Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New regulators of NF-κB in inflammation

Key Points

  • Nuclear factor-κB (NF-κB) has a crucial and complex function in orchestrating multiple aspects of inflammation. Increasing knowledge of the complexity within the NF-κB signalling pathways is revealing some of the mechanisms that are used by the NF-κB family to appropriately regulate gene expression during an inflammatory response.

  • IKK (inhibitor of NF-κB (IκB) kinase), which is a key component in the initiation of the NF-κB pathway through the induction of IκB degradation, exerts additional effects on the NF-κB transcriptional programmes. These include negative regulatory effects brought about by targeting of NF-κB proteins for degradation and positive effects brought about by selectively augmenting co-activator recruitment to facilitate the transcription of NF-κB-dependent genes.

  • Certain members of the IκB protein family have now been shown to selectively up-regulate the transcription of specific NF-κB target genes by providing transactivating activity to the otherwise repressive p50 and p52 NF-κB homodimers. IκB proteins can also influence NF-κB transcriptional programmes by affecting the formation, stability and responsiveness of the NF-κB complexes.

  • NF-κB transcriptional specificity can be shaped by crosstalk with other signalling pathways, for example the p38 mitogen-activating protein kinase (MAPK) pathway. The newly described Akirins also function selectively in NF-κB transcriptional responses, although the mechanism of action of these proteins remains unknown.

  • Several new models of the termination of NF-κB transcriptional responses have been proposed. Nuclear degradation of NF-κB subunits, dissociation of co-activators and sub-nuclear relocalization of NF-κB complexes have been implicated in the process of shutting off NF-κB.

  • Components of the NF-κB pathway can both positively and negatively influence gene expression, and NF-κB activation can facilitate and regulate inflammatory processes. Approaches to target NF-κB in inflammatory disease must, therefore, take into account the varied contributions of the NF-κB transcription-factor family in various signalling pathways.

Abstract

Research on the biological function of nuclear factor-κB (NF-κB), a key mediator of inducible transcription in the immune system, has traditionally focused on its role in the initiation of innate and adaptive immune responses. These studies have largely concentrated on the mechanisms of signalling that lead to NF-κB activation and on the positive role of NF-κB in both physiological immunity and pathological inflammation. More recently, there has been growing interest in the mechanisms that directly regulate the NF-κB transcriptional programmes. As a result, several new NF-κB regulatory components have been identified and some of the known components have been assigned new roles. In this Review, we discuss these new insights into the regulation of NF-κB.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Relevant regulatory nodes in NF-κB signalling pathways.
Figure 2: Members of the NF-κB, IκB and IKK protein families.
Figure 3: New functions for IKK proteins in NF-κB signalling.
Figure 4: New functions for IκB family members.
Figure 5: Selective activation of NF-κB transcriptional activity.
Figure 6: Terminating NF-κB transcriptional activity.

Similar content being viewed by others

References

  1. Hayden, M. S., West, A. P. & Ghosh, S. NF-κB and the immune response. Oncogene 25, 6758–6780 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Foster, S. L., Hargreaves, D. C. & Medzhitov, R. Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature 447, 972–978 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Sun, S. C. Deubiquitylation and regulation of the immune response. Nature Rev. Immunol. 8, 501–511 (2008).

    Article  CAS  Google Scholar 

  4. Scheidereit, C. IκB kinase complexes: gateways to NF-κB activation and transcription. Oncogene 25, 6685–6705 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Liu, Y. C., Penninger, J. & Karin, M. Immunity by ubiquitylation: a reversible process of modification. Nature Rev. Immunol. 5, 941–952 (2005).

    Article  CAS  Google Scholar 

  6. Chen, L. F. & Greene, W. C. Shaping the nuclear action of NF-κB. Nature Rev. Mol. Cell Biol. 5, 392–401 (2004).

    Article  CAS  Google Scholar 

  7. Hoffmann, A., Natoli, G. & Ghosh, G. Transcriptional regulation via the NF-κB signaling module. Oncogene 25, 6706–6716 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Hayden, M. S. & Ghosh, S. Shared principles in NF-κB signaling. Cell 132, 344–362 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. O'Neill, L. A. When signaling pathways collide: positive and negative regulation of toll-like receptor signal transduction. Immunity 29, 12–20 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Hacker, H. & Karin, M. Regulation and function of IKK and IKK-related kinases. Sci. STKE 2006, re13 (2006).

    Article  PubMed  Google Scholar 

  11. Zhong, H., SuYang, H., Erdjument-Bromage, H., Tempst, P. & Ghosh, S. The transcriptional activity of NF-κB is regulated by the IκB-associated PKAc subunit through a cyclic AMP-independent mechanism. Cell 89, 413–424 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Lawrence, T., Bebien, M., Liu, G. Y., Nizet, V. & Karin, M. IKKα limits macrophage NF-κB activation and contributes to the resolution of inflammation. Nature 434, 1138–1143 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Li, Q. et al. Enhanced NF-κB activation and cellular function in macrophages lacking IκB kinase 1 (IKK1). Proc. Natl Acad. Sci. USA 102, 12425–12430 (2005). References 12 and13 reveal the surprising role of IKKα in limiting pro-inflammatory gene expression in macrophages.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Anest, V. et al. A nucleosomal function for IκB kinase-α in NF-κB-dependent gene expression. Nature 423, 659–663 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Yamamoto, Y., Verma, U. N., Prajapati, S., Kwak, Y. T. & Gaynor, R. B. Histone H3 phosphorylation by IKK-α is critical for cytokine-induced gene expression. Nature 423, 655–659 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Hoberg, J. E., Yeung, F. & Mayo, M. W. SMRT derepression by the IκB kinase α: a prerequisite to NF-κB transcription and survival. Mol. Cell 16, 245–255 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Hoberg, J. E., Popko, A. E., Ramsey, C. S. & Mayo, M. W. IκB kinase α-mediated derepression of SMRT potentiates acetylation of RelA/p65 by p300. Mol. Cell. Biol. 26, 457–471 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fernandez-Majada, V. et al. Nuclear IKK activity leads to dysregulated Notch-dependent gene expression in colorectal cancer. Proc. Natl Acad. Sci. USA 104, 276–281 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Huang, W. C., Ju, T. K., Hung, M. C. & Chen, C. C. Phosphorylation of CBP by IKKα promotes cell growth by switching the binding preference of CBP from p53 to NF-κB. Mol. Cell 26, 75–87 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Luo, J. L. et al. Nuclear cytokine-activated IKKα controls prostate cancer metastasis by repressing Maspin. Nature 446, 690–694 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Zou, Z. et al. p53 regulates the expression of the tumor suppressor gene maspin. J. Biol. Chem. 275, 6051–6054 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Ohno, H., Takimoto, G. & McKeithan, T. W. The candidate proto-oncogene bcl-3 is related to genes implicated in cell lineage determination and cell cycle control. Cell 60, 991–997 (1990).

    Article  CAS  PubMed  Google Scholar 

  23. Nolan, G. P. et al. The bcl-3 proto-oncogene encodes a nuclear IκB-like molecule that preferentially interacts with NF-κB p50 and p52 in a phosphorylation-dependent manner. Mol. Cell. Biol. 13, 3557–3566 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Caamano, J. H., Perez, P., Lira, S. A. & Bravo, R. Constitutive expression of Bc1–3 in thymocytes increases the DNA binding of NF- κB1 (p50) homodimers in vivo. Mol. Cell. Biol. 16, 1342–1348 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bundy, D. L. & McKeithan, T. W. Diverse effects of BCL3 phosphorylation on its modulation of NF-κB p52 homodimer binding to DNA. J. Biol. Chem. 272, 33132–33139 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Bours, V. et al. The oncoprotein Bcl-3 directly transactivates through κB motifs via association with DNA-binding p50B homodimers. Cell 72, 729–739 (1993). This study shows that BCL-3 can induce the transcription of target genes by associating with NF-κB–p50 homodimers, which suggests that IκB proteins could have complex roles in NF-κB regulation.

    Article  CAS  PubMed  Google Scholar 

  27. Massoumi, R., Chmielarska, K., Hennecke, K., Pfeifer, A. & Fassler, R. Cyld inhibits tumor cell proliferation by blocking Bcl-3-dependent NF-κB signaling. Cell 125, 665–677 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Westerheide, S. D., Mayo, M. W., Anest, V., Hanson, J. L. & Baldwin, A. S. Jr. The putative oncoprotein Bcl-3 induces cyclin D1 to stimulate G1 transition. Mol. Cell. Biol. 21, 8428–8436 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rocha, S., Martin, A. M., Meek, D. W. & Perkins, N. D. p53 represses cyclin D1 transcription through down regulation of Bcl-3 and inducing increased association of the p52 NF-κB subunit with histone deacetylase 1. Mol. Cell. Biol. 23, 4713–4727 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wessells, J. et al. BCL-3 and NF-κB p50 attenuate lipopolysaccharide-induced inflammatory responses in macrophages. J. Biol. Chem. 279, 49995–50003 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Carmody, R. J., Ruan, Q., Palmer, S., Hilliard, B. & Chen, Y. H. Negative regulation of toll-like receptor signaling by NF-κB p50 ubiquitination blockade. Science 317, 675–678 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Kuwata, H. et al. IL-10-inducible Bcl-3 negatively regulates LPS-induced TNF-α production in macrophages. Blood 102, 4123–4129 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Muhlbauer, M., Chilton, P. M., Mitchell, T. C. & Jobin, C. Impaired Bcl3 up-regulation leads to enhanced lipopolysaccharide-induced interleukin (IL)-23p19 gene expression in IL-10−/− mice. J. Biol. Chem. 283, 14182–14189 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Yamazaki, S., Muta, T., Matsuo, S. & Takeshige, K. Stimulus-specific induction of a novel nuclear factor-κB regulator, IκB-ζ, via Toll/interleukin-1 receptor is mediated by mRNA stabilization. J. Biol. Chem. 280, 1678–1687 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Yamamoto, M. et al. Regulation of Toll/IL-1-receptor-mediated gene expression by the inducible nuclear protein IκBζ. Nature 430, 218–222 (2004). This study provides genetic and biochemical evidence that IκBζ is required for the transcription of a subset of NF-κB-regulated genes in response to specific stimuli.

    Article  CAS  PubMed  Google Scholar 

  36. Motoyama, M., Yamazaki, S., Eto-Kimura, A., Takeshige, K. & Muta, T. Positive and negative regulation of nuclear factor-κB-mediated transcription by IκBζ, an inducible nuclear protein. J. Biol. Chem. 280, 7444–7451 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Fiorini, E. et al. Peptide-induced negative selection of thymocytes activates transcription of an NF-κB inhibitor. Mol. Cell 9, 637–648 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Hirotani, T. et al. The nuclear IκB protein IκBNS selectively inhibits lipopolysaccharide-induced IL-6 production in macrophages of the colonic lamina propria. J. Immunol. 174, 3650–3657 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Kuwata, H. et al. IκBNS inhibits induction of a subset of Toll-like receptor-dependent genes and limits inflammation. Immunity 24, 41–51 (2006). This paper reports the characterization of IκBNS-deficient mice and their specific defects in the regulation of inflammatory gene expression.

    Article  CAS  PubMed  Google Scholar 

  40. Fujita, S. et al. Regulatory dendritic cells act as regulators of acute lethal systemic inflammatory response. Blood 107, 3656–3664 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Touma, M. et al. Functional role for IκBNS in T cell cytokine regulation as revealed by targeted gene disruption. J. Immunol. 179, 1681–1692 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Senftleben, U. et al. Activation by IKKα of a second, evolutionary conserved, NF-κB signaling pathway. Science 293, 1495–1499 (2001). This work shows that the activation of NF-κB by IKKα-induced processing of p100 to p52 is a distinct NF-κB signalling pathway.

    Article  CAS  PubMed  Google Scholar 

  43. Xiao, G., Fong, A. & Sun, S. C. Induction of p100 processing by NF-κB-inducing kinase involves docking IKKα to p100 and IKKα-mediated phosphorylation. J. Biol. Chem. 279, 30099–30105 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Solan, N. J., Miyoshi, H., Carmona, E. M., Bren, G. D. & Paya, C. V. RelB cellular regulation and transcriptional activity are regulated by p100. J. Biol. Chem. 277, 1405–1418 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Fusco, A. J. et al. Stabilization of RelB requires multidomain interactions with p100/p52. J. Biol. Chem. 283, 12324–12332 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Qing, G. & Xiao, G. Essential role of IκB kinase α in the constitutive processing of NF-κB2 p100. J. Biol. Chem. 280, 9765–9768 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Weih, F. et al. Multiorgan inflammation and hematopoietic abnormalities in mice with a targeted disruption of RelB, a member of the NF-κB/Rel family. Cell 80, 331–340 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Saccani, S., Pantano, S. & Natoli, G. Modulation of NF-κB activity by exchange of dimers. Mol. Cell 11, 1563–1574 (2003). This study shows how, over the course of the signalling response, the transcriptional outcome for a specific gene is influenced by changes in the composition of the NF-κB dimer that occupies its promoter.

    Article  CAS  PubMed  Google Scholar 

  49. Yoza, B. K., Hu, J. Y., Cousart, S. L., Forrest, L. M. & McCall, C. E. Induction of RelB participates in endotoxin tolerance. J. Immunol. 177, 4080–4085 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. El Gazzar, M., Yoza, B. K., Hu, J. Y., Cousart, S. L. & McCall, C. E. Epigenetic silencing of tumor necrosis factor α during endotoxin tolerance. J. Biol. Chem. 282, 26857–26864 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Basak, S. et al. A fourth IκB protein within the NF-κB signaling module. Cell 128, 369–381 (2007). This study shows that p100 can act as an IκB protein and negatively regulate NF-κB dimers, which allows crosstalk between non-canonical and canonical pathways and between developmental and inflammatory signals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ishimaru, N., Kishimoto, H., Hayashi, Y. & Sprent, J. Regulation of naive T cell function by the NF-κB2 pathway. Nature Immunol. 7, 763–772 (2006).

    Article  CAS  Google Scholar 

  53. Dong, J., Jimi, E., Zhong, H., Hayden, M. S. & Ghosh, S. Repression of gene expression by unphosphorylated NF-κB p65 through epigenetic mechanisms. Genes Dev. 22, 1159–1173 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Goto, A. et al. Akirins are highly conserved nuclear proteins required for NF-κB-dependent gene expression in Drosophila and mice. Nature Immunol. 9, 97–104 (2008). This is the first description of the function of Akirin in both D. melanogaster and mouse models.

    Article  CAS  Google Scholar 

  55. Saccani, S., Pantano, S. & Natoli, G. p38-Dependent marking of inflammatory genes for increased NF-κB recruitment. Nature Immunol. 3, 69–75 (2002). This study indicates a role for p38 activation in shaping the NF-κB transcriptional programme.

    Article  CAS  Google Scholar 

  56. Deak, M., Clifton, A. D., Lucocq, L. M. & Alessi, D. R. Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J. 17, 4426–4441 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vermeulen, L., De Wilde, G., Van Damme, P., Vanden Berghe, W. & Haegeman, G. Transcriptional activation of the NF-κB p65 subunit by mitogen- and stress-activated protein kinase-1 (MSK1). EMBO J. 22, 1313–1324 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Park, J. M. et al. Signaling pathways and genes that inhibit pathogen-induced macrophage apoptosis — CREB and NF-κB as key regulators. Immunity 23, 319–329 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Gorska, M. M. et al. MK2 controls the level of negative feedback in the NF-κB pathway and is essential for vascular permeability and airway inflammation. J. Exp. Med. 204, 1637–1652 (2007). This study provides an extensive analysis of the mechanism by which MK2 regulates NF-κB transcriptional output.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Stokoe, D., Engel, K., Campbell, D. G., Cohen, P. & Gaestel, M. Identification of MAPKAP kinase 2 as a major enzyme responsible for the phosphorylation of the small mammalian heat shock proteins. FEBS Lett. 313, 307–313 (1992).

    Article  CAS  PubMed  Google Scholar 

  61. Ben-Levy, R., Hooper, S., Wilson, R., Paterson, H. F. & Marshall, C. J. Nuclear export of the stress-activated protein kinase p38 mediated by its substrate MAPKAP kinase-2. Curr. Biol. 8, 1049–1057 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Kotlyarov, A. et al. Distinct cellular functions of MK2. Mol. Cell. Biol. 22, 4827–4835 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kontoyiannis, D., Pasparakis, M., Pizarro, T. T., Cominelli, F. & Kollias, G. Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity 10, 387–398 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Neininger, A. et al. MK2 targets AU-rich elements and regulates biosynthesis of tumor necrosis factor and interleukin-6 independently at different post-transcriptional levels. J. Biol. Chem. 277, 3065–3068 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Saccani, S., Marazzi, I., Beg, A. A. & Natoli, G. Degradation of promoter-bound p65/RelA is essential for the prompt termination of the nuclear factor κB response. J. Exp. Med. 200, 107–113 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kinjyo, I. et al. SOCS1/JAB is a negative regulator of LPS-induced macrophage activation. Immunity 17, 583–591 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Nakagawa, R. et al. SOCS-1 participates in negative regulation of LPS responses. Immunity 17, 677–687 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Kamura, T. et al. The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families. Genes Dev. 12, 3872–3881 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ryo, A. et al. Regulation of NF-κB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA. Mol. Cell 12, 1413–1426 (2003). This work describes a role for PIN1 in the negative regulation of NF-κB transcriptional responses and shows that p65 can undergo SOCS1-mediated ubiquitylation and proteasomal processing.

    Article  CAS  PubMed  Google Scholar 

  70. Ganesh, L. et al. The gene product Murr1 restricts HIV-1 replication in resting CD4+ lymphocytes. Nature 426, 853–857 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Maine, G. N., Mao, X., Komarck, C. M. & Burstein, E. COMMD1 promotes the ubiquitination of NF-κB subunits through a cullin-containing ubiquitin ligase. EMBO J. 26, 436–447 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Tanaka, T., Grusby, M. J. & Kaisho, T. PDLIM2-mediated termination of transcription factor NF-κB activation by intranuclear sequestration and degradation of the p65 subunit. Nature Immunol. 8, 584–591 (2007).

    Article  CAS  Google Scholar 

  73. Torrado, M., Senatorov, V. V., Trivedi, R., Fariss, R. N. & Tomarev, S. I. Pdlim2, a novel PDZ-LIM domain protein, interacts with α-actinins and filamin A. Invest. Ophthalmol. Vis. Sci. 45, 3955–3963 (2004).

    Article  PubMed  Google Scholar 

  74. Chen, M. & Shen, X. Nuclear actin and actin-related proteins in chromatin dynamics. Curr. Opin. Cell Biol. 19, 326–330 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Nemeth, Z. H. et al. Disruption of the actin cytoskeleton results in nuclear factor-κB activation and inflammatory mediator production in cultured human intestinal epithelial cells. J. Cell Physiol. 200, 71–81 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Bryantsev, A. L., Chechenova, M. B. & Shelden, E. A. Recruitment of phosphorylated small heat shock protein Hsp27 to nuclear speckles without stress. Exp. Cell Res. 313, 195–209 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Apostolou, E. & Thanos, D. Virus infection induces NFκB-dependent interchromosomal associations mediating monoallelic IFN-β gene expression. Cell 134, 85–96 (2008). This work shows that NF-κB p65 can induce the interaction of regions with κB sites even when located on separate chromosomes.

    Article  CAS  PubMed  Google Scholar 

  78. Liu, B. et al. PIAS1 selectively inhibits interferon-inducible genes and is important in innate immunity. Nature Immunol. 5, 891–898 (2004).

    Article  CAS  Google Scholar 

  79. Liu, B. et al. Negative regulation of NF-κB signaling by PIAS1. Mol. Cell. Biol. 25, 1113–1123 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wong, K. A. et al. Protein inhibitor of activated STAT Y (PIASy) and a splice variant lacking exon 6 enhance sumoylation but are not essential for embryogenesis and adult life. Mol. Cell. Biol. 24, 5577–5586 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tahk, S. et al. Control of specificity and magnitude of NF-κB and STAT1-mediated gene activation through PIASy and PIAS1 cooperation. Proc. Natl Acad. Sci. USA 104, 11643–11648 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu, B. et al. Proinflammatory stimuli induce IKKα-mediated phosphorylation of PIAS1 to restrict inflammation and immunity. Cell 129, 903–914 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Mabb, A. M., Wuerzberger-Davis, S. M. & Miyamoto, S. PIASy mediates NEMO sumoylation and NF-κB activation in response to genotoxic stress. Nature Cell Biol. 8, 986–993 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Lawrence, T., Gilroy, D. W., Colville-Nash, P. R. & Willoughby, D. A. Possible new role for NF-κB in the resolution of inflammation. Nature Med. 7, 1291–1297 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Chen, L. W. et al. The two faces of IKK and NF-κB inhibition: prevention of systemic inflammation but increased local injury following intestinal ischemia-reperfusion. Nature Med. 9, 575–581 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Nenci, A. et al. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature 446, 557–561 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Zaph, C. et al. Epithelial-cell-intrinsic IKK-β expression regulates intestinal immune homeostasis. Nature 446, 552–556 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Jiang, D. et al. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nature Med. 11, 1173–1179 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118, 229–241 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work in the author's laboratory is supported by grants from the National Institutes of Health (NIH) (AI033443, AI066109, AI059440 and AI068977). M.S.H. was also supported by an NIH National Institute of General Medical Science (NIGMS) Medical Scientist Training Program (MSTP) grant GM07205.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sankar Ghosh.

Supplementary information

Related links

Related links

FURTHER INFORMATION

Sankar Ghosh's homepage

SUPPLEMENTARY INFORMATION

See online article

S1 (box)

Glossary

LPS tolerance

A transient state of hyporesponsiveness to subsequent stimulation with the Toll-like receptor (TLR) ligand LPS following previous exposure to TLR ligands.

Transcriptional co-activator

A protein complex that associates with the ligand-binding domain of peroxisome-proliferator-activated receptors (PPARs) and other transcription factors. Transcriptional co-activators reorganize chromatin templates and recruit the basal transcriptional machinery to the promoter region.

Transcriptional co-repressor

A protein complex (including N-CoR and SMRT) that recruits histone-deacetylase complexes to reverse the actions of histone acetyltransferases and that inhibits gene transcription when associated with nuclear hormone receptors.

Notch

A transmembrane receptor that is involved in the pathway for direct cell–cell signalling through its association with a transmembrane ligand of the Delta or Serrate/Jagged family on a neighbouring cell. Notch receptors regulate cell-fate choice in the development of many cell lineages, and so are vital in the regulation of embryonic differentiation due to development.

p53

A transcription factor that is activated by many genotoxic insults and that induces cellular senescence or apoptosis. The gene that encodes p53 is frequently mutated or functionally inactivated in cancer cells.

RNA interference

The use of double-stranded RNAs (dsRNAs) with sequences that precisely match a given gene in order to knock down the expression of that gene by directing RNA-degrading enzymes to destroy the encoded mRNA transcript. The two most common forms of dsRNAs that are used for gene silencing are small — usually 21-base-pairs long — interfering RNAs and plasmid-delivered short hairpin RNAs.

PML nuclear body

A type of nuclear speckle of unknown function that contains several proteins, including the promyelocytic leukaemia (PML) protein.

Small ubiquitin-like modifier (SUMO) E3 ligase

An enzyme that catalyses the conjugation of SUMO to a protein substrate.

LPS-induced shock

A clinical condition that is induced by hyper-reactivity of the innate immune system to bacterial LPS. It is mediated by the pro-inflammatory cytokines interleukin-1 and tumour-necrosis factor, both of which are produced in high amounts following sustained activation of Toll-like receptor 4 by LPS.

Ischaemia–reperfusion injury

An injury in which the tissue first suffers from hypoxia as a result of severely decreased, mediates or completely arrested, blood flow. Restoration of normal blood flow then triggers inflammation, which exacerbates tissue damage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, S., Hayden, M. New regulators of NF-κB in inflammation. Nat Rev Immunol 8, 837–848 (2008). https://doi.org/10.1038/nri2423

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2423

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing