Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The double life of a B-1 cell: self-reactivity selects for protective effector functions

Key Points

  • B-1 cells are innate-like B cells that have features of both the adaptive and the innate immune systems.

  • The development of B-1 cells is distinct from that of conventional B-2 cells and leads to the establishment of a B cell subset with a B cell receptor (BCR) repertoire that is selected for self- and polyreactivity and that contains many evolutionarily 'useful' BCR specificities.

  • B-1 cells secrete these useful BCR specificities in the steady state as natural IgM (and IgA) antibodies, in the absence of antigenic stimulation.

  • B-1 cells do not respond readily to BCR-mediated stimulation by extensive clonal expansion, possibly owing to the expression of inhibitory co-receptors. However, they respond rapidly and vigorously to non-specific inflammatory and pathogen-associated stimuli, by migrating from the body cavities to secondary lymphoid tissues, where they undergo rapid differentiation to antibody-secreting cells.

  • Owing in part to their BCR repertoire and their particular response patterns, B-1 cells and the antibodies they secrete function as important regulators of homeostasis. B-1 cells can engulf and clear dead apoptotic cells, produce anti-inflammatory cytokines such as interleukin-10 and secrete IgA in the intestinal mucosa, thereby regulating the local microbiota.

  • B-1 cells are well described in mice, but not in humans. However, humans do generate natural polyreactive antibodies, and candidate functional human homologues of mouse B-1 cells are beginning to emerge.

Abstract

During their development, B and T cells with self-reactive antigen receptors are generally deleted from the repertoire to avoid autoimmune diseases. Paradoxically, innate-like B-1 cells in mice are positively selected for self-reactivity and form a pool of long-lived, self-renewing B cells that produce most of the circulating natural IgM antibodies. This Review provides an overview of the developmental processes that shape the B-1 cell pool in mice, outlines the functions of B-1 cells in both the steady state and during host defence, and discusses possible functional B-1 cell homologues that exist in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mature splenic B cell subsets.
Figure 2: B-1 cell development in the steady state and after B-1 cell ablation.
Figure 3: Immune functions of B-1 cells.

Similar content being viewed by others

References

  1. Bos, N. A. et al. Serum immunoglobulin levels and naturally occurring antibodies against carbohydrate antigens in germ-free BALB/c mice fed chemically defined ultrafiltered diet. Eur. J. Immunol. 19, 2335–2339 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Haury, M. et al. The repertoire of serum IgM in normal mice is largely independent of external antigenic contact. Eur. J. Immunol. 27, 1557–1563 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Hooijkaas, H., Benner, R., Pleasants, J. R. & Wostmann, B. S. Isotypes and specificities of immunoglobulins produced by germ-free mice fed chemically defined ultrafiltered “antigen-free” diet. Eur. J. Immunol. 14, 1127–1130 (1984).

    Article  CAS  PubMed  Google Scholar 

  4. Andersson, J., Sjoberg, O. & Moller, G. Induction of immunoglobulin and antibody synthesis in vitro by lipopolysaccharides. Eur. J. Immunol. 2, 349–353 (1972).

    Article  CAS  PubMed  Google Scholar 

  5. Coutinho, A., Gronowicz, E. & Moller, G. Mechanism of B-cell activation and paralysis by thymus-independent antigens. Additive effects between NNP–LPS and LPS in the specific response to the hapten. Scand. J. Immunol. 4, 89–94 (1975).

    Article  CAS  PubMed  Google Scholar 

  6. Crampton, S. P., Voynova, E. & Bolland, S. Innate pathways to B-cell activation and tolerance. Ann. NY Acad. Sci. 1183, 58–68 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Bekeredjian-Ding, I. & Jego, G. Toll-like receptors — sentries in the B-cell response. Immunology 128, 311–323 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Meyer-Bahlburg, A. & Rawlings, D. J. B cell autonomous TLR signaling and autoimmunity. Autoimmun. Rev. 7, 313–316 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li, X., Martin, F., Oliver, A. M., Kearney, J. F. & Carter, R. H. Antigen receptor proximal signaling in splenic B-2 cell subsets. J. Immunol. 166, 3122–3129 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Martin, F. & Kearney, J. F. B-cell subsets and the mature preimmune repertoire. Marginal zone and B1 B cells as part of a “natural immune memory”. Immunol. Rev. 175, 70–79 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Baumgarth, N., Tung, J. W. & Herzenberg, L. A. Inherent specificities in natural antibodies: a key to immune defense against pathogen invasion. Springer Semin. Immunopathol. 26, 347–362 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Bouvet, J.-P. & Dighiero, G. From natural polyreactive autoantibodies to a la carte monoreactive antibodies to infectious agents: is it a small world after all? Infect. Immun. 66, 1–4 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Stewart, J. Immunoglobulins did not arise in evolution to fight infection. Immunol. Today 13, 396–399 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Binder, C. J. & Silverman, G. J. Natural antibodies and the autoimmunity of atherosclerosis. Springer Semin. Immunopathol. 26, 385–404 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Duan, B. & Morel, L. Role of B-1a cells in autoimmunity. Autoimmun. Rev. 5, 403–408 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Hardy, R. R. B-1 B cells: development, selection, natural autoantibody and leukemia. Curr. Opin. Immunol. 18, 547–555 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Hayakawa, K., Hardy, R. R., Parks, D. R. & Herzenberg, L. A. The “Ly-1 B” cell subpopulation in normal immunodefective, and autoimmune mice. J. Exp. Med. 157, 202–218 (1983). This study makes a crucial connection between the increased IgM secretion that occurs in NZB/NZW mice owing to an aberrant population of CD5+ B cells and the natural IgM secretion by CD5+ B cells that occurs in normal mice.

    Article  CAS  PubMed  Google Scholar 

  18. Hayakawa, K., Hardy, R. R. & Herzenberg, L. A. Progenitors for Ly-1 B cells are distinct from progenitors for other B cells. J. Exp. Med. 161, 1554–1568 (1985). This study forms the basis for the 'lineage hypothesis' of B-1 cell development.

    Article  CAS  PubMed  Google Scholar 

  19. Kantor, A. B., Stall, A. M., Adams, S. & Herzenberg, L. A. Differential development of progenitor activity for three B-cell lineages. Proc. Natl Acad. Sci. USA 89, 3320–3324 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kantor, A. B. The development and repertoire of B-1 cells (CD5 B cells). Immunol. Today 12, 389–391 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Godin, I. E., Garcia-Porrero, J. A., Coutinho, A., Dieterlen-Lievre, F. & Marcos, M. A. Para-aortic splanchnopleura from early mouse embryos contains B1a cell progenitors. Nature 364, 67–70 (1993). This study identified B cell precursors in the splanchnopleura region of mouse embryos that give rise only to B-1 cells after adoptive transfer.

    Article  CAS  PubMed  Google Scholar 

  22. Mizoguchi, A., Mizoguchi, E., Takedatsu, H., Blumberg, R. S. & Bhan, A. K. Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation. Immunity 16, 219–230 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Yanaba, K. et al. A regulatory B cell subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory responses. Immunity 28, 639–650 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Yang, M. et al. Novel function of B cell-activating factor in the induction of IL-10-producing regulatory B cells. J. Immunol. 184, 3321–3325 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Martin, F., Oliver, A. M. & Kearney, J. F. Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens. Immunity 14, 617–629 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Berland, R. & Wortis, H. H. Origins and functions of B-1 cells with notes on the role of CD5. Annu. Rev. Immunol. 20, 253–300 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Dorshkind, K. & Montecino-Rodriguez, E. Fetal B-cell lymphopoiesis and the emergence of B-1-cell potential. Nature Rev. Immunol. 7, 213–219 (2007).

    Article  CAS  Google Scholar 

  28. Herzenberg, L. A. B-1 cells: the lineage question revisited. Immunol. Rev. 175, 9–22 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Lalor, P. A., Herzenberg, L. A., Adams, S. & Stall, A. M. Feedback regulation of murine Ly-1 B cell development. Eur. J. Immunol. 19, 507–513 (1989). This study showed that bone marrow cells do not continuously repopulate the peritoneal cavity B-1 cell pool in the steady state.

    Article  CAS  PubMed  Google Scholar 

  30. Deenen, G. J. & Kroese, F. G. Murine peritoneal Ly-1 B cells do not turn over rapidly. Ann. NY Acad. Sci. 651, 70–71 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Baumgarth, N., Herman, O. C., Jager, G. C., Brown, L. & Herzenberg, L. A. Innate and acquired humoral immunities to influenza virus are mediated by distinct arms of the immune system. Proc. Natl Acad. Sci. USA 96, 2250–2255 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Boes, M. et al. Enhanced B-1 cell development, but impaired IgG antibody responses in mice deficient in secreted IgM. J. Immunol. 160, 4776–4787 (1998).

    CAS  PubMed  Google Scholar 

  33. Duber, S. et al. Induction of B-cell development in adult mice reveals the ability of bone marrow to produce B-1a cells. Blood 114, 4960–4967 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Holodick, N. E., Repetny, K., Zhong, X. & Rothstein, T. L. Adult BM generates CD5+ B1 cells containing abundant N-region additions. Eur. J. Immunol. 39, 2383–2394 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Montecino-Rodriguez, E., Leathers, H. & Dorshkind, K. Identification of a B-1 B cell-specified progenitor. Nature Immunol. 7, 293–301 (2006). This study identified the elusive precursor of B-1 cells in the bone marrow of adult mice.

    Article  CAS  Google Scholar 

  36. Tornberg, U. C. & Holmberg, D. B-1a, B-1b and B-2 B cells display unique VHDJH repertoires formed at different stages of ontogeny and under different selection pressures. EMBO J. 14, 1680–1689 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kantor, A. B., Merrill, C. E., Herzenberg, L. A. & Hillson, J. L. An unbiased analysis of VH–D–JH sequences from B-1a, B-1b, and conventional B cells. J. Immunol. 158, 1175–1186 (1997).

    CAS  PubMed  Google Scholar 

  38. Gregoire, K. E., Goldschneider, I., Barton, R. W. & Bollum, F. J. Ontogeny of terminal deoxynucleotidyl transferase-positive cells in lymphohemopoietic tissues of rat and mouse. J. Immunol. 123, 1347–1352 (1979).

    CAS  PubMed  Google Scholar 

  39. Gu, H., Forster, I. & Rajewsky, K. Sequence homologies, N sequence insertion and JH gene utilization in VHDJH joining: implications for the joining mechanism and the ontogenetic timing of Ly1 B cell and B-CLL progenitor generation. EMBO J. 9, 2133–2140 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chou, M. Y. et al. Oxidation-specific epitopes are dominant targets of innate natural antibodies in mice and humans. J. Clin. Invest. 119, 1335–1349 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kulik, L. et al. Pathogenic natural antibodies recognizing annexin IV are required to develop intestinal ischemia-reperfusion injury. J. Immunol. 182, 5363–5373 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Racine, R. & Winslow, G. M. IgM in microbial infections: taken for granted? Immunol. Lett. 125, 79–85 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hogquist, K. A., Starr, T. K. & Jameson, S. C. Receptor sensitivity: when T cells lose their sense of self. Curr. Biol. 13, R239–R241 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Hayakawa, K. et al. Positive selection of natural autoreactive B cells. Science 285, 113–116 (1999). This study provided evidence that B-1 cell development is driven by positive selection on self antigens.

    Article  CAS  PubMed  Google Scholar 

  45. Lam, K. P. & Rajewsky, K. B cell antigen receptor specificity and surface density together determine B-1 versus B-2 cell development. J. Exp. Med. 190, 471–477 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Casola, S. et al. B cell receptor signal strength determines B cell fate. Nature Immunol. 5, 317–327 (2004).

    Article  CAS  Google Scholar 

  47. Esplin, B. L., Welner, R. S., Zhang, Q., Borghesi, L. A. & Kincade, P. W. A differentiation pathway for B1 cells in adult bone marrow. Proc. Natl Acad. Sci. USA 106, 5773–5778 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Solvason, N. et al. Cyclin D2 is essential for BCR-mediated proliferation and CD5 B cell development. Int. Immunol. 12, 631–638 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Vink, A., Warnier, G., Brombacher, F. & Renauld, J. C. Interleukin 9-induced in vivo expansion of the B-1 lymphocyte population. J. Exp. Med. 189, 1413–1423 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Moon, B. G., Takaki, S., Miyake, K. & Takatsu, K. The role of IL-5 for mature B-1 cells in homeostatic proliferation, cell survival, and Ig production. J. Immunol. 172, 6020–6029 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Moro, K. et al. Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells. Nature 463, 540–544 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Ansel, K. M., Harris, R. B. & Cyster, J. G. CXCL13 is required for B1 cell homing, natural antibody production, and body cavity immunity. Immunity 16, 67–76 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Wardemann, H., Boehm, T., Dear, N. & Carsetti, R. B-1a B cells that link the innate and adaptive immune responses are lacking in the absence of the spleen. J. Exp. Med. 195, 771–780 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rothaeusler, K. & Baumgarth, N. Evaluation of intranuclear BrdU detection procedures for use in multicolor flow cytometry. Cytometry A 69, 249–259 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kretschmer, K., Stopkowicz, J., Scheffer, S., Greten, T. F. & Weiss, S. Maintenance of peritoneal B-1a lymphocytes in the absence of the spleen. J. Immunol. 173, 197–204 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. McIntyre, T. M., Holmes, K. L., Steinberg, A. D. & Kastner, D. L. CD5+ peritoneal B cells express high levels of membrane, but not secretory, C mu mRNA. J. Immunol. 146, 3639–3645 (1991).

    CAS  PubMed  Google Scholar 

  57. Tumang, J. R., Frances, R., Yeo, S. G. & Rothstein, T. L. Spontaneously Ig-secreting B-1 cells violate the accepted paradigm for expression of differentiation-associated transcription factors. J. Immunol. 174, 3173–3177 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Fairfax, K. A. et al. Different kinetics of Blimp-1 induction in B cell subsets revealed by reporter gene. J. Immunol. 178, 4104–4111 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Savitsky, D. & Calame, K. B-1 B lymphocytes require Blimp-1 for immunoglobulin secretion. J. Exp. Med. 203, 2305–2314 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Choi, Y. S. & Baumgarth, N. Dual role for B-1a cells in immunity to influenza virus infection. J. Exp. Med. 205, 3053–3064 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Baumgarth, N. et al. B-1 and B-2 cell-derived immunoglobulin M antibodies are nonredundant components of the protective response to influenza virus infection. J. Exp. Med. 192, 271–280 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Boes, M., Prodeus, A. P., Schmidt, T., Carroll, M. C. & Chen, J. A critical role of natural immunoglobulin M in immediate defense against systemic bacterial infection. J. Exp. Med. 188, 2381–2386 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Haas, K. M., Poe, J. C., Steeber, D. A. & Tedder, T. F. B-1a and B-1b cells exhibit distinct developmental requirements and have unique functional roles in innate and adaptive immunity to S. pneumoniae. Immunity 23, 7–18 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Jayasekera, J. P., Moseman, E. A. & Carroll, M. C. Natural antibody and complement mediate neutralization of influenza virus in the absence of prior immunity. J. Virol. 81, 3487–3494 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ochsenbein, A. F. et al. Control of early viral and bacterial distribution and disease by natural antibodies. Science 286, 2156–2159 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Zhou, Z. H. et al. The broad antibacterial activity of the natural antibody repertoire is due to polyreactive antibodies. Cell Host Microbe 1, 51–61 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Baumgarth, N. A two-phase model of B-cell activation. Immunol. Rev. 176, 171–180 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Suzuki, K., Maruya, M., Kawamoto, S. & Fagarasan, S. Roles of B-1 and B-2 cells in innate and acquired IgA-mediated immunity. Immunol. Rev. 237, 180–190 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Kaminski, D. A. & Stavnezer, J. Enhanced IgA class switching in marginal zone and B1 B cells relative to follicular/B2 B cells. J. Immunol. 177, 6025–6029 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Tarlinton, D. M., McLean, M. & Nossal, G. J. B1 and B2 cells differ in their potential to switch immunoglobulin isotype. Eur. J. Immunol. 25, 3388–3393 (1995).

    Article  CAS  PubMed  Google Scholar 

  71. Thurnheer, M. C., Zuercher, A. W., Cebra, J. J. & Bos, N. A. B1 cells contribute to serum IgM, but not to intestinal IgA, production in gnotobiotic Ig allotype chimeric mice. J. Immunol. 170, 4564–4571 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Kroese, F. G. et al. Many of the IgA producing plasma cells in murine gut are derived from self-replenishing precursors in the peritoneal cavity. Int. Immunol. 1, 75–84 (1989). This seminal study links IgA production in the gut to B-1 cells and therefore links B-1 cells to the regulation of gut homeostasis and mucosal immunity.

    Article  CAS  PubMed  Google Scholar 

  73. Kroese, F. G., de Waard, R. & Bos, N. A. B-1 cells and their reactivity with the murine intestinal microflora. Semin. Immunol. 8, 11–18 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. Macpherson, A. J. & Slack, E. The functional interactions of commensal bacteria with intestinal secretory IgA. Curr. Opin. Gastroenterol. 23, 673–678 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. De-Gennaro, L. A., Popi, A. F., Almeida, S. R., Lopes, J. D. & Mariano, M. B-1 cells modulate oral tolerance in mice. Immunol. Lett. 124, 63–69 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Boes, M. et al. Accelerated development of IgG autoantibodies and autoimmune disease in the absence of secreted IgM. Proc. Natl Acad. Sci. USA 97, 1184–1189 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shaw, P. X. et al. Natural antibodies with the T15 idiotype may act in atherosclerosis, apoptotic clearance, and protective immunity. J. Clin. Invest. 105, 1731–1740 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chen, Y., Park, Y. B., Patel, E. & Silverman, G. J. IgM antibodies to apoptosis-associated determinants recruit C1q and enhance dendritic cell phagocytosis of apoptotic cells. J. Immunol. 182, 6031–6043 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Taylor, P. R. et al. Macrophage receptors and immune recognition. Annu. Rev. Immunol. 23, 901–944 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Rodriguez-Manzanet, R. et al. T and B cell hyperactivity and autoimmunity associated with niche-specific defects in apoptotic body clearance in TIM-4-deficient mice. Proc. Natl Acad. Sci. USA 107, 8706–8711 (2010). These authors identified TIM4 as a scavenger receptor expressed by macrophages and B-1 cells and described an antibody-independent mechanism by which B-1 cells can function as regulators of tissue homeostasis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. O'Garra, A. et al. Ly-1 B (B-1) cells are the main source of B cell-derived interleukin-10. Eur. J. Immunol. 22, 711–717 (1992).

    Article  CAS  PubMed  Google Scholar 

  82. Lampropoulou, V. et al. Suppressive functions of activated B cells in autoimmune diseases reveal the dual roles of Toll-like receptors in immunity. Immunol. Rev. 233, 146–161 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Ha, S. A. et al. Regulation of B1 cell migration by signals through Toll-like receptors. J. Exp. Med. 203, 2541–2550 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Murakami, M. et al. Oral administration of lipopolysaccharides activates B-1 cells in the peritoneal cavity and lamina propria of the gut and induces autoimmune symptoms in an autoantibody transgenic mouse. J. Exp. Med. 180, 111–121 (1994).

    Article  CAS  PubMed  Google Scholar 

  85. Nisitani, S., Tsubata, T., Murakami, M. & Honjo, T. Administration of interleukin-5 or -10 activates peritoneal B-1 cells and induces autoimmune hemolytic anemia in anti-erythrocyte autoantibody-transgenic mice. Eur. J. Immunol. 25, 3047–3052 (1995).

    Article  CAS  PubMed  Google Scholar 

  86. Yang, Y., Tung, J. W., Ghosn, E. E. & Herzenberg, L. A. Division and differentiation of natural antibody-producing cells in mouse spleen. Proc. Natl Acad. Sci. USA 104, 4542–4546 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Genestier, L. et al. TLR agonists selectively promote terminal plasma cell differentiation of B cell subsets specialized in thymus-independent responses. J. Immunol. 178, 7779–7786 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Chumley, M. J., Dal Porto, J. M. & Cambier, J. C. The unique antigen receptor signaling phenotype of B-1 cells is influenced by locale but induced by antigen. J. Immunol. 169, 1735–1743 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Morris, D. L. & Rothstein, T. L. Abnormal transcription factor induction through the surface immunoglobulin M receptor of B-1 lymphocytes. J. Exp. Med. 177, 857–861 (1993). This study demonstrates the unique differentiation stage of peritoneal B-1 cells, showing that these cells are unable to enter the cell cycle after BCR crosslinking but that BCR stimulation does not affect the survival of B-1 cells.

    Article  CAS  PubMed  Google Scholar 

  90. Bikah, G., Carey, J., Ciallella, J. R., Tarakhovsky, A. & Bondada, S. CD5-mediated negative regulation of antigen receptor-induced growth signals in B-1 B cells. Science 274, 1906–1909 (1996).

    Article  CAS  PubMed  Google Scholar 

  91. Ochi, H. & Watanabe, T. Negative regulation of B cell receptor-mediated signaling in B-1 cells through CD5 and Ly49 co-receptors via Lyn kinase activity. Int. Immunol. 12, 1417–1423 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Holodick, N. E., Tumang, J. R. & Rothstein, T. L. Continual signaling is responsible for constitutive ERK phosphorylation in B-1a cells. Mol. Immunol. 46, 3029–3036 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sen, G. et al. Defective CD19-dependent signaling in B-1a and B-1b B lymphocyte subpopulations. Mol. Immunol. 39, 57–68 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Dal Porto, J. M., Burke, K. & Cambier, J. C. Regulation of BCR signal transduction in B-1 cells requires the expression of the Src family kinase Lck. Immunity 21, 443–453 (2004).

    Article  PubMed  Google Scholar 

  95. Ulivieri, C., Valensin, S., Majolini, M. B., Matthews, R. J. & Baldari, C. T. Normal B-1 cell development but defective BCR signaling in Lck−/− mice. Eur. J. Immunol. 33, 441–445 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Frances, R., Tumang, J. R. & Rothstein, T. L. B-1 cells are deficient in Lck: defective B cell receptor signal transduction in B-1 cells occurs in the absence of elevated Lck expression. J. Immunol. 175, 27–31 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Hoffmann, A. et al. Siglec-G is a B1 cell-inhibitory receptor that controls expansion and calcium signaling of the B1 cell population. Nature Immunol. 8, 695–704 (2007).

    Article  CAS  Google Scholar 

  98. Wong, S. C. et al. Peritoneal CD5+ B-1 cells have signaling properties similar to tolerant B cells. J. Biol. Chem. 277, 30707–30715 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Hippen, K. L., Tze, L. E. & Behrens, T. W. CD5 maintains tolerance in anergic B cells. J. Exp. Med. 191, 883–890 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bell, S. E. & Goodnow, C. C. A selective defect in IgM antigen receptor synthesis and transport causes loss of cell surface IgM expression on tolerant B lymphocytes. EMBO J. 13, 816–826 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Blery, M., Tze, L., Miosge, L. A., Jun, J. E. & Goodnow, C. C. Essential role of membrane cholesterol in accelerated BCR internalization and uncoupling from NF-κB in B cell clonal anergy. J. Exp. Med. 203, 1773–1783 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Fulcher, D. A. & Basten, A. Reduced life span of anergic self-reactive B cells in a double-transgenic model. J. Exp. Med. 179, 125–134 (1994).

    Article  CAS  PubMed  Google Scholar 

  103. Durand, C. A. et al. Phosphoinositide 3-kinase p110δ regulates natural antibody production, marginal zone and B-1 B cell function, and autoantibody responses. J. Immunol. 183, 5673–5684 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Cole, L. E. et al. Antigen-specific B-1a antibodies induced by Francisella tularensis LPS provide long-term protection against F. tularensis LVS challenge. Proc. Natl Acad. Sci. USA 106, 4343–4348 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Alugupalli, K. R. et al. B1b lymphocytes confer T cell-independent long-lasting immunity. Immunity 21, 379–390 (2004). This study provides evidence for the existence of B-1b cell-derived memory responses.

    Article  CAS  PubMed  Google Scholar 

  106. Ohdan, H. et al. Mac-1-negative B-1b phenotype of natural antibody-producing cells, including those responding to Galα1,3Gal epitopes in α1,3-galactosyltransferase-deficient mice. J. Immunol. 165, 5518–5529 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. Askenase, P. W., Szczepanik, M., Itakura, A., Kiener, C. & Campos, R. A. Extravascular T-cell recruitment requires initiation begun by Vα14+ NKT cells and B-1 B cells. Trends Immunol. 25, 441–449 (2004). This review summarizes several studies that showed that the early production of IgM by B-1 cells and interaction of B-1 cells with NKT cells are required for the initiation of DTH responses.

    Article  CAS  PubMed  Google Scholar 

  108. Kerfoot, S. M., Szczepanik, M., Tung, J. W. & Askenase, P. W. Identification of initiator B cells, a novel subset of activation-induced deaminase-dependent B-1-like cells that mediate initiation of contact sensitivity. J. Immunol. 181, 1717–1727 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Takahashi, T. & Strober, S. Natural killer T cells and innate immune B cells from lupus-prone NZB/W mice interact to generate IgM and IgG autoantibodies. Eur. J. Immunol. 38, 156–165 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Watanabe, N. et al. Migration and differentiation of autoreactive B-1 cells induced by activated γδ T cells in antierythrocyte immunoglobulin transgenic mice. J. Exp. Med. 192, 1577–1586 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhang, M. et al. Identification of the target self-antigens in reperfusion injury. J. Exp. Med. 203, 141–152 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Gil-Cruz, C. et al. The porin OmpD from nontyphoidal Salmonella is a key target for a protective B1b cell antibody response. Proc. Natl Acad. Sci. USA 106, 9803–9808 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Alam, C., Valkonen, S., Ohls, S., Tornqvist, K. & Hanninen, A. Enhanced trafficking to the pancreatic lymph nodes and auto-antigen presentation capacity distinguishes peritoneal B lymphocytes in non-obese diabetic mice. Diabetologia 53, 346–355 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. Riggs, J. E. et al. Mls presentation by peritoneal cavity B cells. Immunobiology 209, 255–264 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Ryan, G. A. et al. B1 cells promote pancreas infiltration by autoreactive T cells. J. Immunol. 185, 2800–2807 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Sun, C. M., Deriaud, E., Leclerc, C. & Lo-Man, R. Upon TLR9 signaling, CD5+ B cells control the IL-12-dependent Th1-priming capacity of neonatal DCs. Immunity 22, 467–477 (2005).

    CAS  PubMed  Google Scholar 

  117. Casali, P., Burastero, S. E., Nakamura, M., Inghirami, G. & Notkins, A. L. Human lymphocytes making rheumatoid factor and antibody to ssDNA belong to Leu-1+ B-cell subset. Science 236, 77–81 (1987).

    Article  CAS  PubMed  Google Scholar 

  118. Hardy, R. R., Hayakawa, K., Shimizu, M., Yamasaki, K. & Kishimoto, T. Rheumatoid factor secretion from human Leu-1+ B cells. Science 236, 81–83 (1987). References 117 and 118 described the presence of CD5+ B cells that generate self-reactive antibodies in humans.

    Article  CAS  PubMed  Google Scholar 

  119. Kasaian, M. T. & Casali, P. Autoimmunity-prone B-1 (CD5 B) cells, natural antibodies and self recognition. Autoimmunity 15, 315–329 (1993).

    Article  CAS  PubMed  Google Scholar 

  120. Kasaian, M. T., Ikematsu, H. & Casali, P. Identification and analysis of a novel human surface CD5 B lymphocyte subset producing natural antibodies. J. Immunol. 148, 2690–2702 (1992).

    CAS  PubMed  Google Scholar 

  121. Boursier, L., Montalto, S. A., Raju, S., Culora, G. & Spencer, J. Characterization of cells of the B lineage in the human adult greater omentum. Immunology 119, 90–97 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Yuling, H. et al. CD19+CD5+ B cells in primary IgA nephropathy. J. Am. Soc. Nephrol. 19, 2130–2139 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Blair, P. A. et al. CD19+CD24hiCD38hi B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic lupus erythematosus patients. Immunity 32, 129–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. Carsetti, R., Rosado, M. M. & Wardmann, H. Peripheral development of B cells in mouse and man. Immunol. Rev. 197, 179–191 (2004).

    Article  PubMed  Google Scholar 

  125. Dorner, T., Foster, S. J., Farner, N. L. & Lipsky, P. E. Somatic hypermutation of human immunoglobulin heavy chain genes: targeting of RGYW motifs on both DNA strands. Eur. J. Immunol. 28, 3384–3396 (1998).

    Article  CAS  PubMed  Google Scholar 

  126. Lee, J., Kuchen, S., Fischer, R., Chang, S. & Lipsky, P. E. Identification and characterization of a human CD5+ pre-naive B cell population. J. Immunol. 182, 4116–4126 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. Pillai, S., Cariappa, A. & Moran, S. T. Marginal zone B cells. Annu. Rev. Immunol. 23, 161–196 (2005).

    Article  CAS  PubMed  Google Scholar 

  128. Weller, S. et al. Human blood IgM “memory” B cells are circulating splenic marginal zone B cells harboring a prediversified immunoglobulin repertoire. Blood 104, 3647–3654 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Carsetti, R., Pantosti, A. & Quinti, I. Impairment of the antipolysaccharide response in splenectomized patients is due to the lack of immunoglobulin M memory B cells. J. Infect. Dis. 193, 1189–1190 (2006).

    Article  PubMed  Google Scholar 

  130. Weller, S. et al. Somatic diversification in the absence of antigen-driven responses is the hallmark of the IgM+IgD+CD27+ B cell repertoire in infants. J. Exp. Med. 205, 1331–1342 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tsuiji, M. et al. A checkpoint for autoreactivity in human IgM+ memory B cell development. J. Exp. Med. 203, 393–400 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Wardemann, H. et al. Predominant autoantibody production by early human B cell precursors. Science 301, 1374–1377 (2003).

    Article  CAS  PubMed  Google Scholar 

  133. Rakhmanov, M. et al. Circulating CD21low B cells in common variable immunodeficiency resemble tissue homing, innate-like B cells. Proc. Natl Acad. Sci. USA 106, 13451–13456 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ehrhardt, G. R. et al. Expression of the immunoregulatory molecule FcRH4 defines a distinctive tissue-based population of memory B cells. J. Exp. Med. 202, 783–791 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Moir, S. et al. Evidence for HIV-associated B cell exhaustion in a dysfunctional memory B cell compartment in HIV-infected viremic individuals. J. Exp. Med. 205, 1797–1805 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Baumgarth, N. B-cell immunophenotyping. Methods Cell Biol. 75, 643–662 (2004).

    Article  PubMed  Google Scholar 

  137. Baumgarth, N. & Roederer, M. A practical approach to multicolor flow cytometry for immunophenotyping. J. Immunol. Methods 243, 77–97 (2000).

    Article  CAS  PubMed  Google Scholar 

  138. Ghosn, E. E., Yang, Y., Tung, J. & Herzenberg, L. A. CD11b expression distinguishes sequential stages of peritoneal B-1 development. Proc. Natl Acad. Sci. USA 105, 5195–5200 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Hastings, W. D., Gurdak, S. M., Tumang, J. R. & Rothstein, T. L. CD5+/Mac-1 peritoneal B cells: a novel B cell subset that exhibits characteristics of B-1 cells. Immunol. Lett. 105, 90–96 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. Wells, S. M., Kantor, A. B. & Stall, A. M. CD43 (S7) expression identifies peripheral B cell subsets. J. Immunol. 153, 5503–5515 (1994).

    CAS  PubMed  Google Scholar 

  141. Cong, Y. Z., Rabin, E. & Wortis, H. H. Treatment of murine CD5 B cells with anti-Ig, but not LPS, induces surface CD5: two B-cell activation pathways. Int. Immunol. 3, 467–476 (1991). This study showed that CD5 expression can be upregulated on B-2 cells in response to BCR-mediated signalling and forms the basis of the 'induced differentiation hypothesis' of B-1 cell development.

    Article  CAS  PubMed  Google Scholar 

  142. Emslie, D. et al. Oct2 enhances antibody-secreting cell differentiation through regulation of IL-5 receptor α chain expression on activated B cells. J. Exp. Med. 205, 409–421 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Won, W. J. & Kearney, J. F. CD9 is a unique marker for marginal zone B cells, B1 cells, and plasma cells in mice. J. Immunol. 168, 5605–5611 (2002).

    Article  CAS  PubMed  Google Scholar 

  144. Martin, F. & Kearney, J. F. Marginal-zone B cells. Nature Rev. Immunol. 2, 323–335 (2002).

    Article  CAS  Google Scholar 

  145. Kantor, A. B. & Herzenberg, L. A. Origin of murine B cell lineages. Annu. Rev. Immunol. 11, 501–538 (1993).

    Article  CAS  PubMed  Google Scholar 

  146. Bouaziz, J. D., Yanaba, K. & Tedder, T. F. Regulatory B cells as inhibitors of immune responses and inflammation. Immunol. Rev. 224, 201–214 (2008).

    Article  CAS  PubMed  Google Scholar 

  147. Yanaba, K., Bouaziz, J. D., Matsushita, T., Tsubata, T. & Tedder, T. F. The development and function of regulatory B cells expressing IL-10 (B10 cells) requires antigen receptor diversity and TLR signals. J. Immunol. 182, 7459–7472 (2009).

    Article  CAS  PubMed  Google Scholar 

  148. Hao, Z. & Rajewsky, K. Homeostasis of peripheral B cells in the absence of B cell influx from the bone marrow. J. Exp. Med. 194, 1151–1164 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kawahara, T., Ohdan, H., Zhao, G., Yang, Y. G. & Sykes, M. Peritoneal cavity B cells are precursors of splenic IgM natural antibody-producing cells. J. Immunol. 171, 5406–5414 (2003).

    Article  CAS  PubMed  Google Scholar 

  150. Rosado, M. M. et al. From the fetal liver to spleen and gut: the highway to natural antibody. Mucosal Immunol. 2, 351–361 (2009).

    Article  CAS  PubMed  Google Scholar 

  151. Kurosaki, T., Aiba, Y., Kometani, K., Moriyama, S. & Takahashi, Y. Unique properties of memory B cells of different isotypes. Immunol. Rev. 237, 104–116 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank the current and previous members of my laboratory for their dedicated work allowing me to ponder and write about B-1 cells, and Lee and Len Herzenberg for their generosity and the tremendous opportunities they afforded me while I worked in their laboratory. I apologize to my colleagues whose work I could not adequately cite owing to space constraints. Current work relevant to this Review was supported by grants from the US National Institutes of Health/National Institute of Allergy and Infectious Diseases (AI051354 and AI073911).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Nicole Baumgarth's laboratory

Glossary

Natural antibodies

Antibodies found in individuals who have not had any previous known exposure to the antigens recognized by the antibodies.

T cell-independent antigens

Antigens that directly activate B cells.

Follicular B cells

Recirculating, mature B cells that continuously develop from precursors in the bone marrow and populate the follicles of the spleen and lymph nodes.

Marginal zone B cell

A type of mature B cell that is enriched in the marginal zone of the spleen. These cells recognize antigen through semi-invariant receptors, which stimulates their rapid differentiation to antibody-secreting cells. They are thought to be important for host defence against circulating blood-borne pathogens.

NZB/NZW F1 mice

The F1 generation of the cross between New Zealand black (NZB) mice and New Zealand white (NZW) mice. NZB/NZW F1 mice have a disease that closely resembles the human disease systemic lupus erythematosus.

Splanchnopleura region

An embryonic tissue in developing mice and birds that functions as an important site of primitive haematopoiesis

Terminal deoxynucleotidyl transferase (TdT)

An enzyme expressed during lymphocyte development that inserts nucleotides into the variable regions of T cell receptor and immunoglobulin genes, to create junctional diversity.

Negative selection

The process by which developing lymphocytes expressing potentially autoreactive antigen-specific receptors are induced to undergo apoptosis.

Omentum

A large fold of peritoneum between the stomach and abdomen that contains lymphoid aggregates known as 'milky spots'.

Coelomic cavities

Pleural and peritoneal body cavities, which are surrounded by a thin layer of serosa that contains the internal organs.

Follicular dendritic cells

Specialized non-haematopoietic stromal cells that reside in the lymphoid follicles and germinal centres. These cells have long dendrites and carry intact antigen on their surface. They are crucial for the optimal selection of B cells that produce antigen-binding antibody.

Class-switch recombination

This process alters the immunoglobulin heavy chain constant region (CH) gene that will be expressed by a B cell from the Cμ gene to one of the other CH genes. This results in a switch of immunoglobulin isotype from IgM/IgD to IgG, IgA or IgE, without altering antigen specificity.

Delayed-type hypersensitivity (DTH) response

A cellular immune response to antigen that develops over 24–72 hours with the infiltration of T cells and monocytes, and depends on the production of T helper 1 cell-specific cytokines.

Hapten

A molecule that can bind the B cell receptor but cannot by itself elicit an immune response. Antibodies that are specific for a hapten can be generated when the hapten is chemically linked to a protein carrier that can elicit a T cell response.

Recombination-activating gene 1 (Rag1)−/− mice

Recombination-activating genes (Rag1 and Rag2) are expressed in developing lymphocytes. Mice that are deficient for either of these genes fail to produce B or T cells owing to a developmental block in the gene rearrangement that is necessary for antigen receptor expression.

Common variable immunodeficiency

The most common symptomatic primary antibody deficiency, characterized by decreased levels of serum immunoglobulin, and a low or normal number of B cells. Most patients suffer from recurrent infections, mainly of the respiratory and gastrointestinal tracts. The incidence of malignancies, such as gastric carcinoma or lymphoma, is also increased in these patients.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baumgarth, N. The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat Rev Immunol 11, 34–46 (2011). https://doi.org/10.1038/nri2901

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2901

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing