Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Membrane vesicles as conveyors of immune responses

Key Points

  • Secreted membrane vesicles are heterogeneous spherical structures that are limited by a lipid bilayer and contain cytoplasmic components from the donor cell. Secreted vesicles can be classified according to their intracellular origin: microvesicles, ectosomes and viruses are shed from the plasma membrane, whereas exosomes and exosome-like vesicles form in intracellular multivesicular compartments and are secreted following fusion of these compartments with the plasma membrane.

  • Membrane vesicles can be captured by neighbouring recipient cells through the interaction of vesicular ligands with cellular receptors (such as interactions between intracellular adhesion molecule 1 and lymphocyte function-associated antigen 1, phosphatidylserine and T cell immunoglobulin domain and mucin domain protein 4, as well as integrins and adhesion molecules). The precise mechanisms of interaction remain poorly characterized, but several studies suggest that vesicles can be internalized and might fuse with the recipient cell either at the plasma membrane or after internalization.

  • Exosomes and microvesicles contain transmembrane proteins, soluble cytoplasmic components and lipids, but also mRNAs and microRNAs derived from the donor cell. Recent in vitro studies show that mRNAs can be transferred to and transcribed in recipient cells, suggesting that secreted vesicles could modify the genetic profile of recipient cells.

  • Exosomes secreted by dendritic cells (DCs) bear functional preformed peptide–MHC complexes and can either directly activate antigen-specific effector T cells or transfer these complexes to recipient DCs to activate naive antigen-specific T cells. Material transferred by exosomes derived from all cell types (in particular tumours) can be processed and presented by recipient DCs.

  • Exosomes and microvesicles secreted by tumours have been shown to inhibit immune responses in an antigen-independent manner, especially by switching monocyte and T cell differentiation towards a tolerogenic phenotype. However, when injected with adjuvants or purified from stressed tumour cells, exosomes can induce potent antitumour responses.

  • Most studies described in this Review were carried out using vesicles purified in vitro from cultured cells or ex vivo from biological fluids. Membrane vesicles are secreted in vivo, but the demonstration of a function for this in vivo secretion will require the identification of tools to specifically inhibit their secretion.

  • Exosomes derived from DCs or tumours from patients with cancer have been used for immunotherapies, but clinical responses are limited. Future clinical trials will benefit from recent preclinical studies on exosomes and should involve a combination of exosomes and other immunomodulatory approaches.

Abstract

In multicellular organisms, communication between cells mainly involves the secretion of proteins that then bind to receptors on neighbouring cells. But another mode of intercellular communication — the release of membrane vesicles — has recently become the subject of increasing interest. Membrane vesicles are complex structures composed of a lipid bilayer that contains transmembrane proteins and encloses soluble hydrophilic components derived from the cytosol of the donor cell. These vesicles have been shown to affect the physiology of neighbouring recipient cells in various ways, from inducing intracellular signalling following binding to receptors to conferring new properties after the acquisition of new receptors, enzymes or even genetic material from the vesicles. This Review focuses on the role of membrane vesicles, in particular exosomes, in the communication between immune cells, and between tumour and immune cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Different types of secreted membrane vesicles.
Figure 2: Protein composition of a canonical exosome.
Figure 3: Interaction of secreted membrane vesicles with recipient cells.
Figure 4: Involvement of secreted vesicles in interactions of immune cells.

Similar content being viewed by others

References

  1. Sharrow, S. O., Mathieson, B. J. & Singer, A. Cell surface appearance of unexpected host MHC determinants on thymocytes from radiation bone marrow chimeras. J. Immunol. 126, 1327–1335 (1981).

    CAS  PubMed  Google Scholar 

  2. Davis, D. M. Intercellular transfer of cell-surface proteins is common and can affect many stages of an immune response. Nature Rev. Immunol. 7, 238–243 (2007).

    Article  CAS  Google Scholar 

  3. Heijnen, H. F., Schiel, A. E., Fijnheer, R., Geuze, H. J. & Sixma, J. J. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and α-granules. Blood 94, 3791–3799 (1999).

    CAS  PubMed  Google Scholar 

  4. Al-Nedawi, K. et al. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nature Cell Biol. 10, 619–624 (2008). This is the first demonstration that oncogenic activity can be transferred between tumour cells by fusion of microvesicles with their plasma membrane.

    Article  CAS  PubMed  Google Scholar 

  5. Poutsiaka, D. D., Schroder, E. W., Taylor, D. D., Levy, E. M. & Black, P. H. Membrane vesicles shed by murine melanoma cells selectively inhibit the expression of Ia antigen by macrophages. J. Immunol. 134, 138–144 (1985).

    CAS  PubMed  Google Scholar 

  6. Hess, C., Sadallah, S., Hefti, A., Landmann, R. & Schifferli, J. A. Ectosomes released by human neutrophils are specialized functional units. J. Immunol. 163, 4564–4573 (1999).

    CAS  PubMed  Google Scholar 

  7. Obregon, C., Rothen-Rutishauser, B., Gitahi, S. K., Gehr, P. & Nicod, L. P. Exovesicles from human activated dendritic cells fuse with resting dendritic cells, allowing them to present alloantigens. Am. J. Pathol. 169, 2127–2136 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Marzesco, A. M. et al. Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells. J. Cell Sci. 118, 2849–2858 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Booth, A. M. et al. Exosomes and HIV Gag bud from endosome-like domains of the T cell plasma membrane. J. Cell Biol. 172, 923–935 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Harding, C., Heuser, J. & Stahl, P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J. Cell Biol. 97, 329–339 (1983).

    Article  CAS  PubMed  Google Scholar 

  11. Pan, B. T., Teng, K., Wu, C., Adam, M. & Johnstone, R. M. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J. Cell Biol. 101, 942–948 (1985).

    Article  CAS  PubMed  Google Scholar 

  12. Huber, V. et al. Human colorectal cancer cells induce T-cell death through release of proapoptotic microvesicles: role in immune escape. Gastroenterology 128, 1796–1804 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Andreola, G. et al. Induction of lymphocyte apoptosis by tumor cell secretion of FasL-bearing microvesicles. J. Exp. Med. 195, 1303–1316 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Monleon, I. et al. Differential secretion of Fas ligand- or APO2 ligand/TNF-related apoptosis-inducing ligand-carrying microvesicles during activation-induced death of human T cells. J. Immunol. 167, 6736–6744 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Taylor, D. D. & Gercel-Taylor, C. Tumour-derived exosomes and their role in cancer-associated T-cell signalling defects. Br. J. Cancer 92, 305–311 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ristorcelli, E. et al. Human tumor nanoparticles induce apoptosis of pancreatic cancer cells. FASEB J. 22, 3358–3369 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Hawari, F. I. et al. Release of full-length 55-kDa TNF receptor 1 in exosome-like vesicles: a mechanism for generation of soluble cytokine receptors. Proc. Natl Acad. Sci. USA 101, 1297–1302 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Trajkovic, K. et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319, 1244–1247 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Hugel, B., Martinez, M. C., Kunzelmann, C. & Freyssinet, J. M. Membrane microparticles: two sides of the coin. Physiology (Bethesda) 20, 22–27 (2005).

    CAS  Google Scholar 

  20. MacKenzie, A. et al. Rapid secretion of interleukin-1β by microvesicle shedding. Immunity 15, 825–835 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Peters, P. J. et al. Molecules relevant for T cell-target cell interaction are present in cytolytic granules of human T lymphocytes. Eur. J. Immunol. 19, 1469–1475 (1989).

    Article  CAS  PubMed  Google Scholar 

  22. Blanchard, N. et al. TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/ζ complex. J. Immunol. 168, 3235–3241 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Raposo, G. et al. Accumulation of major histocompatibility complex class II molecules in mast cell secretory granules and their release upon degranulation. Mol. Biol. Cell 8, 2631–2645 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rialland, P., Lankar, D., Raposo, G., Bonnerot, C. & Hubert, P. BCR-bound antigen is targeted to exosomes in human follicular lymphoma B-cells. Biol. Cell 98, 491–501 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Saunderson, S. C. et al. Induction of exosome release in primary B cells stimulated via CD40 and the IL-4 receptor. J. Immunol. 180, 8146–8152 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Arita, S. et al. B cell activation regulates exosomal HLA production. Eur. J. Immunol. 38, 1423–1434 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Muntasell, A., Berger, A. C. & Roche, P. A. T cell-induced secretion of MHC class II-peptide complexes on B cell exosomes. EMBO J. 26, 4263–4272 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Raposo, G. et al. B lymphocytes secrete antigen-presenting vesicles. J. Exp. Med. 183, 1161–1172 (1996). This is the first description of exosomes bearing functional peptide–MHC complexes secreted by APCs. This paper sparked renewed interest in exosomes, although the atypical secretion described was not immediately accepted by the entire scientific community.

    Article  CAS  PubMed  Google Scholar 

  29. Zitvogel, L. et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nature Med. 4, 594–600 (1998). This description of exosomes secreted by DCs and their ability to promote antitumour immune responses in vivo prompted both basic and clinical studies exploring the application of exosomes for therapeutic purposes.

    Article  CAS  PubMed  Google Scholar 

  30. Bhatnagar, S., Shinagawa, K., Castellino, F. J. & Schorey, J. S. Exosomes released from macrophages infected with intracellular pathogens stimulate a proinflammatory response in vitro and in vivo. Blood 110, 3234–3244 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Thery, C. et al. Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J. Cell Biol. 147, 599–610 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Colino, J. & Snapper, C. M. Exosomes from bone marrow dendritic cells pulsed with diphtheria toxoid preferentially induce type 1 antigen-specific IgG responses in naive recipients in the absence of free antigen. J. Immunol. 177, 3757–3762 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Segura, E. et al. ICAM-1 on exosomes from mature dendritic cells is critical for efficient naive T cell priming. Blood 106, 216–223 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Yu, X., Harris, S. L. & Levine, A. J. The regulation of exosome secretion: a novel function of the p53 protein. Cancer Res. 66, 4795–4801 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Lehmann, B. D. et al. Senescence-associated exosome release from human prostate cancer cells. Cancer Res. 68, 7864–7871 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Lespagnol, A. et al. Exosome secretion, including the DNA damage-induced p53-dependent secretory pathway, is severely compromised in TSAP6/Steap3-null mice. Cell Death Differ. 15, 1723–1733 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Alonso, R. et al. Diacylglycerol kinase α regulates the secretion of lethal exosomes bearing Fas ligand during activation-induced cell death of T lymphocytes. J. Biol. Chem. 280, 28439–28450 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Islam, A. et al. The brefeldin A-inhibited guanine nucleotide-exchange protein, BIG2, regulates the constitutive release of TNFR1 exosome-like vesicles. J. Biol. Chem. 282, 9591–9599 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Savina, A., Vidal, M. & Colombo, M. I. The exosome pathway in K562 cells is regulated by Rab11. J. Cell Sci. 115, 2505–2515 (2002).

    CAS  PubMed  Google Scholar 

  40. Denzer, K. et al. Follicular dendritic cells carry MHC class II-expressing microvesicles at their surface. J. Immunol. 165, 1259–1265 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Caby, M. P., Lankar, D., Vincendeau-Scherrer, C., Raposo, G. & Bonnerot, C. Exosomal-like vesicles are present in human blood plasma. Int. Immunol. 17, 879–887 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Taylor, D. D., Akyol, S. & Gercel-Taylor, C. Pregnancy-associated exosomes and their modulation of T cell signaling. J. Immunol. 176, 1534–1542 (2006). This study provides support for a physiological role of in vivo -secreted exosomes, showing that exosomes with T cell-inhibiting activity are increased in pregnant women who deliver at full term compared with women who deliver pre-term.

    Article  CAS  PubMed  Google Scholar 

  43. Taylor, D. D. & Gercel-Taylor, C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol. Oncol. 110, 13–21 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Admyre, C. et al. Exosomes with major histocompatibility complex class II and co-stimulatory molecules are present in human BAL fluid. Eur. Respir. J. 22, 578–583 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Prado, N. et al. Exosomes from bronchoalveolar fluid of tolerized mice prevent allergic reaction. J. Immunol. 181, 1519–1525 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Pisitkun, T., Shen, R. F. & Knepper, M. A. Identification and proteomic profiling of exosomes in human urine. Proc. Natl Acad. Sci. USA 101, 13368–13373 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Andre, F. et al. Malignant effusions and immunogenic tumour-derived exosomes. Lancet 360, 295–305 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Gatti, J. L., Metayer, S., Belghazi, M., Dacheux, F. & Dacheux, J. L. Identification, proteomic profiling, and origin of ram epididymal fluid exosome-like vesicles. Biol. Reprod. 72, 1452–1465 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Asea, A. et al. Heat shock protein-containing exosomes in mid-trimester amniotic fluids. J. Reprod. Immunol. 79, 12–17 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Admyre, C. et al. Exosomes with immune modulatory features are present in human breast milk. J. Immunol. 179, 1969–1978 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Andersen, M. H., Berglund, L., Rasmussen, J. T. & Petersen, T. E. Bovine PAS-6/7 binds αvβ5 integrins and anionic phospholipids through two domains. Biochemistry 36, 5441–5446 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Morelli, A. E. et al. Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood 104, 3257–3266 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Segura, E., Guerin, C., Hogg, N., Amigorena, S. & Thery, C. CD8+ dendritic cells use LFA-1 to capture MHC-peptide complexes from exosomes in vivo. J. Immunol. 179, 1489–1496 (2007). This paper identifies LFA1 as a specific receptor for exosomes on DCs and demonstrates the preferential capture of exosomes by cross-presenting CD8+ DCs. LFA1 was subsequently also shown to be required for exosome capture by activated T cells.

    Article  CAS  PubMed  Google Scholar 

  54. Nolte-'t Hoen, E. N., Buschow, S. I., Anderton, S. M., Stoorvogel, W. & Wauben, M. H. Activated T-cells recruit exosomes secreted by dendritic cells via LFA-1. Blood 113, 1977–1981 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Fortin, J. F., Cantin, R. & Tremblay, M. J. T cells expressing activated LFA-1 are more susceptible to infection with human immunodeficiency virus type 1 particles bearing host-encoded ICAM-1. J. Virol. 72, 2105–2112 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Tardif, M. R. & Tremblay, M. J. Regulation of LFA-1 activity through cytoskeleton remodeling and signaling components modulates the efficiency of HIV type-1 entry in activated CD4+ T lymphocytes. J. Immunol. 175, 926–935 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Clayton, A. et al. Adhesion and signaling by B cell-derived exosomes: the role of integrins. FASEB J. 18, 977–979 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Rieu, S., Geminard, C., Rabesandratana, H., Sainte-Marie, J. & Vidal, M. Exosomes released during reticulocyte maturation bind to fibronectin via integrin α4β1. Eur. J. Biochem. 267, 583–590 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Miyanishi, M. et al. Identification of Tim4 as a phosphatidylserine receptor. Nature 450, 435–439 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Hanayama, R. et al. Identification of a factor that links apoptotic cells to phagocytes. Nature 417, 182–187 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Veron, P., Segura, E., Sugano, G., Amigorena, S. & Thery, C. Accumulation of MFG-E8/lactadherin on exosomes from immature dendritic cells. Blood Cells Mol. Dis. 35, 81–88 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Ratajczak, J. et al. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 20, 847–856 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Skog, J. et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nature Cell Biol. 10, 1470–1476 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biol. 9, 654–659 (2007). This study is the first to show that mRNA and microRNA are present in exosomes and transferred and translated in recipient cells (whether this also occurs in vivo remains unknown).

    Article  CAS  PubMed  Google Scholar 

  65. Wolfers, J. et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nature Med. 7, 297–303 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Giri, P. K. & Schorey, J. S. Exosomes derived from M. bovis BCG infected macrophages activate antigen-specific CD4+ and CD8+ T cells in vitro and in vivo. PLoS ONE 3, e2461 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Walker, J. D., Maier, C. L. & Pober, J. S. Cytomegalovirus-infected human endothelial cells can stimulate allogeneic CD4+ memory T cells by releasing antigenic exosomes. J. Immunol. 182, 1548–1559 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Coppieters, K. et al. No significant CTL cross-priming by dendritic cell-derived exosomes during murine lymphocytic choriomeningitis virus infection. J. Immunol. 182, 2213–2220 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Luketic, L. et al. Antigen presentation by exosomes released from peptide-pulsed dendritic cells is not suppressed by the presence of active CTL. J. Immunol. 179, 5024–5032 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Admyre, C., Johansson, S. M., Paulie, S. & Gabrielsson, S. Direct exosome stimulation of peripheral human T cells detected by ELISPOT. Eur. J. Immunol. 36, 1772–1781 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Utsugi-Kobukai, S., Fujimaki, H., Hotta, C., Nakazawa, M. & Minami, M. MHC class I-mediated exogenous antigen presentation by exosomes secreted from immature and mature bone marrow derived dendritic cells. Immunol. Lett. 89, 125–131 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Hsu, D. H. et al. Exosomes as a tumor vaccine: enhancing potency through direct loading of antigenic peptides. J. Immunother. 26, 440–450 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Chaput, N. et al. Exosomes as potent cell-free peptide-based vaccine. II. Exosomes in CpG adjuvants efficiently prime naive Tc1 lymphocytes leading to tumor rejection. J. Immunol. 172, 2137–2146 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Thery, C. et al. Indirect activation of naive CD4+ T cells by dendritic cell-derived exosomes. Nature Immunol. 3, 1156–1162 (2002).

    Article  CAS  Google Scholar 

  75. Montecalvo, A. et al. Exosomes as a short-range mechanism to spread alloantigen between dendritic cells during T cell allorecognition. J. Immunol. 180, 3081–3090 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Mallegol, J. et al. T84-intestinal epithelial exosomes bear MHC class II/peptide complexes potentiating antigen presentation by dendritic cells. Gastroenterology 132, 1866–1876 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Bedford, P., Garner, K. & Knight, S. C. MHC class II molecules transferred between allogeneic dendritic cells stimulate primary mixed leukocyte reactions. Int. Immunol. 11, 1739–1744 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Klibi, J. et al. Blood diffusion and Th1-suppressive effects of galectin-9-containing exosomes released by Epstein–Barr virus-infected nasopharyngeal carcinoma cells. Blood 113, 1957–1966 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Clayton, A., Mitchell, J. P., Court, J., Mason, M. D. & Tabi, Z. Human tumor-derived exosomes selectively impair lymphocyte responses to interleukin-2. Cancer Res. 67, 7458–7466 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Liu, C. et al. Murine mammary carcinoma exosomes promote tumor growth by suppression of NK cell function. J. Immunol. 176, 1375–1385 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Clayton, A. et al. Human tumor-derived exosomes down-modulate NKG2D expression. J. Immunol. 180, 7249–7258 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Yu, S. et al. Tumor exosomes inhibit differentiation of bone marrow dendritic cells. J. Immunol. 178, 6867–6875 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Valenti, R. et al. Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-β-mediated suppressive activity on T lymphocytes. Cancer Res. 66, 9290–9298 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Wang, G. J. et al. Thymus exosomes-like particles induce regulatory T cells. J. Immunol. 181, 5242–5248 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Xiang, X. et al. Induction of myeloid-derived suppressor cells by tumor exosomes. Int. J. Cancer 124, 2621–2633 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Eken, C. et al. Polymorphonuclear neutrophil-derived ectosomes interfere with the maturation of monocyte-derived dendritic cells. J. Immunol. 180, 817–824 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Baj-Krzyworzeka, M. et al. Platelet-derived microparticles stimulate proliferation, survival, adhesion, and chemotaxis of hematopoietic cells. Exp. Hematol. 30, 450–459 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Baj-Krzyworzeka, M., Szatanek, R., Weglarczyk, K., Baran, J. & Zembala, M. Tumour-derived microvesicles modulate biological activity of human monocytes. Immunol. Lett. 113, 76–82 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Sprague, D. L. et al. Platelet-mediated modulation of adaptive immunity: unique delivery of CD154 signal by platelet-derived membrane vesicles. Blood 111, 5028–5036 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bhatnagar, S. & Schorey, J. S. Exosomes released from infected macrophages contain Mycobacterium avium glycopeptidolipids and are proinflammatory. J. Biol. Chem. 282, 25779–25789 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Quah, B. J. & O'Neill, H. C. Mycoplasma contaminants present in exosome preparations induce polyclonal B cell responses. J. Leukoc. Biol. 82, 1070–1082 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Simhadri, V. R. et al. Dendritic cells release HLA-B-associated transcript-3 positive exosomes to regulate natural killer function. PLoS ONE 3, e3377 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Viaud, S. et al. Dendritic cell-derived exosomes promote natural killer cell activation and proliferation: a role for NKG2D ligands and IL-15Rα. PLoS ONE 4, e4942 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Gastpar, R. et al. Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res. 65, 5238–5247 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Vega, V. L. et al. Hsp70 translocates into the plasma membrane after stress and is released into the extracellular environment in a membrane-associated form that activates macrophages. J. Immunol. 180, 4299–4307 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Dai, S. et al. More efficient induction of HLA-A*0201-restricted and carcinoembryonic antigen (CEA)-specific CTL response by immunization with exosomes prepared from heat-stressed CEA-positive tumor cells. Clin. Cancer Res. 11, 7554–7563 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Zhang, H. G. et al. A membrane form of TNF-α presented by exosomes delays T cell activation-induced cell death. J. Immunol. 176, 7385–7393 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Aline, F., Bout, D., Amigorena, S., Roingeard, P. & Dimier-Poisson, I. Toxoplasma gondii antigen-pulsed-dendritic cell-derived exosomes induce a protective immune response against T. gondii infection. Infect. Immun. 72, 4127–4137 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Peche, H., Heslan, M., Usal, C., Amigorena, S. & Cuturi, M. C. Presentation of donor major histocompatibility complex antigens by bone marrow dendritic cell-derived exosomes modulates allograft rejection. Transplantation 76, 1503–1510 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Miksa, M. et al. Dendritic cell-derived exosomes containing milk fat globule epidermal growth factor-factor VIII attenuate proinflammatory responses in sepsis. Shock 25, 586–593 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Kim, S. H., Bianco, N. R., Shufesky, W. J., Morelli, A. E. & Robbins, P. D. Effective treatment of inflammatory disease models with exosomes derived from dendritic cells genetically modified to express IL-4. J. Immunol. 179, 2242–2249 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Kim, S. H. et al. Exosomes derived from IL-10-treated dendritic cells can suppress inflammation and collagen-induced arthritis. J. Immunol. 174, 6440–6448 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Cho, J. A., Lee, Y. S., Kim, S. H., Ko, J. K. & Kim, C. W. MHC independent anti-tumor immune responses induced by Hsp70-enriched exosomes generate tumor regression in murine models. Cancer Lett. 275, 256–265 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Dai, S. et al. Enhanced induction of dendritic cell maturation and HLA-A*0201-restricted CEA-specific CD8+ CTL response by exosomes derived from IL-18 gene-modified CEA-positive tumor cells. J. Mol. Med. 84, 1067–1076 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Karlsson, M. et al. “Tolerosomes” are produced by intestinal epithelial cells. Eur. J. Immunol. 31, 2892–2900 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Van Niel, G. et al. Intestinal epithelial exosomes carry MHC class II/peptides able to inform the immune system in mice. Gut 52, 1690–1697 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Huber, V., Filipazzi, P., Iero, M., Fais, S. & Rivoltini, L. More insights into the immunosuppressive potential of tumor exosomes. J. Transl. Med. 6, 63 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Zeelenberg, I. S. et al. Targeting tumor antigens to secreted membrane vesicles in vivo induces efficient antitumor immune responses. Cancer Res. 68, 1228–1235 (2008). In this study, in vivo secretion of antigen-containing vesicles by tumour cells or by tissue cells is shown to promote antigen-specific immune responses and thereby control tumour growth.

    Article  CAS  PubMed  Google Scholar 

  109. Scheinecker, C., McHugh, R., Shevach, E. M. & Germain, R. N. Constitutive presentation of a natural tissue autoantigen exclusively by dendritic cells in the draining lymph node. J. Exp. Med. 196, 1079–1090 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Fleeton, M. N. et al. Peyer's patch dendritic cells process viral antigen from apoptotic epithelial cells in the intestine of reovirus-infected mice. J. Exp. Med. 200, 235–245 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Allan, R. S. et al. Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming. Immunity 25, 153–162 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. GeurtsvanKessel, C. H. et al. Clearance of influenza virus from the lung depends on migratory langerin+CD11b but not plasmacytoid dendritic cells. J. Exp. Med. 205, 1621–1634 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Almqvist, N., Lonnqvist, A., Hultkrantz, S., Rask, C. & Telemo, E. Serum-derived exosomes from antigen-fed mice prevent allergic sensitization in a model of allergic asthma. Immunology 125, 21–27 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Patel, D. M., Arnold, P. Y., White, G. A., Nardella, J. P. & Mannie, M. D. Class II MHC/peptide complexes are released from APC and are acquired by T cell responders during specific antigen recognition. J. Immunol. 163, 5201–5210 (1999).

    CAS  PubMed  Google Scholar 

  115. Helft, J. et al. Antigen-specific T–T interactions regulate CD4 T-cell expansion. Blood 112, 1249–1258 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Escudier, B. et al. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of the first phase I clinical trial. J. Transl. Med. 3, 10 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Morse, M. A. et al. A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J. Transl. Med. 3, 9 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Lamparski, H. G. et al. Production and characterization of clinical grade exosomes derived from dendritic cells. J. Immunol. Methods 270, 211–226 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Dai, S. et al. Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer. Mol. Ther. 16, 782–790 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Adams, M. et al. The rationale for combined chemo/immunotherapy using a Toll-like receptor 3 (TLR3) agonist and tumour-derived exosomes in advanced ovarian cancer. Vaccine 23, 2374–2378 (2005).

    Article  CAS  PubMed  Google Scholar 

  121. Taieb, J. et al. Chemoimmunotherapy of tumors: cyclophosphamide synergizes with exosome based vaccines. J. Immunol. 176, 2722–2729 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Xiu, F. et al. Surface anchorage of superantigen SEA promotes induction of specific antitumor immune response by tumor-derived exosomes. J. Mol. Med. 85, 511–521 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Bellier, B. et al. DNA vaccines encoding retrovirus-based virus-like particles induce efficient immune responses without adjuvant. Vaccine 24, 2643–2655 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. de Gassart, A., Geminard, C., Fevrier, B., Raposo, G. & Vidal, M. Lipid raft-associated protein sorting in exosomes. Blood 102, 4336–4344 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. Clayton, A., Harris, C. L., Court, J., Mason, M. D. & Morgan, B. P. Antigen-presenting cell exosomes are protected from complement-mediated lysis by expression of CD55 and CD59. Eur. J. Immunol. 33, 522–531 (2003).

    Article  CAS  PubMed  Google Scholar 

  126. Kueng, H. J. et al. General strategy for decoration of enveloped viruses with functionally active lipid-modified cytokines. J. Virol. 81, 8666–8676 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Trams, E. G., Lauter, C. J., Salem, N. Jr & Heine, U. Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim. Biophys. Acta 645, 63–70 (1981).

    Article  CAS  PubMed  Google Scholar 

  128. Gould, S. J., Booth, A. M. & Hildreth, J. E. The Trojan exosome hypothesis. Proc. Natl Acad. Sci. USA 100, 10592–10597 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Fevrier, B. et al. Cells release prions in association with exosomes. Proc. Natl Acad. Sci. USA 101, 9683–9688 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Rajendran, L. et al. Alzheimer's disease β-amyloid peptides are released in association with exosomes. Proc. Natl Acad. Sci. USA 103, 11172–11177 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Aoki, N. et al. Identification and characterization of microvesicles secreted by 3T3-L1 adipocytes: redox- and hormone-dependent induction of milk fat globule-epidermal growth factor 8-associated microvesicles. Endocrinology 148, 3850–3862 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Chaput, N. et al. Dendritic cell derived-exosomes: biology and clinical implementations. J. Leukoc. Biol. 80, 471–478 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Choi, D. S. et al. Proteomic analysis of microvesicles derived from human colorectal cancer cells. J. Proteome Res. 6, 4646–4655 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. Conde-Vancells, J. et al. Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes. J. Proteome Res. 7, 5157–5166 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Faure, J. et al. Exosomes are released by cultured cortical neurones. Mol. Cell. Neurosci. 31, 642–648 (2006).

    Article  CAS  PubMed  Google Scholar 

  136. Potolicchio, I. et al. Proteomic analysis of microglia-derived exosomes: metabolic role of the aminopeptidase CD13 in neuropeptide catabolism. J. Immunol. 175, 2237–2243 (2005).

    Article  CAS  PubMed  Google Scholar 

  137. Mears, R. et al. Proteomic analysis of melanoma-derived exosomes by two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. Proteomics 4, 4019–4031 (2004).

    Article  CAS  PubMed  Google Scholar 

  138. Skokos, D. et al. Mast cell-dependent B and T lymphocyte activation is mediated by the secretion of immunologically active exosomes. J. Immunol. 166, 868–876 (2001).

    Article  CAS  PubMed  Google Scholar 

  139. Wubbolts, R. et al. Proteomic and biochemical analyses of human B cell-derived exosomes. Potential implications for their function and multivesicular body formation. J. Biol. Chem. 278, 10963–10972 (2003).

    Article  CAS  PubMed  Google Scholar 

  140. Hegmans, J. P. et al. Proteomic analysis of exosomes secreted by human mesothelioma cells. Am. J. Pathol. 164, 1807–1815 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Bard, M. P. et al. Proteomic analysis of exosomes isolated from human malignant pleural effusions. Am. J. Respir. Cell Mol. Biol. 31, 114–121 (2004).

    Article  CAS  PubMed  Google Scholar 

  142. Thery, C., Amigorena, S., Raposo, G. & Clayton, A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc. Cell Biol. Chapter 3, Unit 3 22 (2006).

  143. Gasser, O. et al. Characterisation and properties of ectosomes released by human polymorphonuclear neutrophils. Exp. Cell Res. 285, 243–257 (2003).

    Article  CAS  PubMed  Google Scholar 

  144. Thery, C. et al. Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J. Immunol. 166, 7309–7318 (2001).

    Article  CAS  PubMed  Google Scholar 

  145. Buschow, S. I. et al. MHC II in dendritic cells is sorted to lysosomes or T cell-induced exosomes via distinct multivesicular body pathways. Traffic (in the press).

Download references

Acknowledgements

We acknowledge support from Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Curie, Institut National du Cancer, Fondation de France and European Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clotilde Théry.

Related links

Related links

FURTHER INFORMATION

Clotilde Théry's homepage

Glossary

Nibbling

The ability of dendritic cells to physically strip large membrane fragments from live cells on close contact without inducing death of the donor cell.

Trogocytosis

The transfer of plasma membrane fragments from one cell to another without cell death induction. This process is mediated by receptor signalling following cell–cell contact.

Nanotube

A membranous channel of 50–200 nm in diameter that connects cells over long distances.

Membrane vesicle

A spherical or approximately spherical structure limited by a lipid bilayer, which encloses soluble cargo.

MicroRNA

A small RNA molecule that regulates the expression of genes by binding to the 3′-untranslated regions of specific mRNAs.

Carrier vesicle

An intracellular membrane vesicle that buds from internal compartments (such as the endoplasmic reticulum, Golgi apparatus and endosomes) into the cytoplasm. Carrier vesicles contain cargo from the lumen of the donor compartment.

Follicular DC

A specialized non-haematopoietic stromal cell that resides in the follicles and germinal centres. Follicular dendritic cells (DCs) have long dendrites but are not related to DCs and carry intact antigen on their surface.

Regulatory T (TReg) cell

A specialized type of CD4+ T cell that can suppress the responses of other T cells. These cells provide a crucial mechanism for the maintenance of peripheral self tolerance, and a subset of these cells is characterized by expression of CD25 and the transcription factor forkhead box P3.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Théry, C., Ostrowski, M. & Segura, E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9, 581–593 (2009). https://doi.org/10.1038/nri2567

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2567

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing