, 3059–3064 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Krug, A. et al. Herpes simplex virus type 1 activates murine natural interferon-producing cells through toll-like receptor 9. Blood 103, 1433–1437 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Lund, J., Sato, A., Akira, S., Medzhitov, R. & Iwasaki, A. Toll-like receptor 9-mediated recognition of herpes simplex virus-2 by plasmacytoid dendritic cells. J. Exp. Med. 198, 513–520 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Krug, A. et al. TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity 21, 107–119 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Tabeta, K. et al. Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc. Natl Acad. Sci. USA 101, 3516–3521 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lee, H. K., Lund, J. M., Ramanathan, B., Mizushima, N. & Iwasaki, A. Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science 315, 1398–1401 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Jung, A. et al. Lymphocytoid choriomeningitis virus activates plasmacytoid dendritic cells and induces cytotoxic T cell response via MyD88. J. Virol. 1, 196–206 (2007).

    Google Scholar 

  69. Kato, H. et al. Cell type-specific involvement of RIG-I in antiviral response. Immunity 23, 19–28 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Hochrein, H. et al. Herpes simplex virus type-1 induces IFN-α production via Toll-like receptor 9-dependent and -independent pathways. Proc. Natl Acad. Sci. USA 101, 11416–11421 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hokeness-Antonelli, K. L., Crane, M. J., Dragoi, A. M., Chu, W. M. & Salazar-Mather, T. P. IFN-αβ-mediated inflammatory responses and antiviral defense in liver is TLR9-independent but MyD88-dependent during murine cytomegalovirus infection. J. Immunol. 179, 6176–6183 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Edwards, A. D. et al. Toll-like receptor expression in murine DC subsets: lack of TLR7 expression by CD8α+ DC correlates with unresponsiveness to imidazoquinolines. Eur. J. Immunol. 33, 827–833 (2003).

    CAS  PubMed  Google Scholar 

  73. Sun, Q. et al. The specific and essential role of MAVS in antiviral innate immune responses. Immunity 24, 633–642 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Levine, B. & Deretic, V. Unveiling the roles of autophagy in innate and adaptive immunity. Nature Rev. Immunol. 7, 767–777 (2007).

    Article  CAS  Google Scholar 

  75. Schmid, D. & Munz, C. Innate and adaptive immunity through autophagy. Immunity 27, 11–21 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kim, T. W. et al. A critical role for IRAK4 kinase activity in Toll-like receptor-mediated innate immunity. J. Exp. Med. 204, 1025–1036 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yang, K. et al. Human TLR-7-, -8-, and -9-mediated induction of IFN-α/β and -λ is IRAK-4 dependent and redundant for protective immunity to viruses. Immunity 23, 465–478 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Suzuki, N., Suzuki, S. & Yeh, W. C. IRAK-4 as the central TIR signaling mediator in innate immunity. Trends Immunol. 23, 503–506 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Hacker, H. et al. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 439, 204–207 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Gohda, J., Matsumura, T. & Inoue, J. Cutting Edge: TNFR-associated factor (TRAF) 6 is essential for MyD88-dependent pathway but not Toll/IL-1 receptor domain-containing adaptor-inducing IFN-β (TRIF)-dependent pathway in TLR signaling. J. Immunol. 173, 2913–2917 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Pisitkun, P. et al. Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science 312, 1669–1672 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Sochorova, K. et al. Impaired Toll-like receptor 8-mediated IL-6 and TNF-α production in antigen-presenting cells from patients with X-linked agammaglobulinemia. Blood 109, 2553–2556 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Jefferies, C. A. et al. Bruton's tyrosine kinase is a Toll/interleukin-1 receptor domain-binding protein that participates in nuclear factor-κB activation by Toll-like receptor 4. J. Biol. Chem. 278, 26258–26264 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Honda, K. et al. Role of a transductional-transcriptional processor complex involving MyD88 and IRF-7 in Toll-like receptor signaling. Proc. Natl Acad. Sci. USA 101, 15416–15421 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Honda, K. et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434, 772–777 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Kawai, T. et al. Interferon-α induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nature Immunol. 5, 1061–1068 (2004). References 85 and 86 demonstrate that IRF7 is a master regulator of the type I IFN response by pDCs.

    Article  CAS  Google Scholar 

  87. Uematsu, S. et al. Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR)7- and TLR9-mediated interferon-α induction. J. Exp. Med. 201, 915–923 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hoshino, K. et al. IκB kinase-α is critical for interferon-α production induced by Toll-like receptors 7 and 9. Nature 440, 949–953 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Guiducci, C. et al. PI3K is critical for the nuclear translocation of IRF-7 and type I IFN production by human plasmacytoid predendritic cells in response to TLR activation. J. Exp. Med. 2, 315–322 (2008).

    Article  CAS  Google Scholar 

  90. Deng, L. et al. Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103, 351–361 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Wang, C. et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346–351 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Osawa, Y. et al. Collaborative action of NF-κB and p38 MAPK is involved in CpG DNA-induced IFN-α and chemokine production in human plasmacytoid dendritic cells. J. Immunol. 177, 4841–4852 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Taniguchi, T. & Takaoka, A. The interferon-α/β system in antiviral responses: a multimodal machinery of gene regulation by the IRF family of transcription factors. Curr. Opin. Immunol. 14, 111–116 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Barchet, W. et al. Virus-induced interferon-α production by a dendritic cell subset in the absence of feedback signaling in vivo. J. Exp. Med. 195, 507–516 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Colina, R. et al. Translational control of the innate immune response through IRF-7. Nature 452, 323–328 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Tailor, P. et al. The feedback phase of type I interferon induction in dendritic cells requires interferon regulatory factor 8. Immunity 27, 228–239 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Tsujimura, H., Tamura, T. & Ozato, K. Cutting Edge: IFN consensus sequence binding protein/IFN regulatory factor 8 drives the development of type I IFN-producing plasmacytoid dendritic cells. J. Immunol. 170, 1131–1135 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Yanai, H. et al. Role of IFN regulatory factor 5 transcription factor in antiviral immunity and tumor suppression. Proc. Natl Acad. Sci. USA 104, 3402–3407 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yasuda, K. et al. Murine dendritic cell type I IFN production induced by human IgG-RNA immune complexes is IFN regulatory factor (IRF)5 and IRF7 dependent and is required for IL-6 production. J. Immunol. 178, 6876–6885 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Takaoka, A. et al. Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature 434, 243–249 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Latz, E. et al. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nature Immunol. 5, 190–198 (2004). This paper shows that TLR9 is located in the ER of pDCs and translocates to endolysosomal compartments in response to activation by CpG ODNs.

    Article  CAS  Google Scholar 

  102. Tabeta, K. et al. The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9. Nature Immunol. 7, 156–164 (2006).

    Article  CAS  Google Scholar 

  103. Brinkmann, M. M. et al. The interaction between the ER membrane protein UNC93B and TLR3, 7, and 9 is crucial for TLR signaling. J. Cell Biol. 177, 265–275 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yang, Y. et al. Heat shock protein gp96 is a master chaperone for Toll-like receptors and is important in the innate function of macrophages. Immunity 26, 215–226 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Iwakoshi, N. N., Pypaert, M. & Glimcher, L. H. The transcription factor XBP-1 is essential for the development and survival of dendritic cells. J. Exp. Med. 204, 2267–2275 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Asselin-Paturel, C. et al. Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nature Immunol. 2, 1144–1150 (2001).

    Article  CAS  Google Scholar 

  107. Dalod, M. et al. Interferon α/β and interleukin 12 responses to viral infections: pathways regulating dendritic cell cytokine expression in vivo. J. Exp. Med. 195, 517–528 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Fonteneau, J. F. et al. Human immunodeficiency virus type 1 activates plasmacytoid dendritic cells and concomitantly induces the bystander maturation of myeloid dendritic cells. J. Virol. 78, 5223–5232 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yoneyama, H. et al. Plasmacytoid DCs help lymph node DCs to induce anti-HSV CTLs. J. Exp. Med. 202, 425–435 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Santini, S. M. Type I interferon as a powerful adjuvant for monocyte-derived dendritic cell development and activity in vitro and in Hu-PBL-SCID mice. J. Exp. Med. 191, 1777–1788 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Paquette, R. L. Interferon-α and granulocyte- macrophage colony-stimulating factor differentiate peripheral blood monocytes into potent antigen-presenting cells. J. Leukoc. Biol. 64, 358–367 (1998).

    Article  CAS  PubMed  Google Scholar 

  112. Le Bon, A. et al. Cross-priming of CD8+ T cells stimulated by virus-induced type I interferon. Nature Immunol. 4, 1009–1015 (2003).

    Article  CAS  Google Scholar 

  113. Kolumam, G. A., Thomas, S., Thompson, L. J., Sprent, J. & Murali-Krishna, K. Type I interferons act directly on CD8 T cells to allow clonal expansion and memory formation in response to viral infection. J. Exp. Med. 202, 637–650 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hibbert, L., Pflanz, S., De Waal Malefyt, R. & Kastelein, R. A. IL-27 and IFN-α signal via Stat1 and Stat3 and induce T-Bet and IL-12Rβ2 in naive T cells. J. Interferon Cytokine Res. 23, 513–522 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Jego, G. et al. Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity 19, 225–234 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Di Pucchio, T. et al. Direct proteasome-independent cross-presentation of viral antigen by plasmacytoid dendritic cells on major histocompatibility complex class I. Nature Immunol. 9, 551–557 (2008).

    Article  CAS  Google Scholar 

  117. Gursel, M., Verthelyi, D., Gursel, I., Ishii, K. J. & Klinman, D. M. Differential and competitive activation of human immune cells by distinct classes of CpG oligodeoxynucleotide. J. Leukoc. Biol. 71, 813–820 (2002).

    CAS  PubMed  Google Scholar 

  118. Krieg, A. M. et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374, 546–549 (1995).

    Article  CAS  PubMed  Google Scholar 

  119. Kerkmann, M. et al. Spontaneous formation of nucleic acid-based nanoparticles is responsible for high interferon-α induction by CpG-A in plasmacytoid dendritic cells. J. Biol. Chem. 280, 8086–8093 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Honda, K. et al. Spatiotemporal regulation of MyD88–IRF-7 signalling for robust type-I interferon induction. Nature 434, 1035–1040 (2005).

    Article  CAS  PubMed  Google Scholar 

  121. Guiducci, C. et al. Properties regulating the nature of the plasmacytoid dendritic cell response to Toll-like receptor 9 activation. J. Exp. Med. 8, 1999–2008 (2006). References 120 and 121 establish a spatiotemporal model to explain the differential ability of different classes of CpG ODNs to induce type I IFNs in mouse and human pDCs.

    Article  CAS  Google Scholar 

  122. Kerkmann, M. et al. Immunostimulatory properties of CpG-oligonucleotides are enhanced by the use of protamine nanoparticles. Oligonucleotides 16, 313–322 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Pisetsky, D. S. & Fairhurst, A. M. The origin of extracellular DNA during the clearance of dead and dying cells. Autoimmunity 40, 281–284 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Yasuda, K. et al. Endosomal translocation of vertebrate DNA activates dendritic cells via TLR9-dependent and -independent pathways. J. Immunol. 174, 6129–6136 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Barton, G. M., Kagan, J. C. & Medzhitov, R. Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. Nature Immunol. 7, 49–56 (2006).

    Article  CAS  Google Scholar 

  126. Napirei, M. et al. Features of systemic lupus erythematosus in Dnase1-deficient mice. Nature Genet. 25, 177–181 (2000).

    Article  CAS  PubMed  Google Scholar 

  127. Yasutomo, K. et al. Mutation of DNASE1 in people with systemic lupus erythematosus. Nature Genet. 28, 313–314 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. Krieg, A. M. CpG motifs in bacterial DNA and their immune effects. Annu. Rev. Immunol. 20, 709–760 (2002).

    Article  CAS  PubMed  Google Scholar 

  129. Stacey, K. J. et al. The molecular basis for the lack of immunostimulatory activity of vertebrate DNA. J. Immunol. 170, 3614–3620 (2003).

    Article  CAS  PubMed  Google Scholar 

  130. Sano, H. & Morimoto, C. DNA isolated from DNA/anti-DNA antibody immune complexes in systemic lupus erythematosus is rich in guanine-cytosine content. J. Immunol. 128, 1341–1345 (1982).

    CAS  PubMed  Google Scholar 

  131. Haas, T. et al. The DNA sugar backbone 2′ deoxyribose determines Toll-like receptor 9 activation. Immunity 28, 315–323 (2008).

    Article  CAS  PubMed  Google Scholar 

  132. Ronnblom, L., Eloranta, M. L. & Alm, G. V. Role of natural interferon-α producing cells (plasmacytoid dendritic cells) in autoimmunity. Autoimmunity 36, 463–472 (2003).

    Article  PubMed  CAS  Google Scholar 

  133. Barrat, F. J. et al. Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J. Exp. Med. 202, 1131–1139 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Means, T. K. et al. Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9. J. Clin. Invest. 115, 407–417 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Blanco, P., Palucka, A. K., Gill, M., Pascual, V. & Banchereau, J. Induction of dendritic cell differentiation by IFN-α in systemic lupus erythematosus. Science 294, 1540–1543 (2001). This paper shows that in SLE pDC-derived type I IFNs trigger autoimmunity through the activation of mDCs.

    Article  CAS  PubMed  Google Scholar 

  136. Lande, R. et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449, 564–569 (2007). This paper indicates that an antimicrobial peptide expressed in psoriatic skin breaks innate tolerance to self DNA and triggers type I IFN production by pDCs, leading to autoimmune skin inflammation.

    Article  CAS  PubMed  Google Scholar 

  137. Nestle, F. O. et al. Plasmacytoid predendritic cells initiate psoriasis through interferon-α production. J. Exp. Med. 202, 135–143 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature 415, 389–395 (2002).

    Article  CAS  PubMed  Google Scholar 

  139. Sandgren, S. et al. The human antimicrobial peptide LL-37 transfers extracellular DNA plasmid to the nuclear compartment of mammalian cells via lipid rafts and proteoglycan-dependent endocytosis. J. Biol. Chem. 279, 17951–17956 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Marshak-Rothstein, A. Toll-like receptors in systemic autoimmune disease. Nature Rev. Immunol. 6, 823–835 (2006).

    Article  CAS  Google Scholar 

  141. Lovgren, T., Eloranta, M. L., Bave, U., Alm, G. V. & Ronnblom, L. Induction of interferon-α production in plasmacytoid dendritic cells by immune complexes containing nucleic acid released by necrotic or late apoptotic cells and lupus IgG. Arthritis Rheum. 50, 1861–1872 (2004).

    Article  PubMed  CAS  Google Scholar 

  142. Bennett, L. et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J. Exp. Med. 197, 711–723 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Tian, J. et al. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nature Immunol. 8, 487–496 (2007).

    Article  CAS  Google Scholar 

  144. Asagiri, M. et al. Cathepsin K-dependent Toll-like receptor 9 signaling revealed in experimental arthritis. Science 319, 624–627 (2008).

    Article  CAS  PubMed  Google Scholar 

  145. Koski, G. K. et al. Cutting Edge: innate immune system discriminates between RNA containing bacterial versus eukaryotic structural features that prime for high-level IL-12 secretion by dendritic cells. J. Immunol. 172, 3989–3993 (2004).

    Article  CAS  PubMed  Google Scholar 

  146. Kariko, K., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23, 165–175 (2005).

    Article  CAS  PubMed  Google Scholar 

  147. Vollmer, J. et al. Immune stimulation mediated by autoantigen binding sites within small nuclear RNAs involves Toll-like receptors 7 and 8. J. Exp. Med. 202, 1575–1585 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lau, C. M. et al. RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J. Exp. Med. 202, 1171–1177 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Krieg, A. M. & Vollmer, J. Toll-like receptors 7, 8, and 9: linking innate immunity to autoimmunity. Immunol. Rev. 220, 251–269 (2007).

    Article  CAS  PubMed  Google Scholar 

  150. Deane, J. A. et al. Control of Toll-like receptor 7 expression is essential to restrict autoimmunity and dendritic cell proliferation. Immunity 27, 801–810 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Martin, D. A. & Elkon, K. B. Autoantibodies make a U-turn: the toll hypothesis for autoantibody specificity. J. Exp. Med. 202, 1465–1469 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Goodnow, C. C. Immunology: discriminating microbe from self suffers a double Toll. Science 312, 1606–1608 (2006).

    Article  PubMed  Google Scholar 

  153. Krieg, A. M. The toll of too much TLR7. Immunity 27, 695–697 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. Berland, R. et al. Toll-like receptor 7-dependent loss of B cell tolerance in pathogenic autoantibody knockin mice. Immunity 25, 429–440 (2006).

    Article  CAS  PubMed  Google Scholar 

  155. Christensen, S. R. et al. Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity 25, 417–428 (2006).

    Article  CAS  PubMed  Google Scholar 

  156. Dzionek, A. et al. BDCA-2, a novel plasmacytoid dendritic cell-specific type II C-type lectin, mediates antigen capture and is a potent inhibitor of interferon α/β induction. J. Exp. Med. 194, 1823–1834 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Cao, W. et al. Plasmacytoid dendritic cell-specific receptor ILT7-FcεRIγ inhibits Toll-like receptor-induced interferon production. J. Exp. Med. 203, 1399–1405 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Cao, W. et al. BDCA2/FcεRIγ complex signals through a novel BCR-like pathway in human plasmacytoid dendritic cells. PLoS Biol. 5, e248 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Schroeder, J. T. et al. TLR9- and FcεRI-mediated responses oppose one another in plasmacytoid dendritic cells by down-regulating receptor expression. J. Immunol. 175, 5724–5731 (2005).

    Article  CAS  PubMed  Google Scholar 

  160. Novak, N. et al. Characterization of FcεRI-bearing CD123+ blood dendritic cell antigen-2+ plasmacytoid dendritic cells in atopic dermatitis. J. Allergy Clin. Immunol. 114, 364–370 (2004).

    Article  CAS  PubMed  Google Scholar 

  161. Bave, U. et al. FcγRIIa is expressed on natural IFN-α-producing cells (plasmacytoid dendritic cells) and is required for the IFN-α production induced by apoptotic cells combined with lupus IgG. J. Immunol. 171, 3296–3302 (2003).

    Article  CAS  PubMed  Google Scholar 

  162. Green, D. S., Lum, T. & Green, J. A. IgG-derived Fc down-regulates virus-induced plasmacytoid dendritic cell (pDC) IFN-α production. Cytokine 26, 209–216 (2004).

    Article  CAS  PubMed  Google Scholar 

  163. Fuchs, A., Cella, M., Kondo, T. & Colonna, M. Paradoxic inhibition of human natural interferon-producing cells by the activating receptor NKp44. Blood 106, 2076–2082 (2005).

    Article  CAS  PubMed  Google Scholar 

  164. Blasius, A. L., Cella, M., Maldonado, J., Takai, T. & Colonna, M. Siglec-H is an IPC-specific receptor that modulates type I IFN secretion through DAP12. Blood 107, 2474–2476 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Watarai, H. et al. PDC-TREM, a plasmacytoid dendritic cell-specific receptor, is responsible for augmented production of type I interferon. Proc. Natl Acad. Sci. USA 8, 2993–2998 (2008).

    Article  Google Scholar 

  166. Shin, A. et al. P2Y receptor signaling regulates phenotype and IFN-α secretion of human plasmacytoid dendritic cells. Blood 111, 3062–3069 (2008).

    Article  CAS  PubMed  Google Scholar 

  167. Röck, J. et al. CD303 (BDCA-2) signals in plasmacytoid dendritic cells via a BCR-like signalosome involving Syk, Slp65 and PLCγ2. Eur. J. Immunol. 37, 3564–3575 (2007). References 158 and 167 depict a signalling pathway that is similar to the BCR signalling cascade and that mediates innate regulation by pDC receptors.

    Article  PubMed  CAS  Google Scholar 

  168. Hamerman, J. A., Tchao, N. K., Lowell, C. A. & Lanier, L. L. Enhanced Toll-like receptor responses in the absence of signaling adaptor DAP12. Nature Immunol. 6, 579–586 (2005).

    Article  CAS  Google Scholar 

  169. Chu, C. L. et al. Increased TLR responses in dendritic cells lacking the ITAM-containing adapters DAP12 and FcRγ. Eur. J. Immunol. 38, 166–173 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Baccala, R., Kono, D. H. & Theofilopoulos, A. N. Interferons as pathogenic effectors in autoimmunity. Immunol. Rev. 204, 9–26 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the former and current members of the laboratory for their critical contributions, the M.D. Anderson Cancer Foundation and The Dana Foundation for financial support, M. Haject for editorial assistance, T. Kim, M. Bao and K. Arima for critical reading of the manuscript. This Review is dedicated to Dr Ralph Steinman for his support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Jun Liu.

Glossary

Type I interferons

Molecules produced by cells of the immune system that are rapidly induced by infection with viruses and bacteria. They immediately limit viral replication and increase subsequent antigen-specific immune responses.

CpG-containing DNA

DNA oligodeoxynucleotide sequences that include a cytidine–guanosine sequence and certain flanking nucleotides. These sequences have been found to induce innate immune responses through interaction with Toll-like receptor 9.

Pattern-recognition receptors

Host receptors that can sense pathogen-associated molecular patterns and initiate signalling cascades that lead to an innate immune response. These can be membrane bound (for example, Toll-like receptors) or soluble cytoplasmic receptors (for example, RIG-I, MDA5 and NLRs).

A-type CpG ODNs

(Also known as D-type CpG ODNs). Synthetic oligodeoxynucleotides (ODNs) with the following three features: polyG sequences at the 3′ end; a central palindromic sequence; and cytosine-guanine dinucleotides within the palindrome. The polyG tails on A-type CpG ODNs can interact with each other, resulting in the formation of guanine tetrads and clusters.

B-type CpG ODNs

(Also known as K-type CpG ODNs). Synthetic oligodeoxynucleotides that contain a CpG motif(s) on a phosphorothioate backbone.

Pathogen-associated molecular patterns

(PAMPs). Molecular patterns that are found in pathogens but not mammalian cells. Examples include terminally mannosylated and polymannosylated compounds (which bind the mannose receptor) and various microbial components, such as bacterial lipopolysaccharide, hypomethylated DNA, flagellin and double-stranded RNA (all of which bind Toll-like receptors).

Death domain

A protein–protein interaction domain found in many proteins that are involved in signalling and apoptosis.

DExD/H box RNA helicases

A group of enzymes that can unwind double-stranded RNA using energy derived from ATP hydrolysis. The DExD/H box is a characteristic amino-acid signature motif of many RNA-binding proteins.

Caspase-recruitment domain

(CARD). A protein domain that is found in certain initiator caspases (for example, mammalian caspase-9) and their adaptor proteins (for example, apoptotic-protease-activating factor 1, APAF1). This domain mediates protein–protein interactions.

Inflammasome

A molecular complex of several proteins that, on assembly, cleaves pro-interleukin-1, thereby producing active interleukin-1.

Ubiquitin E3 ligase

An enzyme that is required to attach the molecular tag ubiquitin to proteins. Depending on the position and number of ubiquitin molecules that are attached, the ubiquitin tag can target proteins for degradation in the proteasomal complex, sort them to specific subcellular compartments or modify their biological activity.

Osteopontin

An extracellular matrix protein that supports adhesion and migration of inflammatory cells. It has recently been recognized as an immunoregulatory T-helper-1-type cytokine.

Systemic lupus erythematosus

(SLE). An autoimmune disease in which autoantibodies specific for DNA, RNA or proteins associated with nucleic acids form immune complexes that damage small blood vessels, especially in the kidneys. Patients with SLE generally have abnormal B- and T-cell function.

CpG islands

Sequences of 0.5–2 kilobases that are rich in CpG dinucleotides. They are mostly located upstream of housekeeping genes and are also present in some tissue-specific genes. They are constitutively non-methylated in all animal cell types.

Immune complexes

Complexes of antigen bound to antibody and, sometimes, components of the complement system. The levels of immune complexes are increased in many autoimmune disorders, in which they become deposited in tissues and cause tissue damage.

Immunoreceptor-based tyrosine activation motif

(ITAM). A structural motif containing tyrosine residues, found in the cytoplasmic tails of several signalling molecules. The motif has the form Tyr-Xaa-Xaa-Leu/Ile, and the tyrosine is a target for phosphorylation by SRC tyrosine kinases and subsequent binding of proteins containing SRC-homology-2 domains.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilliet, M., Cao, W. & Liu, YJ. Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat Rev Immunol 8, 594–606 (2008). https://doi.org/10.1038/nri2358

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2358

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing