Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Losing your nerves? Maybe it's the antibodies

Abstract

We propose that the normal immunocompetent B cell repertoire is replete with B cells making antibodies that recognize brain antigens. Although B cells that are reactive with self antigen are normally silenced during B cell maturation, the blood–brain barrier (BBB) prevents many brain antigens from participating in this process. This enables the generation of a B cell repertoire that is sufficiently diverse to cope with numerous environmental challenges. It requires, however, that the integrity of the BBBs is uninterrupted throughout life to protect the brain from antibodies that crossreact with microorganisms and brain antigens. Under conditions of BBB compromise, and during fetal development, we think that these antibodies can alter brain function in otherwise healthy individuals.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Antibodies can have a range of effector functions.
Figure 2: Schematic representation of the possible mechanisms regulating the influx and efflux of antibodies through the blood–brain barrier.

Similar content being viewed by others

References

  1. Pavlov, V. A. et al. Brain acetylcholinesterase activity controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Brain Behav. Immun. 23, 41–45 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Jara, L. J., Navarro, C., Medina, G., Vera-Lastra, O. & Blanco, F. Immune–neuroendocrine interactions and autoimmune diseases. Clin. Dev. Immunol. 13, 109–123 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Goddard, C. A., Butts, D. A. & Shatz, C. J. Regulation of CNS synapses by neuronal MHC class I. Proc. Natl Acad. Sci. USA 104, 6828–6833 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Stellwagen, D. & Malenka, R. C. Synaptic scaling mediated by glial TNF-α. Nature 440, 1054–1059 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Meroni, P. L. et al. Endothelium and the brain in CNS lupus. Lupus 12, 919–928 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Minagar, A., Carpenter, A. & Alexander, J. S. The destructive alliance: interactions of leukocytes, cerebral endothelial cells, and the immune cascade in pathogenesis of multiple sclerosis. Int. Rev. Neurobiol. 79, 1–11 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Pleasure, D. Diagnostic and pathogenic significance of glutamate receptor autoantibodies. Arch. Neurol. 65, 589–592 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Selak, S., Paternain, A. V., Fritzler, M. J. & Lerma, J. Human autoantibodies against early endosome antigen-1 enhance excitatory synaptic transmission. Neuroscience 143, 953–964 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Jarius, S. et al. Mechanisms of disease: aquaporin-4 antibodies in neuromyelitis optica. Nature Clin. Pract. Neurol. 4, 202–214 (2008).

    Article  CAS  Google Scholar 

  10. Jacob, S. et al. Hypothermia in VGKC antibody-associated limbic encephalitis. J. Neurol. Neurosurg. Psychiatry 79, 202–204 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Matus, S. et al. Antiribosomal-P autoantibodies from psychiatric lupus target a novel neuronal surface protein causing calcium influx and apoptosis. J. Exp. Med. 204, 3221–3234 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Abdel-Nasser, A. M., Ghaleb, R. M., Mahmoud, J. A., Khairy, W. & Mahmoud R. M. Association of anti-ribosomal P protein antibodies with neuropsychiatric and other manifestations of systemic lupus erythematosus. Clin. Rheumatol. 27, 1377–1385 (2008).

    Article  PubMed  Google Scholar 

  13. Bonfa, E. et al. Association between lupus psychosis and anti-ribosomal P protein antibodies. N. Engl. J. Med. 317, 265–271 (1987).

    Article  CAS  PubMed  Google Scholar 

  14. Kirvan, C. A., Swedo, S. E., Kurahara, D. & Cunningham, M. W. Streptococcal mimicry and antibody-mediated cell signaling in the pathogenesis of Sydenham's chorea. Autoimmunity 39, 21–29 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Kirvan, C. A., Swedo, S. E., Snider, L. A. & Cunningham, M. W. Antibody-mediated neuronal cell signaling in behavior and movement disorders. J. Neuroimmunol. 179, 173–179 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Singer, H. S. et al. Serial immune markers do not correlate with clinical exacerbations in pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections. Paediatrics 121, 1198–1205 (2008).

    Article  Google Scholar 

  17. Willison, H. J. The immunobiology of Guillain–Barré syndromes. J. Peripher. Nerv. Syst. 10, 94–112 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Overell, J. R. & Willison, H. J. Recent developments in Miller Fisher syndrome and related disorders. Curr. Opin. Neurol. 18, 562–566 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Diamond, B. et al. Immunity and acquired alterations in cognition and emotion: lessons from SLE. Advances Immunol. 89, 289–320 (2006).

    Article  CAS  Google Scholar 

  20. Cull-Candy, S. G. & Leszkiewicz, D. N. Role of distinct NMDA receptor subtypes at central synapses. Science STKE 2004, re16 (2004).

    Google Scholar 

  21. Tsien, J. Z., Huerta, P. T. & Tonegawa, S. The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell 87, 1327–1338 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, J. et al. Identification of DNA-reactive B cells in patients with systemic lupus erythematosus. J. Immunol. Methods 338, 79–84 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hanly, J. G. New insights into central nervous system lupus: a clinical perspective. Curr. Rheumatol. Rep. 9, 116–124 (2007).

    Article  PubMed  Google Scholar 

  24. Arinuma, Y., Yanagida, T. & Hirohata, S. Association of cerebrospinal fluid anti-NR2 glutamate receptor antibodies with diffuse neuropsychiatric systemic lupus erythematosus. Arthritis Rheum. 58, 1130–1135 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Yoshio, T., Onda, K., Nara, H. & Minota, S. Association of IgG anti-NR2 glutamate receptor antibodies in cerebrospinal fluid with neuropsychiatric systemic lupus erythematosus. Arthritis Rheum. 54, 675–678 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Fragoso-Loyo, H. F. et al. Serum and cerebrospinal fluid autoantibodies in patients with neuropsychiatric lupus erythematosus. Implications for diagnosis and pathogenesis. PloS Med. 3, e3347 (2008).

    Article  CAS  Google Scholar 

  27. Hanly, J. G., Robichaud, J. & Fisk, J. D. Anti-NR2 glutamate receptor antibodies and cognitive function in systemic lupus erythematosus. J. Rheumatol. 33, 1553–1558 (2006).

    CAS  PubMed  Google Scholar 

  28. Lapteva, L. et al. Anti-N-methyl-D-aspartate receptor antibodies, cognitive dysfunction, and depression in systemic lupus erythematosus. Arthritis Rheum. 54, 2505–2514 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Omdal, R. et al. Neuropsychiatric disturbances in SLE are associated with antibodies against NMDA receptors. Eur. J. Neurol. 12, 392–398 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. DeGiorgio, L. A. et al. A subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus. Nature Med. 7, 1189–1193 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Kowal, C. et al. Human lupus autoantibodies against NMDA receptors mediate cognitive impairment. Proc. Natl Acad. Sci. USA 103, 19854–19859 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kowal, C. et al. Cognition and immunity; antibody impairs memory. Immunity 21, 179–188 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Huerta, P. T., Kowal, C., DeGiorgio, L. A., Volpe, B. T. & Diamond, B. Immunity and behavior: antibodies alter emotion. Proc. Natl Acad. Sci. USA 103, 678–683 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Banks, W. A. Blood–brain barrier transport of cytokines: a mechanism for neuropathology. Curr. Pharm. Des. 11, 973–984 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Roth, J., Harre, E. M., Rummel, C., Gerstberger, R. & Hubschle, T. Signaling the brain in systemic inflammation: role of sensory circumventricular organs. Front. Biosci. 9, 290–300 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Bauer, B., Hartz, A. M. & Miller, D. S. Tumor necrosis factor α and endothelin-1 increase P-glycoprotein expression and transport activity at the blood–brain barrier. Mol. Pharmacol. 71, 667–675 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Argaw, A. T. et al. IL-1β regulates blood–brain barrier permeability via reactivation of the hypoxia-angiogenesis program. J. Immunol. 177, 5574–5584 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Paul, R. et al. Lack of IL-6 augments inflammatory response but decreases vascular permeability in bacterial meningitis. Brain 126, 1873–1882 (2003).

    Article  PubMed  Google Scholar 

  39. Kuang, F. et al. Extravasation of blood-borne immunoglobulin G through blood–brain barrier during adrenaline-induced transient hypertension in the rat. Int. J. Neurosci. 114, 575–591 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Dhillon, N. K. et al. Cocaine-mediated alteration in tight junction protein expression and modulation of CCL2/CCR2 axis across the blood–brain barrier: implications for HIV-dementia. J. Neuroimmune Pharmacol. 3, 52–56 (2008).

    Article  PubMed  Google Scholar 

  41. Hawkins, B. T. et al. Nicotine increases in vivo blood–brain barrier permeability and alters cerebral microvascular tight junction protein distribution. Brain Res. 1027, 48–58 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Nag, S. & Harik, S. I. Cerebrovascular permeability to horseradish peroxidase in hypertensive rats: effects of unilateral locus ceruleus lesion. Acta Neuropathol. 73, 247–253 (1987).

    Article  CAS  PubMed  Google Scholar 

  43. Kuhlmann, C. R. et al. MK801 blocks hypoxic blood–brain-barrier disruption and leukocyte adhesion. Neurosci. Lett. 449, 168–172 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Kraus, J. et al. Interferon-β stabilizes barrier characteristics of the blood–brain barrier in four different species in vitro. Mult. Scler. 14, 843–852 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Kim, H. et al. Dexamethasone coordinately regulates angiopoietin-1 and VEGF: a mechanism of glucocorticoid-induced stabilization of blood–brain barrier. Biochem. Biophys. Res. Commun. 372, 243–248 (2008).

    Article  PubMed  CAS  Google Scholar 

  46. Liu, R. et al. 17β-estradiol attenuates blood–brain barrier disruption induced by cerebral ischemia-reperfusion injury in female rats. Brain Res. 1060, 55–61 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Sohrabji, F. Guarding the blood–brain barrier: a role for estrogen in the etiology of neurodegenerative disease. Gene Expr. 13, 311–319 (2007).

    Article  PubMed  Google Scholar 

  48. Zhang, Y. & Pardridge, W. M. Mediated efflux of IgG molecules from brain to blood across the blood–brain barrier. J. Neuroimmunol. 114, 168–172 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Roopenian, D. C. & Akilesh, S. FcRn: the neonatal Fc receptor comes of age. Nature Rev. Immunol. 7, 715–725 (2007).

    Article  CAS  Google Scholar 

  50. Siegelman, J., Fleit, H. B. & Peress, N. S. Characterization of immunoglobulinG–Fc receptor activity in the outflow system of the CSF. Cell Tissue Res. 248, 599–605 (1987).

    Article  CAS  PubMed  Google Scholar 

  51. Lee, J. Y. et al. Maternal lupus and congenital cortical impairment. Nature Med. 15, 91–96 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Eftekhari, P. et al. Induction of neonatal lupus in pups of mice immunized with synthetic peptides derived from amino acid sequences of the serotoninergic 5HT4 receptor. Eur. J. Immunol. 31, 573–579 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Braunschweig, D. et al. Autism: maternally derived antibodies specific for fetal brain proteins. Neurotoxicology 29, 226–231 (2008).

    CAS  PubMed  Google Scholar 

  54. Singer, H. S. et al. Antibodies against fetal brain in sera of mothers with autistic children. J. Neuroimmunol. 194, 165–172 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Dalton, P. et al. Maternal neuronal antibodies associated with autism and a language disorder. Ann. Neurol. 53, 533–537 (2003).

    Article  PubMed  Google Scholar 

  56. Martin, L. A. et al. Stereotypies and hyperactivity in rhesus monkeys exposed to IgG from mothers of children with autism. Brain Behav. Immun. 22, 806–816 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Adde-Michel, C., Hennebert, O., Laudenbach, V., Marret, S. & Leroux, P. Effect of perinatal alcohol exposure on ibotenic acid-induced excitotoxic cortical lesions in newborn hamsters. Pediatr. Res. 57, 287–293 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Hawkins, B. T. & Davis, T. P. The blood–brain barrier/neurovascular unit in health and disease. Pharmacol. Rev. 57, 173–185 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Bechmann, I., Galea, I. & Perry, V. H. What is the blood–brain barrier (not)? Trends Immunol. 28, 5–11 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Engelhardt, B. & Wolburg, H. Transendothelial migration of leukocytes: through the front door or around the side of the house? Eur. J. Immunol. 34, 2955–2963 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Chang, D. D., Wong, C., Smith, H. & Liu, J. ICAP-1, a novel β1 integrin cytoplasmic domain-associated protein, binds to a conserved and functionally important NPXY sequence motif of a β1 integrin. J. Cell Biol. 138, 1149–1157 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cayrol, R. et al. Activated leukocyte cell adhesion molecule promotes leukocyte trafficking into the central nervous system. Nature Immunol. 9, 137–145 (2008).

    Article  CAS  Google Scholar 

  63. Ge, S., Song, L., Serwanski, D. R., Kuziel, W. A. & Pachter, J. S. Transcellular transport of CCL2 across brain microvascular endothelial cells. J. Neurochem. 104, 1219–1232 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Newsom-Davis, J. The emerging diversity of neuromuscular junction disorders. Acta Myol. 26, 5–10 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Riemersma, S. et al. Association of arthrogryposis multiplex congenita with maternal antibodies inhibiting fetal acetylcholine receptor function. J. Clin. Invest. 98, 2358–2363 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lang, B. & Vincent, A. Autoantibodies to ion channels at the neuromuscular junction. Autoimmun Rev. 2, 94–100 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Dalton, P. et al. Fetal arthrogryposis and maternal serum antibodies. Neuromuscul. Disord. 16, 481–491 (2006).

    Article  PubMed  Google Scholar 

  68. Halstead, S. K. et al. Anti-disialoside antibodies kill perisynaptic Schwann cells and damage motor nerve terminals via membrane attack complex in a murine model of neuropathy. Brain 127, 2109–2123 (2004).

    Article  PubMed  Google Scholar 

  69. Lee, S. M., Dunnavant, F. D., Jang, H., Zunt, J. & Levin, M. C. Autoantibodies that recognize functional domains of hnRNPA1 implicate molecular mimicry in the pathogenesis of neurological disease. Neurosci. Lett. 401, 188–193 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hinson, S. R. et al. Pathogenic potential of IgG binding to water channel extracellular domain in neuromyelitis optica. Neurology 69, 2221–2231 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Jarius, S. et al. Antibody to aquaporin-4 in the long-term course of neuromyelitis optica. Brain 131, 3072–3080 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Darnell, R. B. & Posner, J. B. Paraneoplastic syndromes involving the nervous system. N. Engl. J. Med. 349, 1543–1554 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Dalmau, J. et al. Paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma. Ann. Neurol. 61, 25–36 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Vincent, A. et al. Potassium channel antibody-associated encephalopathy: a potentially immunotherapy-responsive form of limbic encephalitis. Brain 127, 701–712 (2004).

    Article  PubMed  Google Scholar 

  75. Whitney, K. D. & McNamara, J. O. GluR3 autoantibodies destroy neural cells in a complement-dependent manner modulated by complement regulatory proteins. J. Neurosci. 20, 7307–7316 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cohen-Kashi Malina, K., Ganor, Y., Levite, M. & Teichberg, V. I. Autoantibodies against an extracellular peptide of the GluR3 subtype of AMPA receptors activate both homomeric and heteromeric AMPA receptor channels. Neurochem. Res. 31, 1181–1190 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Gini, B. et al. Novel autoantigens recognized by CSF IgG from Hashimoto's encephalitis revealed by a proteomic approach. J. Neuroimmunol. 196, 153–158 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Dale, R. C. et al. Encephalitis lethargica syndrome: 20 new cases and evidence of basal ganglia autoimmunity. Brain 127, 21–33 (2004).

    Article  PubMed  Google Scholar 

  79. Butler, M. H. et al. Autoimmunity to gephyrin in stiff-man syndrome. Neuron 26, 307–312 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Dalakas, M. C. et al. High-dose intravenous immune globulin for stiff-person syndrome. N. Engl. J. Med. 345, 1870–1876 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Kirvan, C. A., Cox, C. J., Swedo, S. E. & Cunningham, M. W. Tubulin is a neuronal target of autoantibodies in Sydenham's chorea. J. Immunol. 178, 7412–7421 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Snider, L. A. & Swedo, S. E. PANDAS: current status and directions for research. Mol. Psychiatry. 9, 900–907 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Alaedini, A. et al. Immune cross-reactivity in celiac disease: anti-gliadin antibodies bind to neuronal synapsin I. J. Immunol. 178, 6590–6595 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Boscolo, S. et al. Gluten ataxia: passive transfer in a mouse model. Ann. NY Acad. Sci. 1107, 319–328 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to O. Bloom, E. Chang, T. Faust, M. Scharff and K. Tracey for suggestions. These studies are supported by grants from the Alliance for Lupus Research and the National Institutes of Health to B.D., P.T.H. and B.T.V.; P.M.-O. is a fellow of the Arthritis Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Betty Diamond.

Supplementary information

Supplementary information S1 (table)

Modulators that affect the permeability of the blood-brain (PDF 151 kb)

Related links

Related links

OMIM

Guillain– Barré syndrome

SLE

FURTHER INFORMATION

Betty Diamond's homepage

Glossary

Amygdala

An almond-shaped brain region, located deep in the temporal lobe of the brain, which is involved in the neural processing of emotions.

Astrocyte

A star-shaped glial cell that is the most abundant cell type in the brain. Astrocytes regulate the external chemical environment of neurons by removing excess ions, notably potassium, and by recycling neurotransmitter molecules.

Basal ganglia

A group of brain structures (striatum, subthalamic nucleus and substantia nigra) that is located deep in the centre of the brain and is involved in the neural processing of motor function and cognition.

Chorea

Any of several neurological disorders associated with rheumatic fever and marked by involuntary, jerky movements, especially of the arms, legs and face, and by lack of coordination.

Choroid plexus

A vascular extension of the ventricles in the brain that regulates the intraventricular pressure by secreting or absorbing cerebrospinal fluid.

Excitotoxic effect

A pathological process by which neurons are destroyed as a result of excessive levels of the excitatory neurotransmitter glutamate, which overactivates the NMDA receptor and the AMPA receptor, allowing for unusually high levels of calcium to enter the cell and trigger enzymatic cascades that lead to cell death.

Fear-conditioning task

A behavioural method that is used to teach an animal to fear a stimulus that is neutral in nature by associating it with an aversive stimulus (such as a shock, a loud noise or an unpleasant odour).

Glial cell

A non-neuronal cell of the nervous system that is essential for maintaining the health of neurons. According to size, glial cells are divided into microglia and macroglia (astrocytes, oligodendrocytes and others).

Hippocampus

A banana-shaped brain region that is located in the medial temporal lobe of the brain and is involved in the neural processing of memory and spatial navigation.

Leptomeninges

The arachnoid mater and pia mater of the meninges, which is a system of three layers (dura mater, arachnoid mater and pia mater) that encloses the brain.

Limbic encephalitis

An inflammation of the central nervous system in which the pathological signs are localized to the medial temporal lobes.

Microglial cell

A small glial cell that is a specialized type of macrophage. Microglial cells are mobile within the brain, multiply when the brain is damaged and have a protective role.

Neocortex

The outer region of the cerebrum, consisting of superficial grey matter (neurons grouped in several layers) and deeper white matter (myelinated axons). It is essential for the sensory, motor and cognitive organization of behaviour.

Neuromyelitis optica

An autoimmune inflammatory disorder in which the pathological signs are focused on the optic nerves.

Paraneoplastic

A symptom complex that co-occurs with cancer and is mediated by antibodies that recognize antigens in the tumour cells. The antibodies crossreact with antigens in the central nervous system or the peripheral nervous system.

Schwann cell

A glial cell that is filled with myelin and that surrounds the axons of neurons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diamond, B., Huerta, P., Mina-Osorio, P. et al. Losing your nerves? Maybe it's the antibodies. Nat Rev Immunol 9, 449–456 (2009). https://doi.org/10.1038/nri2529

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2529

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing