Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epigenetic control of T-helper-cell differentiation

Key Points

  • Gene expression is regulated by transcription factors in concert with epigenetic modifications (such as DNA methylation, post-translational histone modifications, the position and compaction of nucleosomes and higher-order structural organization) at the gene regulatory elements where these factors can bind. Epigenetic modifications are heritable but plastic, thereby allowing cells to modify their gene expression patterns in response to changing contexts, as CD4+ T cells do in response to infection with different types of pathogen.

  • The pace of discovery in the field of epigenetics is accelerating through the application of new genomic approaches, which are yielding new insights on the gene regulatory mechanisms in T helper (TH) cells and other cell types. Compelling evidence indicates that epigenetic modifications at TH-cytokine and transcription factor gene loci work in concert with lineage-restricted transcription factors to govern cytokine expression and to stabilize lineage commitment.

  • During TH2-cell differentiation, GATA-binding protein 3 (GATA3) is necessary and apparently sufficient to induce TH2-type cytokine expression, as well as most, if not all, of the favourable epigenetic modifications to the TH2-cytokine locus and repressive modifications to the Ifng (interferon-γ) locus. Following these modifications, GATA3 contributes importantly to maintenance of the complete TH2-cell phenotype but is not absolutely essential for the maintenance of Il4 (interleukin-4) expression.

  • T-bet acts in concert with signal transducer and activator of transcription 4 (STAT4) during TH1-cell differentiation to induce IFNg expression and epigenetic remodelling of the Ifng locus, and to repress TH2-cytokine expression directly and through the inhibition of GATA3. The expression of T-bet does not seem to be essential for the maintenance of IFNg expression, but it is required to maintain certain other aspects of the TH1-cell phenotype.

  • The three-dimensional architecture of the TH2-cytokine and Ifng loci is modified by 'chromatin looping', which brings distal gene regulatory elements in proximity with genes they help to regulate in appropriate cell types.

  • Additional work is needed to determine how specific combinations of epigenetic modifications are established by networks of lineage-specifying transcription factors, whether, when and how they can later be removed or selectively modified, and their causal contribution to the stability or plasticity of TH-cell lineage specification.

Abstract

Naive CD4+ T cells give rise to T-helper-cell subsets with functions that are tailored to their respective roles in host defence. The specification of T-helper-cell subsets is controlled by networks of lineage-specifying transcription factors, which bind to regulatory elements in genes that encode cytokines and other transcription factors. The nuclear context in which these transcription factors act is affected by epigenetic processes, which allow programmes of gene expression to be inherited by progeny cells that at the same time retain the potential for change in response to altered environmental signals. In this Review, we describe these epigenetic processes and discuss how they collaborate to govern the fate and function of T helper cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cytokines and transcription factor networks regulate T-helper-cell differentiation.
Figure 2: Chromatin and chromatin modifications.
Figure 3: The T helper 2 cytokine locus in mouse T cells.
Figure 4: The Ifng locus in mouse naive, T helper 1 and T helper 2 cells and human CD4+ T cells.
Figure 5: The Il17a–Il17f locus in mouse naive, T helper 1, T helper 2 and T helper 17 cells.

Similar content being viewed by others

References

  1. Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. & Coffman, R. L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136, 2348–2357 (1986).

    CAS  PubMed  Google Scholar 

  2. Heinzel, F. P., Sadick, M. D., Holaday, B. J., Coffman, R. L. & Locksley, R. M. Reciprocal expression of interferon gamma or interleukin 4 during the resolution or progression of murine leishmaniasis. Evidence for expansion of distinct helper T cell subsets. J. Exp. Med. 169, 59–72 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Ouyang, W., Kolls, J. K. & Zheng, Y. The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity 28, 454–467 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Murphy, K. M. & Reiner, S. L. The lineage decisions of helper T cells. Nature Rev. Immunol. 2, 933–944 (2002).

    Article  CAS  Google Scholar 

  5. Ansel, K. M., Djuretic, I., Tanasa, B. & Rao, A. Regulation of Th2 differentiation and Il4 locus accessibility. Annu. Rev. Immunol. 24, 607–656 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Lee, G. R., Kim, S. T., Spilianakis, C. G., Fields, P. E. & Flavell, R. A. T helper cell differentiation: regulation by cis elements and epigenetics. Immunity 24, 369–379 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Ledford, H. Language: disputed definitions. Nature 455, 1023–1028 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Merkenschlager, M. & Wilson, C. B. RNAi and chromatin in T cell development and function. Curr. Opin. Immunol. 20, 131–138 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Anderson, P. Post-transcriptional control of cytokine production. Nature Immunol. 9, 353–359 (2008).

    Article  CAS  Google Scholar 

  10. Baltimore, D., Boldin, M. P., O'Connell, R. M., Rao, D. S. & Taganov, K. D. MicroRNAs: new regulators of immune cell development and function. Nature Immunol. 9, 839–845 (2008).

    Article  CAS  Google Scholar 

  11. Nurieva, R. I. et al. Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity 29, 138–149 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Djuretic, I. M. et al. Transcription factors T-bet and Runx3 cooperate to activate Ifng and silence Il4 in T helper type 1 cells. Nature Immunol. 8, 145–153 (2007). This study shows that T-bet and RUNX3 together bind to the Ifng promoter to activate IFNγ expression and to the Il4 silencer in the T H 2-cytokine locus to silence IL-4 expression and, consequently, T H 2-cell differentiation.

    Article  CAS  Google Scholar 

  13. Mullen, A. C. et al. Hlx is induced by and genetically interacts with T-bet to promote heritable TH1 gene induction. Nature Immunol. 3, 652–658 (2002).

    Article  CAS  Google Scholar 

  14. Schoenborn, J. R. & Wilson, C. B. Regulation of interferon-γ during innate and adaptive immune responses. Adv. Immunol. 96, 41–101 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Townsend, M. J. et al. T-bet regulates the terminal maturation and homeostasis of NK and Vα14i NKT cells. Immunity 20, 477–494 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Hwang, E. S., Szabo, S. J., Schwartzberg, P. L. & Glimcher, L. H. T helper cell fate specified by kinase-mediated interaction of T-bet with GATA-3. Science 307, 430–433 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Usui, T. et al. T-bet regulates Th1 responses through essential effects on GATA-3 function rather than on IFNG gene acetylation and transcription. J. Exp. Med. 203, 755–766 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Amsen, D. et al. Direct regulation of Gata3 expression determines the T helper differentiation potential of Notch. Immunity 27, 89–99 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. van Panhuys, N. et al. In vivo studies fail to reveal a role for IL-4 or STAT6 signaling in Th2 lymphocyte differentiation. Proc. Natl Acad. Sci. USA 105, 12423–12428 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ivanov, I. I., Zhou, L. & Littman, D. R. Transcriptional regulation of Th17 cell differentiation. Semin. Immunol. 19, 409–417 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. McGeachy, M. J. & Cua, D. J. Th17 cell differentiation: the long and winding road. Immunity 28, 445–453 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Zhou, L. et al. TGF-β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORγt function. Nature 453, 236–240 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dong, C. TH17 cells in development: an updated view of their molecular identity and genetic programming. Nature Rev. Immunol. 8, 337–348 (2008).

    Article  CAS  Google Scholar 

  24. Yang, X. O. et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors RORα and RORγ. Immunity 28, 29–39 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Korn, T. et al. IL-21 initiates an alternative pathway to induce proinflammatory TH17 cells. Nature 448, 484–487 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nurieva, R. et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448, 480–483 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Onoda, T. et al. Human CD4+ central and effector memory T cells produce IL-21: effect on cytokine-driven proliferation of CD4+ T cell subsets. Int. Immunol. 19, 1191–1199 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Zhou, L. et al. IL-6 programs TH-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nature Immunol. 8, 967–974 (2007).

    Article  CAS  Google Scholar 

  29. Quintana, F. J. et al. Control of Treg and TH17 cell differentiation by the aryl hydrocarbon receptor. Nature 453, 65–71 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Veldhoen, M. et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453, 106–109 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Manel, N., Unutmaz, D. & Littman, D. R. The differentiation of human TH-17 cells requires transforming growth factor-β and induction of the nuclear receptor RORγt. Nature Immunol. 9, 641–649 (2008).

    Article  CAS  Google Scholar 

  32. Volpe, E. et al. A critical function for transforming growth factor-β, interleukin 23 and proinflammatory cytokines in driving and modulating human TH-17 responses. Nature Immunol. 9, 650–657 (2008).

    Article  CAS  Google Scholar 

  33. Berger, S. L. The complex language of chromatin regulation during transcription. Nature 447, 407–412 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Rowell, E., Merkenschlager, M. & Wilson, C. B. Long range regulation of cytokine gene expression. Curr. Opin. Immunol. 20, 272–280 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ruthenburg, A. J., Li, H., Patel, D. J. & Allis, C. D. Multivalent engagement of chromatin modifications by linked binding modules. Nature Rev. Mol. Cell Biol. 8, 983–994 (2007).

    Article  CAS  Google Scholar 

  37. Wilson, C. B., Makar, K. W., Shnyreva, M. & Fitzpatrick, D. R. DNA methylation and the expanding epigenetics of T cell lineage commitment. Semin. Immunol. 17, 105–119 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Jones, B. & Chen, J. Inhibition of IFN-γ transcription by site-specific methylation during T helper cell development. Embo J. 25, 2443–2452 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schubeler, D. et al. Genomic targeting of methylated DNA: influence of methylation on transcription, replication, chromatin structure, and histone acetylation. Mol. Cell. Biol. 20, 9103–9112 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee, D. U., Agarwal, S. & Rao, A. Th2 lineage commitment and efficient IL-4 production involves extended demethylation of the IL-4 gene. Immunity 16, 649–660 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Meissner, A. et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454, 766–770 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mohn, F. et al. Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol. Cell 30, 755–766 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Trojer, P. & Reinberg, D. Facultative heterochromatin: is there a distinctive molecular signature? Mol. Cell 28, 1–13 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Wang, Z. et al. Combinatorial patterns of histone acetylations and methylations in the human genome. Nature Genet. 40, 897–903 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Azuara, V. et al. Chromatin signatures of pluripotent cell lines. Nature Cell Biol. 8, 532–538 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007). References 44 and 46 provide a database of 39 different histone modifications, through which common sets of modifications that are typical of active and inactive promoters and enhancers can be deduced.

    Article  CAS  PubMed  Google Scholar 

  47. Ballas, Z. I. The use of 5-azacytidine to establish constitutive interleukin 2-producing clones of the EL4 thymoma. J. Immunol. 133, 7–9 (1984).

    CAS  PubMed  Google Scholar 

  48. Young, H. A. et al. Differentiation of the T helper phenotypes by analysis of the methylation state of the IFN-gamma gene. J. Immunol. 153, 3603–3610 (1994).

    CAS  PubMed  Google Scholar 

  49. Bird, J. J. et al. Helper T cell differentiation is controlled by the cell cycle. Immunity 9, 229–237 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Valapour, M. et al. Histone deacetylation inhibits IL4 gene expression in T cells. J. Allergy Clin. Immunol. 109, 238–245 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Hutchins, A. S. et al. Gene silencing quantitatively controls the function of a developmental trans-activator. Mol. Cell 10, 81–91 (2002). This study shows that the MBD2 is present at the Il4 gene in T H 1 cells and can be displaced by enforced expression of GATA3. MBD2-deficient mice showed modestly increased expression of IFNγ and T H 2-type cytokines in the appropriate T-cell lineages, but T H 2 cells from these mice expressed IFNγ and T H 1 cells expressed Th2-type cytokines.

    Article  CAS  PubMed  Google Scholar 

  52. Lee, P. P. et al. A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity 15, 763–774 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Makar, K. W. et al. Active recruitment of DNA methyltransferases regulates interleukin 4 in thymocytes and T cells. Nature Immunol. 4, 1183–1190 (2003).

    Article  CAS  Google Scholar 

  54. Makar, K. W. & Wilson, C. B. DNA methylation is a non-redundant repressor of the Th2 effector program. J. Immunol. 173, 4402–4406 (2004). References 53 and 54 show that the DNA methyltransferase DNMT1 is rapidly excluded from the Il4 gene and CNS2 in T H 2 cells. Conditional ablation of DNMT1 leads to modestly increased expression of IFNγ and T H 2-type cytokines in the appropriate T-cell lineages, expression of IFNγ in T H 2 cells and marked expression of T H 2-type cytokines in T H 1 and CD8+ T cells.

    Article  CAS  PubMed  Google Scholar 

  55. Zhang, F. & Boothby, M. T helper type 1-specific Brg1 recruitment and remodeling of nucleosomes positioned at the IFN-γ promoter are Stat4 dependent. J. Exp. Med. 203, 1493–1505 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yamashita, M. et al. Crucial role of MLL for the maintenance of memory T helper type 2 cell responses. Immunity 24, 611–622 (2006). This study shows that the histone H3K4 methlytransferase MLL is recruited to Gata3 and Il4 in T H 2 cells and is required to maintain but not to establish GATA3 and IL-4 expression and T H 2-cell differentiation.

    Article  CAS  PubMed  Google Scholar 

  57. Kimura, M. et al. Regulation of Th2 cell differentiation by mel-18, a mammalian polycomb group gene. Immunity 15, 275–287 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Takemoto, N. et al. Th2-specific DNase I-hypersensitivity sites in the murine IL-13 and IL-4 intergenic region. Int. Immunol. 10, 1981–1985 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Agarwal, S. & Rao, A. Modulation of chromatin structure regulates cytokine gene expression during T cell differentiation. Immunity 9, 765–775 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Amsen, D. et al. Instruction of distinct CD4 T helper cell fates by different Notch ligands on antigen-presenting cells. Cell 117, 515–526 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Tanaka, S. et al. The interleukin-4 enhancer CNS-2 is regulated by Notch signals and controls initial expression in NKT cells and memory-type CD4 T cells. Immunity 24, 689–701 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Grogan, J. L. et al. Early transcription and silencing of cytokine genes underlie polarization of T helper cell subsets. Immunity 14, 205–215 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Mullen, A. C. et al. Cell cycle controlling the silencing and functioning of mammalian activators. Curr. Biol. 11, 1695–1699 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Fields, P. E., Lee, G. R., Kim, S. T., Bartsevich, V. V. & Flavell, R. A. Th2-specific chromatin remodeling and enhancer activity in the Th2 cytokine locus control region. Immunity 21, 865–876 (2004). This report shows that the 3′ end of Rad50 contains clusters of DNaseI hypersensitive sites, hyperacetylated histones and demethylated DNA in T H 2 cells, and that these sites have enhancer activity in vivo and together are sufficient to function as an LCR.

    Article  CAS  PubMed  Google Scholar 

  65. Lee, D. U. & Rao, A. Molecular analysis of a locus control region in the T helper 2 cytokine gene cluster: a target for STAT6 but not GATA3. Proc. Natl Acad. Sci. USA 101, 16010–16015 (2004). This report identifies DNaseI hypersensitive sites in the T H 2-cytokine LCR, although there are some differences regarding the specificity of the sites for distinct CD4+ T-cell subsets between this study and reference 64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Koyanagi, M. et al. EZH2 and histone 3 trimethyl lysine 27 associated with Il4 and Il13 gene silencing in TH1 cells. J. Biol. Chem. 280, 31470–31477 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Baguet, A. & Bix, M. Chromatin landscape dynamics of the Il4Il13 locus during T helper 1 and 2 development. Proc. Natl Acad. Sci. USA 101, 11410–11415 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yamashita, M. et al. Essential role of GATA3 for the maintenance of type 2 helper T (Th2) cytokine production and chromatin remodeling at the Th2 cytokine gene loci. J. Biol. Chem. 279, 26983–26990 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Tykocinski, L. O. et al. A critical control element for interleukin-4 memory expression in T helper lymphocytes. J. Biol. Chem. 280, 28177–28185 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Avni, O. et al. TH cell differentiation is accompanied by dynamic changes in histone acetylation of cytokine genes. Nature Immunol. 3, 643–651 (2002).

    Article  CAS  Google Scholar 

  71. Fields, P. E., Kim, S. T. & Flavell, R. A. Cutting Edge: changes in histone acetylation at the IL-4 and IFN-γ loci accompany Th1/Th2 differentiation. J. Immunol. 169, 647–650 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Zhu, J., Cote-Sierra, J., Guo, L. & Paul, W. E. Stat5 activation plays a critical role in Th2 differentiation. Immunity 19, 739–748 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Lee, H. J. et al. GATA-3 induces T helper cell type 2 (Th2) cytokine expression and chromatin remodeling in committed Th1 cells. J. Exp. Med. 192, 105–115 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ouyang, W. et al. Stat6-independent GATA-3 autoactivation directs IL-4-independent Th2 development and commitment. Immunity 12, 27–37 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Kim, S. T., Fields, P. E. & Flavell, R. A. Demethylation of a specific hypersensitive site in the Th2 locus control region. Proc. Natl Acad. Sci. USA 104, 17052–17057 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wurster, A. L. & Pazin, M. J. BRG1-mediated chromatin remodeling regulates differentiation and gene expression of T helper cells. Mol. Cell. Biol. 28, 7274–7285 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Asnagli, H., Afkarian, M. & Murphy, K. M. Cutting Edge: identification of an alternative GATA-3 promoter directing tissue-specific gene expression in mouse and human. J. Immunol. 168, 4268–4271 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Acosta-Rodriguez, E. V. et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nature Immunol. 8, 639–646 (2007).

    Article  CAS  Google Scholar 

  79. Schoenborn, J. R. et al. Comprehensive epigenetic profiling identifies multiple distal regulatory elements directing transcription of the gene encoding interferon-γ. Nature Immunol. 8, 732–742 (2007). This study maps DNaseI hypersensitive sites, histone modifications and DNA methylation on the mouse Ifng locus and shows the structural divergence of part of this locus 70 kilobases upstream of Ifng in rodents compared with humans and other mammals.

    Article  CAS  Google Scholar 

  80. Hatton, R. D. et al. A distal conserved sequence element controls Ifng gene expression by T cells and NK cells. Immunity 25, 717–729 (2006). This report identifies several distal regulatory elements upstream of Ifng based on sequence conservation and the presence of favourable histone modifications. It also shows that T-bet binds to several of these sites, one of which (CNS-22) is crucial for expression of Ifng from a BAC transgene.

    Article  CAS  PubMed  Google Scholar 

  81. Soutto, M., Zhou, W. & Aune, T. M. Cutting Edge: distal regulatory elements are required to achieve selective expression of IFN-γ in Th1/Tc1 effector cells. J. Immunol. 169, 6664–6667 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Boyle, A. P. et al. High-resolution mapping and characterization of open chromatin across the genome. Cell 132, 311–322 (2008). This study provides a comprehensive, genome-wide map of DNaseI hypersensitive sites in resting human CD4+ T cells and compares the locations of these sites with the histone modifications that were identified by reference 46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Agarwal, S. & Rao, A. Long-range transcriptional regulation of cytokine gene expression. Curr. Opin. Immunol. 10, 345–352 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Lee, D. U., Avni, O., Chen, L. & Rao, A. A distal enhancer in the interferon-γ (IFN-γ) locus revealed by genome sequence comparison. J. Biol. Chem. 279, 4802–4810 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Shnyreva, M. et al. Evolutionarily conserved sequence elements that positively regulate IFN-γ expression in T cells. Proc. Natl Acad. Sci. USA 101, 12622–12627 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chang, S. & Aune, T. M. Dynamic changes in histone-methylation 'marks' across the locus encoding interferon-γ during the differentiation of T helper type 2 cells. Nature Immunol. 8, 723–731 (2007).

    Article  CAS  Google Scholar 

  87. Shi, M., Lin, T. H., Appell, K. C. & Berg, L. J. Janus-kinase-3-dependent signals induce chromatin remodeling at the Ifng locus during T helper 1 cell differentiation. Immunity 28, 763–773 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Thieu, V. T. et al. Signal transducer and activator of transcription 4 is required for the transcription factor T-bet to promote T helper 1 cell-fate determination. Immunity 29, 679–690 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yang, Y., Ochando, J. C., Bromberg, J. S. & Ding, Y. Identification of a distant T-bet enhancer responsive to IL-12/Stat4 and IFNγ/Stat1 signals. Blood 110, 2494–2500 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mullen, A. C. et al. Role of T-bet in commitment of TH1 cells before IL-12-dependent selection. Science 292, 1907–1910 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Way, S. S., Havenar-Daughton, C., Kolumam, G. A., Orgun, N. N. & Murali-Krishna, K. IL-12 and type-I IFN synergize for IFN-γ production by CD4 T cells, whereas neither are required for IFN-γ production by CD8 T cells after Listeria monocytogenes infection. J. Immunol. 178, 4498–4505 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Cai, G., Radzanowski, T., Villegas, E. N., Kastelein, R. & Hunter, C. A. Identification of STAT4-dependent and independent mechanisms of resistance to Toxoplasma gondii. J. Immunol. 165, 2619–2627 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Kaplan, M. H., Sun, Y. L., Hoey, T. & Grusby, M. J. Impaired IL-12 responses and enhanced development of Th2 cells in Stat4-deficient mice. Nature 382, 174–177 (1996).

    Article  CAS  PubMed  Google Scholar 

  94. Chang, S. & Aune, T. M. Histone hyperacetylated domains across the Ifng gene region in natural killer cells and T cells. Proc. Natl Acad. Sci. USA 102, 17095–17100 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Beima, K. M. et al. T-bet binding to newly identified target gene promoters is cell type-independent but results in variable context-dependent functional effects. J. Biol. Chem. 281, 11992–12000 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Naoe, Y. et al. Repression of interleukin-4 in T helper type 1 cells by Runx/Cbf β binding to the Il4 silencer. J. Exp. Med. 204, 1749–1755 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Tong, Y., Aune, T. & Boothby, M. T-bet antagonizes mSin3a recruitment and transactivates a fully methylated IFN-γ promoter via a conserved T-box half-site. Proc. Natl Acad. Sci. USA 102, 2034–2039 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chen, G. Y., Osada, H., Santamaria-Babi, L. F. & Kannagi, R. Interaction of GATA-3/T-bet transcription factors regulates expression of sialyl Lewis X homing receptors on Th1/Th2 lymphocytes. Proc. Natl Acad. Sci. USA 103, 16894–16899 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Miller, S. A., Huang, A. C., Miazgowicz, M. M., Brassil, M. M. & Weinmann, A. S. Coordinated, but physically separable interaction with H3K27-demethylase and H3K4-methyltransferase activities are required for T-box protein-mediated activation of developmental gene expression. Genes Dev. 22, 2980–2993 (2008). This study shows that T-bet interacts with an H3K27 demethylase and can recruit it to target genes to erase this repressive histone modification, and at the same time can recruit an H3K4 methyltransferase to add this permissive histone modification.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Szabo, S. J. et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100, 655–669 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Akimzhanov, A. M., Yang, X. O. & Dong, C. Chromatin remodeling of interleukin-17 (IL-17)–IL-17F cytokine gene locus during inflammatory helper T cell differentiation. J. Biol. Chem. 282, 5969–5972 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Wei, L., Laurence, A., Elias, K. M. & O'Shea J., J. IL-21 is produced by TH17 cells and drives IL-17 production in a STAT3-dependent manner. J. Biol. Chem. 282, 34605–34610 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Decker, J. Gene regulation in the third dimension. Science 319, 1793–1794 (2008).

    Article  CAS  Google Scholar 

  104. Misteli, T. Beyond the sequence: cellular organization of genome function. Cell 128, 787–800 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Williams, A. & Flavell, R. A. The role of CTCF in regulating nuclear organization. J. Exp. Med. 205, 747–750 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Spilianakis, C. G. & Flavell, R. A. Long-range intrachromosomal interactions in the T helper type 2 cytokine locus. Nature Immunol. 5, 1017–1027 (2004). This report shows for the first time the existence of long-range intrachromosomal interactions in the T H 2-cytokine locus and the importance of STAT6 and GATA3 in the establishment of these interactions.

    Article  CAS  Google Scholar 

  107. Cai, S., Lee, C. C. & Kohwi-Shigematsu, T. SATB1 packages densely looped, transcriptionally active chromatin for coordinated expression of cytokine genes. Nature Genet. 38, 1278–1288 (2006). This study identifies many SATB1 binding sites in the T H 2-cytokine locus in T H 2 cells, and shows that activation-induced, SATB1-dependent chromatin looping of the T H 2-cytokine locus is important for T H 2-type cytokine expression.

    Article  CAS  PubMed  Google Scholar 

  108. Filippova, G. N. Genetics and epigenetics of the multifunctional protein CTCF. Curr. Top. Dev. Biol. 80, 337–360 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Parelho, V. et al. Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell 132, 422–433 (2008). This study shows that cohesins colocalize throughout the genome with CTCF and contribute to the insulator function of CTCF in model systems. Cohesin and CTCF binding sites are found at the boundary and within the Ifng gene and do not to interfere with its transcription.

    Article  CAS  PubMed  Google Scholar 

  110. Spilianakis, C. G., Lalioti, M. D., Town, T., Lee, G. R. & Flavell, R. A. Interchromosomal associations between alternatively expressed loci. Nature 435, 637–645 (2005). This report describes long-range interchromosomal interactions between the T H 2-cytokine and Ifng loci in naive T cells and suggests that these interactions may poise these loci for expression during T H 2- or T H 1-cell differentiation.

    Article  CAS  PubMed  Google Scholar 

  111. Jacob, E., Hod-Dvorai, R., Schif-Zuck, S. & Avni, O. Unconventional association of the polycomb group proteins with cytokine genes in differentiated T helper cells. J. Biol. Chem. 283, 13471–13481 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Miller, A. T., Wilcox, H. M., Lai, Z. & Berg, L. J. Signaling through Itk promotes T helper 2 differentiation via negative regulation of T-bet. Immunity 21, 67–80 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Yu, Q., Thieu, V. T. & Kaplan, M. H. Stat4 limits DNA methyltransferase recruitment and DNA methylation of the IL-18Rα gene during Th1 differentiation. Embo J. 26, 2052–2060 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ooi, S. K. et al. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448, 714–717 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Cimmino, L. et al. Blimp-1 attenuates Th1 differentiation by repression of Ifng, Tbx21, and Bcl6 gene expression. J. Immunol. 181, 2338–2347 (2008).

    Article  CAS  PubMed  Google Scholar 

  116. Pai, S. Y., Truitt, M. L. & Ho, I. C. GATA-3 deficiency abrogates the development and maintenance of T helper type 2 cells. Proc. Natl Acad. Sci. USA 101, 1993–1998 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhu, J. et al. Conditional deletion of Gata3 shows its essential function in TH1-TH2 responses. Nature Immunol. 5, 1157–1165 (2004). This report shows that GATA3 is essential for the initiations of T H 2-cell differentiation and contributes to but is not essential for its maintenance.

    Article  CAS  Google Scholar 

  118. Martins, G. A., Hutchins, A. S. & Reiner, S. L. Transcriptional activators of helper T cell fate are required for establishment but not maintenance of signature cytokine expression. J. Immunol. 175, 5981–5985 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Taniuchi, I. et al. Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development. Cell 111, 621–633 (2002).

    Article  CAS  PubMed  Google Scholar 

  120. Ansel, K. M. et al. Deletion of a conserved Il4 silencer impairs T helper type 1-mediated immunity. Nature Immunol. 5, 1251–1259 (2004).

    Article  CAS  Google Scholar 

  121. Laurence, A. et al. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 26, 371–381 (2007).

    CAS  PubMed  Google Scholar 

  122. Gorelik, L., Constant, S. & Flavell, R. A. Mechanism of transforming growth factor β-induced inhibition of T helper type 1 differentiation. J. Exp. Med. 195, 1499–1505 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gorelik, L., Fields, P. E. & Flavell, R. A. Cutting Edge: TGF-β inhibits Th type 2 development through inhibition of GATA-3 expression. J. Immunol. 165, 4773–4777 (2000).

    Article  CAS  PubMed  Google Scholar 

  124. Yu, J. et al. Pro- and antiinflammatory cytokine signaling: reciprocal antagonism regulates interferon-γ production by human natural killer cells. Immunity 24, 575–590 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Chen, Y. et al. Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. J. Clin. Invest. 116, 1317–1326 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Laurence, A. & O'Shea, J. J. TH-17 differentiation: of mice and men. Nature Immunol. 8, 903–905 (2007).

    Article  CAS  Google Scholar 

  127. Wilson, N. J. et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nature Immunol. 8, 950–957 (2007).

    Article  CAS  Google Scholar 

  128. Annunziato, F. et al. Phenotypic and functional features of human Th17 cells. J. Exp. Med. 204, 1849–1861 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zheng, Y. et al. Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445, 648–651 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Harrington, L. E. et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nature Immunol. 6, 1123–1132 (2005).

    Article  CAS  Google Scholar 

  131. Ivanov, I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Singh, S. P., Zhang, H. H., Foley, J. F., Hedrick, M. N. & Farber, J. M. Human T cells that are able to produce IL-17 express the chemokine receptor CCR6. J. Immunol. 180, 214–221 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. McGeachy, M. J. et al. TGF-β and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell-mediated pathology. Nature Immunol. 8, 1390–1397 (2007).

    Article  CAS  Google Scholar 

  134. O'Garra, A. & Vieira, P. TH1 cells control themselves by producing interleukin-10. Nature Rev. Immunol. 7, 425–428 (2007).

    Article  CAS  Google Scholar 

  135. Krawczyk, C. M., Shen, H. & Pearce, E. J. Functional plasticity in memory T helper cell responses. J. Immunol. 178, 4080–4088 (2007).

    Article  CAS  PubMed  Google Scholar 

  136. Messi, M. et al. Memory and flexibility of cytokine gene expression as separable properties of human TH1 and TH2 lymphocytes. Nature Immunol. 4, 78–86 (2003).

    Article  CAS  Google Scholar 

  137. Sundrud, M. S. et al. Genetic reprogramming of primary human T cells reveals functional plasticity in Th cell differentiation. J. Immunol. 171, 3542–3549 (2003).

    Article  CAS  PubMed  Google Scholar 

  138. Adeeku, E., Gudapati, P., Mendez-Fernandez, Y., Van Kaer, L. & Boothby, M. Flexibility accompanies commitment of memory CD4 lymphocytes derived from IL-4 locus-activated precursors. Proc. Natl Acad. Sci. USA 105, 9307–9312 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lohning, M. et al. Long-lived virus-reactive memory T cells generated from purified cytokine-secreting T helper type 1 and type 2 effectors. J. Exp. Med. 205, 53–61 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Reiner, S. L., Sallusto, F. & Lanzavecchia, A. Division of labor with a workforce of one: challenges in specifying effector and memory T cell fate. Science 317, 622–625 (2007).

    Article  CAS  PubMed  Google Scholar 

  141. Allis, C. D. et al. New nomenclature for chromatin-modifying enzymes. Cell 131, 633–636 (2007).

    Article  CAS  PubMed  Google Scholar 

  142. Ruthenburg, A. J., Allis, C. D. & Wysocka, J. Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol. Cell 25, 15–30 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Yang, X. J. & Seto, E. The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nature Rev. Mol. Cell Biol. 9, 206–218 (2008).

    Article  CAS  Google Scholar 

  144. Lee, Y. et al. Late developmental plasticity in the helper 17 lineage. Immunity 31 Dec 2008 (doi:10.1016/j.immuni.2008.11.005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Wei, G. et al. Global mapping of histone H3 K4 and K27 trimethylation reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity 15 Jan 2008 (doi:10.1016/j.immuni.2008.12.009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to the colleagues whose work was not discussed owing to space limitations. Work from the authors' laboratories was supported by the National Institutes of Health, USA (grant numbers R01-AI071272, R01-HD18184, N01-AI40069 and T32-AI07411).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher B. Wilson.

Related links

Related links

FURTHER INFORMATION

Christopher B. Wilson's homepage

The VISTA web site

Glossary

Epigenetic process

A process that affects gene expression without altering the sequences of bases in the DNA. Epigenetic changes are potentially heritable in the absence of the factors that initially induced them, and some propose that this term be restricted to those that are demonstrably heritable (although the broader definition is used here). In mammals, epigenetic processes that affect gene transcription include methylation of cytosines in CpG dinucleotides, post-translational histone modifications and changes to higher-order chromatin structure.

Chromatin

DNA and the proteins with which it is associated in the nucleus.

Notch

A transmembrane receptor that is involved in the pathway for direct cell–cell signalling through its association with a transmembrane ligand of the Delta or Jagged family on a neighbouring cell. The large intracellular domain of Notch is cleaved and travels to the nucleus to become a direct co-activator of the transcription factor recombination-signal-binding protein for immunoglobulin-κ J region (RBPJ).

Nucleosome

The basic structural subunit of chromatin, which consists of 156 base pairs of DNA wrapped around an octamer of histones.

Histone code

Post-translational modifications of histone tails that involve characteristic clusters of modifications, including acetylation, phosphorylation, ubiquitylation, methylation, sumoylation and ADP-ribosylation that combine to create an epigenetic mechanism for the regulation of gene expression.

Heterochromatin

Highly compacted chromatin that is transcriptionally inactive. Includes structural regions of the chromosome that lack genes (for example, centromeres; known as constitutive heterochromatin) as well as genes that are silenced in a given cell type (known as facultative heterochromatin).

Locus control region

A DNA sequence that is defined by its ability (in transgenic assays) to permit high-level, tissue-specific expression of a linked promoter at all integration sites.

Chromatin-remodelling complex

An enzymatic complex that carries out the remodelling of DNA–nucleosomal architecture and determines transcriptional activity. The SWI–SNF (switching-defective–sucrose non-fermenting) ATPases are an example of complexes that remodel chromatin.

DNaseI hypersensitive site

A region of chromatin (usually less than a few hundred base pairs) that is 100 times more sensitive to digestion by DNaseI than bulk chromatin and corresponds to regions in which nucleosomes are depleted. Regulatory elements, including enhancers, promoters and insulators, which are functional in the cells being assayed, typically map to these sites.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, C., Rowell, E. & Sekimata, M. Epigenetic control of T-helper-cell differentiation. Nat Rev Immunol 9, 91–105 (2009). https://doi.org/10.1038/nri2487

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2487

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing