Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Surrogate end points in the design of immunotherapy trials: emerging lessons from type 1 diabetes

Abstract

Approximately 5% of people in developed countries suffer from 1 of 80 classified autoimmune diseases. The sheer scale of the clinical problem captures the interests of health policy makers, academics, funding bodies and pharmaceutical companies in equal measure. In recent decades, immunologists have gained a good understanding of disease pathogenesis, which has led to the development of various potential therapies. The next challenge is to establish which therapies have superior efficacy, sustainability and safety. Therapeutic trials that depend on clinical end points are long lasting and expensive. In this Opinion article we offer a perspective on the future of clinical trial design in which the process is significantly shortened by making greater use of laboratory measures to determine therapeutic outcome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The main immune components involved in the multi-step process that leads to β-cell destruction in type 1 diabetes.
Figure 2: A stepwise approach to the development of biomarkers of the autoimmune process of type 1 diabetes and surrogate end points of successful immune intervention.
Figure 3: Proposed extended deployment of surrogates in the design and conduct of immunotherapeutic trials for type 1 diabetes.

Similar content being viewed by others

References

  1. Descotes, J. Immunotoxicology: role in the safety assessment of drugs. Drug Saf. 28, 127–136 (2005).

    Article  CAS  Google Scholar 

  2. Mandrup-Poulsen, T. et al. Disappearance and reappearance of islet cell cytoplasmic antibodies in cyclosporin-treated insulin-dependent diabetics. Lancet 1, 599–602 (1985).

    Article  CAS  Google Scholar 

  3. Heidt, S. et al. Calcineurin inhibitors affect B cell antibody responses indirectly by interfering with T cell help. Clin. Exp. Immunol. 18 Nov 2009 (doi:10.1111/j.1365-2249.2009.04051.x).

    Article  CAS  Google Scholar 

  4. Huurman, V. A. et al. Immunological efficacy of heat shock protein 60 peptide DiaPep277 therapy in clinical type I diabetes. Clin. Exp. Immunol. 152, 488–497 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Roep, B. O. et al. Auto- and alloimmune reactivity to human islet allografts transplanted into type 1 diabetic patients. Diabetes 48, 484–490 (1999).

    Article  CAS  Google Scholar 

  6. Bougneres, P. F. et al. Limited duration of remission of insulin dependency in children with recent overt type I diabetes treated with low-dose cyclosporin. Diabetes 39, 1264–1272 (1990).

    Article  CAS  Google Scholar 

  7. Herold, K. C. et al. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N. Engl. J. Med. 346, 1692–1698 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Keymeulen, B. et al. Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes. N. Engl. J. Med. 352, 2598–2608 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Cernea, S. & Herold, K. C. Monitoring of antigen-specific CD8 T cells in patients with type 1 diabetes treated with antiCD3 monoclonal antibodies. Clin. Immunol. 16 Oct 2009 (doi:10.1016/j.clim.2009.09.005).

    Article  CAS  Google Scholar 

  10. Herold, K. C. et al. Activation of human T cells by FcR nonbinding anti-CD3 mAb, hOKT3γ1(Ala–Ala). J. Clin. Invest. 111, 409–418 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Bisikirska, B., Colgan, J., Luban, J., Bluestone, J. A. & Herold, K. C. TCR stimulation with modified anti-CD3 mAb expands CD8+ T cell population and induces CD8+CD25+ Tregs. J. Clin. Invest. 115, 2904–2913 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Pescovitz, M. D. et al. Rituximab, B-lymphocyte depletion, and preservation of β-cell function. N. Engl. J. Med. 361, 2143–2152 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Ludvigsson, J. et al. GAD treatment and insulin secretion in recent-onset type 1 diabetes. N. Engl. J. Med. 359, 1909–1920 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Staeva-Vieira, T., Peakman, M. & von Herrath, M. Translational mini-review series on type 1 diabetes: immune-based therapeutic approaches for type 1 diabetes. Clin. Exp. Immunol. 148, 17–31 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Peakman, M. et al. Characterization of preparations of GAD65, proinsulin, and the islet tyrosine phosphatase IA-2 for use in detection of autoreactive T-cells in type 1 diabetes: report of phase II of the Second International Immunology of Diabetes Society Workshop for Standardization of T-cell assays in type 1 diabetes. Diabetes 50, 1749–1754 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Roep, B. O. et al. Autoreactive T cell responses in insulin-dependent (type 1) diabetes mellitus. Report of the first international workshop for standardization of T cell assays. J. Autoimmun. 13, 267–282 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Babel, N., Reinke, P. & Volk, H. D. Lymphocyte markers and prediction of long-term renal allograft acceptance. Curr. Opin. Nephrol. Hypertens. 18, 489–494 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Seyfert-Margolis, V. et al. Analysis of T-cell assays to measure autoimmune responses in subjects with type 1 diabetes: results of a blinded controlled study. Diabetes 55, 2588–2594 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Schloot, N. C. et al. Comparison of cytokine ELISpot assay formats for the detection of islet antigen autoreactive T cells. Report of the third immunology of diabetes society T-cell workshop. J. Autoimmun. 21, 365–376 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Janetzki, S. et al. “MIATA” — minimal information about T cell assays. Immunity 31, 527–528 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Herold, K. C. et al. Validity and reproducibility of measurement of islet autoreactivity by T-cell assays in subjects with early type 1 diabetes. Diabetes 58, 2588–2595 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Weis, J. H. Allergy test might have avoided drug-trial disaster. Nature 441, 150 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Bresson, D. et al. Anti-CD3 and nasal proinsulin combination therapy enhances remission from recent-onset autoimmune diabetes by inducing Tregs. J. Clin. Invest. 116, 1371–1381 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Valle, A. et al. Rapamycin prevents and breaks the anti-CD3-induced tolerance in NOD mice. Diabetes 58, 875–881 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Hayday, A. C. & Peakman, M. The habitual, diverse and surmountable obstacles to human immunology research. Nature Immunol. 9, 575–580 (2008).

    Article  CAS  Google Scholar 

  26. Arechiga, A. F. et al. Cutting edge: the PTPN22 allelic variant associated with autoimmunity impairs B cell signaling. J. Immunol. 182, 3343–3347 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Dendrou, C. A. et al. Cell-specific protein phenotypes for the autoimmune locus IL2RA using a genotype-selectable human bioresource. Nature Genet. 41, 1011–1015 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Tabrizi, M. A. & Roskos, L. K. Preclinical and clinical safety of monoclonal antibodies. Drug Discov. Today 12, 540–547 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Stebbings, R. et al. “Cytokine storm” in the phase I trial of monoclonal antibody TGN1412: better understanding the causes to improve preclinical testing of immunotherapeutics. J. Immunol. 179, 3325–3331 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Thrower, S. L. et al. Proinsulin peptide immunotherapy in type 1 diabetes: report of a first-in-man phase I safety study. Clin. Exp. Immunol. 155, 156–165 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Roep, B. O., Atkinson, M. & von Herrath, M. Satisfaction (not) guaranteed: re-evaluating the use of animal models of type 1 diabetes. Nature Rev. Immunol. 4, 989–997 (2004).

    Article  CAS  Google Scholar 

  32. van de Linde, P. et al. Mechanisms of antibody immunotherapy on clonal islet reactive T cells. Hum. Immunol. 67, 264–273 (2006).

    Article  CAS  Google Scholar 

  33. Pearson, T. et al. Non-obese diabetic-recombination activating gene-1 (NOD–Rag1null) interleukin (IL)-2 receptor common γ chain (IL2rγnull) null mice: a radioresistant model for human lymphohaematopoietic engraftment. Clin. Exp. Immunol. 154, 270–284 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Shultz, L. D., Ishikawa, F. & Greiner, D. L. Humanized mice in translational biomedical research. Nature Rev. Immunol. 7, 118–130 (2007).

    Article  CAS  Google Scholar 

  35. Nicoletti, F. et al. Serum concentrations of the interferon-γ-inducible chemokine IP-10/CXCL10 are augmented in both newly diagnosed Type I diabetes mellitus patients and subjects at risk of developing the disease. Diabetologia 45, 1107–1110 (2002).

    Article  CAS  Google Scholar 

  36. Pfleger, C. et al. Relation of circulating concentrations of chemokine receptor CCR5 ligands to C-peptide, proinsulin and HbA1c and disease progression in type 1 diabetes. Clin. Immunol. 128, 57–65 (2008).

    Article  CAS  Google Scholar 

  37. Pfleger, C. et al. Association of IL-1ra and adiponectin with C-peptide and remission in patients with type 1 diabetes. Diabetes 57, 929–937 (2008).

    Article  CAS  Google Scholar 

  38. Lai, Y., Chen, C. & Linn, T. Innate immunity and heat shock response in islet transplantation. Clin. Exp. Immunol. 157, 1–8 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Padmos, R. C. et al. Distinct monocyte gene-expression profiles in autoimmune diabetes. Diabetes 57, 2768–2773 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Allen, J. S. et al. Plasmacytoid dendritic cells are proportionally expanded at diagnosis of type 1 diabetes and enhance islet autoantigen presentation to T-cells through immune complex capture. Diabetes 58, 138–145 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Beyan, H. et al. Altered monocyte cyclo-oxygenase response in non-obese diabetic mice. Clin. Exp. Immunol. 155, 304–310 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Arif, S. et al. Autoreactive T cell responses show proinflammatory polarization in diabetes but a regulatory phenotype in health. J. Clin. Invest. 113, 451–463 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Voltarelli, J. C. et al. Autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. JAMA 297, 1568–1576 (2007).

    Article  CAS  Google Scholar 

  44. Simon, G. et al. Murine antithymocyte globulin therapy alters disease progression in NOD mice by a time-dependent induction of immunoregulation. Diabetes 57, 405–414 (2008).

    Article  CAS  Google Scholar 

  45. Lawson, J. M. et al. Increased resistance to CD4+CD25hi regulatory T cell-mediated suppression in patients with type 1 diabetes. Clin. Exp. Immunol. 154, 353–359 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Lindley, S. et al. Defective suppressor function in CD4+CD25+ T-cells from patients with type 1 diabetes. Diabetes 54, 92–99 (2005).

    Article  CAS  Google Scholar 

  47. Schneider, A. et al. The effector T cells of diabetic subjects are resistant to regulation via CD4+FOXP3+ regulatory T cells. J. Immunol. 181, 7350–7355 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Mannering, S. I. et al. The A-chain of insulin is a hot-spot for CD4+ T cell epitopes in human type 1 diabetes. Clin. Exp. Immunol. 156, 226–231 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Spencer, J. & Peakman, M. Post-mortem analysis of islet pathology in type 1 diabetes illuminates the life and death of the β cell. Clin. Exp. Immunol. 155, 125–127 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Planas, R. et al. Gene expression profiles for the human pancreas and purified islets in type 1 diabetes: new findings at clinical onset and in long-standing diabetes. Clin. Exp. Immunol. 159, 23–44 (2009).

    Article  PubMed  Google Scholar 

  51. Hu, C., Wong, F. S. & Wen, L. Translational mini-review series on B cell-directed therapies: B cell-directed therapy for autoimmune diseases. Clin. Exp. Immunol. 157, 181–190 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Crome, S. Q., Wang, A. Y. & Levings, M. K. Translational mini-review series on Th17 cells: function and regulation of human T helper 17 cells in health and disease. Clin. Exp. Immunol. 11 Nov 2009 (doi:10.1111/j.1365-2249.2009.04037.x).

    Article  CAS  Google Scholar 

  53. Koenders, M. I. & van den Berg, W. B. Translational mini-review series on Th17 cells: are T helper 17 cells really pathogenic in autoimmunity? Clin. Exp. Immunol. 11 Nov 2009 (doi:10.1111/j.1365-2249.2009.04039.x).

    Article  CAS  Google Scholar 

  54. Pinkse, G. G. et al. Autoreactive CD8 T cells associated with β cell destruction in type 1 diabetes. Proc. Natl Acad. Sci. USA 102, 18425–18430 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Skowera, A. et al. CTLs are targeted to kill β cells in patients with type 1 diabetes through recognition of a glucose-regulated preproinsulin epitope. J. Clin. Invest. 118, 3390–3402 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Monti, P. et al. Islet transplantation in patients with autoimmune diabetes induces homeostatic cytokines that expand autoreactive memory T cells. J. Clin. Invest. 118, 1806–1814 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Willcox, A., Richardson, S. J., Bone, A. J., Foulis, A. K. & Morgan, N. G. Analysis of islet inflammation in human type 1 diabetes. Clin. Exp. Immunol. 155, 173–181 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Bougneres, P. F. et al. Factors associated with early remission of type I diabetes in children treated with cyclosporine. N. Engl. J. Med. 318, 663–670 (1988).

    Article  CAS  PubMed  Google Scholar 

  59. Martin, S. et al. Development of type 1 diabetes despite severe hereditary B-lymphocyte deficiency. N. Engl. J. Med. 345, 1036–1040 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Huurman, V. A. et al. Cellular islet autoimmunity associates with clinical outcome of islet cell transplantation. PLoS ONE 3, e2435 (2008).

    Article  PubMed  Google Scholar 

  61. Hilbrands, R. et al. Differences in baseline lymphocyte counts and autoreactivity are associated with differences in outcome of islet cell transplantation in type 1 diabetic patients. Diabetes 58, 2267–2276 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Bingley, P. J. et al. Combined analysis of autoantibodies improves prediction of IDDM in islet cell antibody-positive relatives. Diabetes 43, 1304–1310 (1994).

    Article  CAS  PubMed  Google Scholar 

  63. Verge, C. F. et al. Combined use of autoantibodies (IA-2 autoantibody, GAD autoantibody, insulin autoantibody, cytoplasmic islet cell antibodies) in type 1 diabetes: Combinatorial Islet Autoantibody Workshop. Diabetes 47, 1857–1866 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Verge, C. F. et al. Prediction of type I diabetes in first-degree relatives using a combination of insulin, GAD, and ICA512bdc/IA-2 autoantibodies. Diabetes 45, 926–933 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. Brusko, T. M., Putnam, A. L. & Bluestone, J. A. Human regulatory T cells: role in autoimmune disease and therapeutic opportunities. Immunol. Rev. 223, 371–390 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Gregori, S., Battaglia, M. & Roncarolo, M. G. Re-establishing immune tolerance in type 1 diabetes via regulatory T cells. Novartis Found. Symp. 292, 174–183 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Sanda, S., Roep, B. O. & von Herrath, M. Islet antigen specific IL-10+ immune responses but not CD4+CD25+FoxP3+ cells at diagnosis predict glycaemic control in type 1 diabetes. Clin. Immunol. 127, 138–143 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Effects of insulin in relatives of patients with type 1 diabetes mellitus. N. Engl. J. Med. 346, 1685–1691 (2002).

  69. Skyler, J. S. et al. Effects of oral insulin in relatives of patients with type 1 diabetes: The Diabetes Prevention Trial — Type 1. Diabetes Care 28, 1068–1076 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Harrison, L. C. et al. Pancreatic β-cell function and immune responses to insulin after administration of intranasal insulin to humans at risk for type 1 diabetes. Diabetes Care 27, 2348–2355 (2004).

    Article  CAS  Google Scholar 

  71. Pfleger, C., Meierhoff, G., Kolb, H. & Schloot, N. C. Association of T-cell reactivity with β-cell function in recent onset type 1 diabetes patients. J. Autoimmun. 9 Sep 2009 (doi:10.1016/j.jaut.2009.08.004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

B.O.R. is a recipient of a Vici award from The Netherlands Organization for Health Research and Development (ZonMW) and is supported by the Dutch Diabetes Research Foundation. M.P. acknowledges financial support from the Department of Health through the National Institute for Health Research comprehensive Biomedical Research Centre award to Guy's & St Thomas' National Health Service Foundation Trust in partnership with King's College London and from the Juvenile Diabetes Research Foundation. Both B.O.R. and M.P. receive funding from the European Union 7th Framework Programme Large-scale Focused Collaborative Research Project on Natural Immunomodulators as Novel Immunotherapies for Type 1 Diabetes.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

M.P. has no competing financial interests. B.O.R. is a member of the Medical Advisory Boards of Diamyd Medical and Andromeda Biotech.

Related links

Related links

FURTHER INFORMATION

Mark Peakman's homepage

Immune Tolerance Network homepage

RISET homepage

Diabetes TrialNet homepage

Glossary

Biomarker

A substance or objective measurement that relates to a biological status. It indicates a specific disease state, risk of the disease, amelioration of disease on treatment or susceptibility to disease amelioration by a specific treatment. A biomarker can be an analyte measured in the blood, a cellular activity, a gene polymorphism or a radiographic feature. For example, multiple islet cell-specific autoantibodies are biomarkers that predict type 1 diabetes risk.

Humanized mouse

A mouse carrying functioning human genes, cells, tissues or organs that are introduced by transgenesis, injection or transplantation. For example, an immune-deficient mouse transgenically expressing susceptibility genes for type 1 diabetes and reconstituted with T cells from a patient with the disease and human islets of Langerhans can be used to study relevant autoimmune processes.

Surrogate end point

A biomarker that, when altered by treatment, indicates a clinical benefit. It is typically an analyte in the blood, such as could be represented by reduction in relevant effector T cell activation or the appearance of regulatory T cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roep, B., Peakman, M. Surrogate end points in the design of immunotherapy trials: emerging lessons from type 1 diabetes. Nat Rev Immunol 10, 145–152 (2010). https://doi.org/10.1038/nri2705

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2705

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research