Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Illuminating viral infections in the nervous system

Key Points

  • Specialized endothelial cells in the central nervous system (CNS) limit cellular and ionic movement into the brain parenchyma and act as a critical component of the blood–cerebral spinal fluid and blood–brain barriers. In certain anatomical locations, macrophages, microglia and astrocytes are juxtaposed to CNS blood vessels, and this positions these cells to present foreign antigens and/or provide additional barrier support. Innate immune cells such as macrophages and dendritic cells are also found in the meninges and choroid plexus, enabling surveillance of fluid spaces.

  • Viruses use several different strategies to bypass protective barriers and access the CNS. These strategies include haematological entry mechanisms, such as direct infection of vascular endothelium or travelling in immune cells across CNS barriers through a 'Trojan horse' mechanism. Viruses can also access peripheral nerves that reside outside the protective CNS barriers.

  • Immune responses to neurotropic viruses can promote viral clearance or latency, but sometimes give rise to pathology and disease. HIV persists in CNS myeloid cells (macrophages and microglia), giving rise to chronic innate and adaptive immune responses. This pro-inflammatory milieu can eventually cause neuronal damage and dementia. By contrast, herpes simplex virus latency in sensory ganglion neurons is maintained without injury, in part by innate cytokines and virus-specific T cells.

  • Two-photon laser scanning microscopy (TPLSM) is a microscopic technique that can be used to monitor the dynamics of immune responses to neurotropic viruses in real time. When conducting TPLSM experiments, the tissue preparation must be carefully considered because certain preparations can give rise to injury responses that confound data interpretation. Craniotomies and acute brain slices induce considerable tissue damage, whereas skull thinning opens a window for TPLSM imaging without brain injury.

  • Intravital TPLSM imaging of innate immune sentinels, such as dendritic cells, macrophages and microglia, can provide novel insights into their function within the normal and inflamed brain. Studies have revealed that microglia, for example, are highly dynamic under steady-state conditions and rapidly redirect their cellular processes to engulf debris following tissue injury.

  • Intravital imaging of CNS-infiltrating leukocytes during fatal viral meningitis has revealed that recruitment of myelomonocytic cells by virus-specific cytotoxic lymphocytes causes severe vascular injury and the rapid onset of convulsive seizures. Future imaging studies of CNS inflammatory responses following viral infection are required to determine how the immune system operates during states of viral clearance, latency and persistence.

Abstract

Viral infections are a major cause of human disease. Although most viruses replicate in peripheral tissues, some have developed unique strategies to move into the nervous system, where they establish acute or persistent infections. Viral infections in the central nervous system (CNS) can alter homeostasis, induce neurological dysfunction and result in serious, potentially life-threatening inflammatory diseases. This Review focuses on the strategies used by neurotropic viruses to cross the barrier systems of the CNS and on how the immune system detects and responds to viral infections in the CNS. A special emphasis is placed on immune surveillance of persistent and latent viral infections and on recent insights gained from imaging both protective and pathogenic antiviral immune responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Anatomy of the brain.
Figure 2: CNS viral entry and spread.
Figure 3: Imaging antiviral immune responses in the brain.
Figure 4: Viral meningitis in real time.

Similar content being viewed by others

References

  1. Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010). This study demonstrated that microglial cells are derived from primitive myeloid precursors rather than haematopoietic cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308, 1314–1318 (2005). This study used TPLSM to show that microglial processes are highly dynamic and continually scan the naive brain parenchyma.

    Article  CAS  PubMed  Google Scholar 

  3. Bulloch, K. et al. CD11c/EYFP transgene illuminates a discrete network of dendritic cells within the embryonic, neonatal, adult, and injured mouse brain. J. Compar. Neurol. 508, 687–710 (2008).

    Article  Google Scholar 

  4. Chinnery, H. R., Ruitenberg, M. J. & McMenamin, P. G. Novel characterization of monocyte-derived cell populations in the meninges and choroid plexus and their rates of replenishment in bone marrow chimeric mice. J. Neuropathol. Exp. Neurol. 69, 896–909 (2010).

    Article  PubMed  Google Scholar 

  5. Tyler, K. L. Emerging viral infections of the central nervous system: part 2. Arch. Neurol. 66, 1065–1074 (2009).

    PubMed  PubMed Central  Google Scholar 

  6. Tyler, K. L. Emerging viral infections of the central nervous system: part 1. Arch. Neurol. 66, 939–948 (2009).

    PubMed  PubMed Central  Google Scholar 

  7. Bechmann, I., Galea, I. & Perry, V. H. What is the blood–brain barrier (not)? Trends Immunol. 28, 5–11 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Kutcher, M. E. & Herman, I. M. The pericyte: cellular regulator of microvascular blood flow. Microvasc. Res. 77, 235–246 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Armulik, A. et al. Pericytes regulate the blood–brain barrier. Nature 468, 557–561 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Daneman, R., Zhou, L., Kebede, A. A. & Barres, B. A. Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature 468, 562–566 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Grossmann, R. et al. Juxtavascular microglia migrate along brain microvessels following activation during early postnatal development. Glia 37, 229–240 (2002).

    Article  PubMed  Google Scholar 

  12. Hickey, W. F. & Kimura, H. Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 239, 290–292 (1988).

    CAS  PubMed  Google Scholar 

  13. Prodinger, C. et al. CD11c-expressing cells reside in the juxtavascular parenchyma and extend processes into the glia limitans of the mouse nervous system. Acta Neuropathol. 121, 445–458 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Bartholomaus, I. et al. Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 462, 94–98 (2009).

    Article  PubMed  CAS  Google Scholar 

  15. Mathiisen, T. M., Lehre, K. P., Danbolt, N. C. & Ottersen, O. P. The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia 58, 1094–1103 (2010).

    Article  PubMed  Google Scholar 

  16. Chapagain, M. L., Verma, S., Mercier, F., Yanagihara, R. & Nerurkar, V. R. Polyomavirus JC infects human brain microvascular endothelial cells independent of serotonin receptor 2A. Virology 364, 55–63 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Coyne, C. B., Kim, K. S. & Bergelson, J. M. Poliovirus entry into human brain microvascular cells requires receptor-induced activation of SHP-2. EMBO J. 26, 4016–4028 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Casiraghi, C., Dorovini-Zis, K. & Horwitz, M. S. Epstein-Barr virus infection of human brain microvessel endothelial cells: a novel role in multiple sclerosis. J. Neuroimmunol. 230, 173–177 (2010).

    Article  PubMed  CAS  Google Scholar 

  19. Gralinski, L. E., Ashley, S. L., Dixon, S. D. & Spindler, K. R. Mouse adenovirus type 1-induced breakdown of the blood–brain barrier. J. Virol. 83, 9398–9410 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Afonso, P. V. et al. Alteration of blood–brain barrier integrity by retroviral infection. PLoS Pathog. 4, e1000205 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Verma, S., Kumar, M., Gurjav, U., Lum, S. & Nerurkar, V. R. Reversal of West Nile virus-induced blood–brain barrier disruption and tight junction proteins degradation by matrix metalloproteinases inhibitor. Virology 397, 130–138 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Antar, A. A. et al. Junctional adhesion molecule-A is required for hematogenous dissemination of reovirus. Cell Host Microbe 5, 59–71 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Alexaki, A. & Wigdahl, B. HIV-1 infection of bone marrow hematopoietic progenitor cells and their role in trafficking and viral dissemination. PLoS Pathog. 4, e1000215 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Clay, C. C. et al. Neuroinvasion of fluorescein-positive monocytes in acute simian immunodeficiency virus infection. J. Virol. 81, 12040–12048 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ancuta, P., Wang, J. & Gabuzda, D. CD16+ monocytes produce IL-6, CCL2, and matrix metalloproteinase-9 upon interaction with CX3CL1-expressing endothelial cells. J. Leukoc. Biol. 80, 1156–1164 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Roberts, T. K., Buckner, C. M. & Berman, J. W. Leukocyte transmigration across the blood–brain barrier: perspectives on neuroAIDS. Front. Biosci. 15, 478–536 (2010).

    Article  CAS  Google Scholar 

  27. Monaco, M. C., Atwood, W. J., Gravell, M., Tornatore, C. S. & Major, E. O. JC virus infection of hematopoietic progenitor cells, primary B lymphocytes, and tonsillar stromal cells: implications for viral latency. J. Virol. 70, 7004–7012 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Chapagain, M. L. & Nerurkar, V. R. Human polyomavirus JC (JCV) infection of human B lymphocytes: a possible mechanism for JCV transmigration across the blood–brain barrier. J. Infect. Dis. 202, 184–191 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Salinas, S., Schiavo, G. & Kremer, E. J. A hitchhiker's guide to the nervous system: the complex journey of viruses and toxins. Nature Rev. Microbiol. 8, 645–655 (2010).

    Article  CAS  Google Scholar 

  30. Diefenbach, R. J., Miranda-Saksena, M., Douglas, M. W. & Cunningham, A. L. Transport and egress of herpes simplex virus in neurons. Rev. Med. Virol. 18, 35–51 (2008).

    Article  PubMed  Google Scholar 

  31. Mata, M., Zhang, M., Hu, X. & Fink, D. J. HveC (nectin-1) is expressed at high levels in sensory neurons, but not in motor neurons, of the rat peripheral nervous system. J. Neurovirol. 7, 476–480 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Curanovic, D. & Enquist, L. Directional transneuronal spread of α-herpesvirus infection. Future Virol. 4, 591–603 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mori, I., Nishiyama, Y., Yokochi, T. & Kimura, Y. Olfactory transmission of neurotropic viruses. J. Neurovirol. 11, 129–137 (2005).

    Article  PubMed  Google Scholar 

  34. Samuel, M. A., Wang, H., Siddharthan, V., Morrey, J. D. & Diamond, M. S. Axonal transport mediates West Nile virus entry into the central nervous system and induces acute flaccid paralysis. Proc. Natl Acad. Sci. USA 104, 17140–17145 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Roussarie, J. P., Ruffie, C., Edgar, J. M., Griffiths, I. & Brahic, M. Axon myelin transfer of a non-enveloped virus. PLoS ONE 2, e1331 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Dietzschold, B., Li, J., Faber, M. & Schnell, M. Concepts in the pathogenesis of rabies. Future Virol. 3, 481–490 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Young, V. A. & Rall, G. F. Making it to the synapse: measles virus spread in and among neurons. Curr. Top. Microbiol. Immunol. 330, 3–30 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bajramovic, J. J. et al. Borna disease virus glycoprotein is required for viral dissemination in neurons. J. Virol. 77, 12222–12231 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. de la Torre, J. C. Bornavirus and the brain. J. Infect. Dis. 186, S241–S247 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Hsieh, M. J., White, P. J. & Pouton, C. W. Interaction of viruses with host cell molecular motors. Curr. Opin. Biotechnol. 21, 633–639 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Iannacone, M. et al. Subcapsular sinus macrophages prevent CNS invasion on peripheral infection with a neurotropic virus. Nature 465, 1079–1083 (2010). This seminal study showed that subcapsular sinus macrophages in draining lymph nodes can act as 'gatekeepers' to prevent neurotropic viruses from accessing peripheral nerves and entering the CNS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. De Regge, N. et al. α-herpesvirus glycoprotein D interaction with sensory neurons triggers formation of varicosities that serve as virus exit sites. J. Cell Biol. 174, 267–275 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Knipe, D. M. & Cliffe, A. Chromatin control of herpes simplex virus lytic and latent infection. Nature Rev. Microbiol. 6, 211–221 (2008).

    Article  CAS  Google Scholar 

  44. Conrady, C. D., Drevets, D. A. & Carr, D. J. Herpes simplex type I (HSV-1) infection of the nervous system: is an immune response a good thing? J. Neuroimmunol. 220, 1–9 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Perez de Diego, R. et al. Human TRAF3 adaptor molecule deficiency leads to impaired Toll-like receptor 3 response and susceptibility to herpes simplex encephalitis. Immunity 33, 400–411 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Zhou, Y. et al. Activation of Toll-like receptors inhibits herpes simplex virus-1 infection of human neuronal cells. J. Neurosci. Res. 87, 2916–2925 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Samuel, C. E. Antiviral actions of interferons. Clin. Microbiol. Rev. 14, 778–809 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. De Regge, N., Van Opdenbosch, N., Nauwynck, H. J., Efstathiou, S. & Favoreel, H. W. Interferon alpha induces establishment of alphaherpesvirus latency in sensory neurons in vitro. PLoS ONE 5, e13076 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Sobol, P. T. & Mossman, K. L. ICP0 prevents RNase L-independent rRNA cleavage in herpes simplex virus type 1-infected cells. J. Virol. 80, 218–225 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Harle, P., Sainz, B. Jr, Carr, D. J. & Halford, W. P. The immediate-early protein, ICP0, is essential for the resistance of herpes simplex virus to interferon-α/β. Virology 293, 295–304 (2002).

    Article  PubMed  CAS  Google Scholar 

  51. Khanna, K. M., Lepisto, A. J., Decman, V. & Hendricks, R. L. Immune control of herpes simplex virus during latency. Curr. Opin. Immunol. 16, 463–469 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Simmons, A. & Tscharke, D. C. Anti-CD8 impairs clearance of herpes simplex virus from the nervous system: implications for the fate of virally infected neurons. J. Exp. Med. 175, 1337–1344 (1992).

    Article  CAS  PubMed  Google Scholar 

  53. Khanna, K. M., Bonneau, R. H., Kinchington, P. R. & Hendricks, R. L. Herpes simplex virus-specific memory CD8+ T cells are selectively activated and retained in latently infected sensory ganglia. Immunity 18, 593–603 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Orr, M. T., Mathis, M. A., Lagunoff, M., Sacks, J. A. & Wilson, C. B. CD8 T cell control of HSV reactivation from latency is abrogated by viral inhibition of MHC class I. Cell Host Microbe 2, 172–180 (2007). This study definitively established the importance of MHC class I molecules in controlling HSV-1 latency in sensory neurons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sheridan, B. S., Cherpes, T. L., Urban, J., Kalinski, P. & Hendricks, R. L. Reevaluating the CD8 T-cell response to herpes simplex virus type 1: involvement of CD8 T cells reactive to subdominant epitopes. J. Virol. 83, 2237–2245 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Wakim, L. M., Gebhardt, T., Heath, W. R. & Carbone, F. R. Cutting edge: local recall responses by memory T cells newly recruited to peripheral nonlymphoid tissues. J. Immunol. 181, 5837–5841 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Gebhardt, T. et al. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nature Immunol. 10, 524–530 (2009). This study demonstrated that immune responses mediated by local tissue-resident CD8+ T cells are important in controlling HSV infection.

    Article  CAS  Google Scholar 

  58. Theil, D. et al. Latent herpesvirus infection in human trigeminal ganglia causes chronic immune response. Am. J. Pathol. 163, 2179–2184 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hufner, K. et al. Latency of α-herpes viruses is accompanied by a chronic inflammation in human trigeminal ganglia but not in dorsal root ganglia. J. Neuropathol. Exp. Neurol. 65, 1022–1030 (2006).

    Article  PubMed  Google Scholar 

  60. Verjans, G. M. et al. Selective retention of herpes simplex virus-specific T cells in latently infected human trigeminal ganglia. Proc. Natl Acad. Sci. USA 104, 3496–3501 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu, T., Khanna, K. M., Chen, X., Fink, D. J. & Hendricks, R. L. CD8+ T cells can block herpes simplex virus type 1 (HSV-1) reactivation from latency in sensory neurons. J. Exp. Med. 191, 1459–1466 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Decman, V., Freeman, M. L., Kinchington, P. R. & Hendricks, R. L. Immune control of HSV-1 latency. Viral Immunol. 18, 466–473 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Frank, G. M. et al. Early CD4+ T cell help prevents partial CD8+ T cell exhaustion and promotes maintenance of herpes simplex virus 1 latency. J. Immunol. 184, 277–286 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Wakim, L. M., Waithman, J., van Rooijen, N., Heath, W. R. & Carbone, F. R. Dendritic cell-induced memory T cell activation in nonlymphoid tissues. Science 319, 198–202 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Divito, S., Cherpes, T. L. & Hendricks, R. L. A triple entente: virus, neurons, and CD8+ T cells maintain HSV-1 latency. Immunol. Res. 36, 119–126 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Derfuss, T. et al. Presence of HSV-1 immediate early genes and clonally expanded T-cells with a memory effector phenotype in human trigeminal ganglia. Brain Pathol. 17, 389–398 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mandal, M., Bandyopadhyay, D., Goepfert, T. M. & Kumar, R. Interferon-induces expression of cyclin-dependent kinase-inhibitors p21WAF1 and p27Kip1 that prevent activation of cyclin-dependent kinase by CDK-activating kinase (CAK). Oncogene 16, 217–225 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Liu, T., Khanna, K. M., Carriere, B. N. & Hendricks, R. L. Gamma interferon can prevent herpes simplex virus type 1 reactivation from latency in sensory neurons. J. Virol. 75, 11178–11184 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Knickelbein, J. E. et al. Noncytotoxic lytic granule-mediated CD8+ T cell inhibition of HSV-1 reactivation from neuronal latency. Science 322, 268–271 (2008). This study revealed an interesting mechanism by which CTLs use lytic granules to non-cytopathically control HSV-1 in latently infected neurons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jiang, X. et al. The herpes simplex virus type 1 latency-associated transcript can protect neuron-derived C1300 and Neuro2A cells from granzyme B-induced apoptosis and CD8 T-cell killing. J. Virol. 85, 2325–2332 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Alexaki, A., Liu, Y. & Wigdahl, B. Cellular reservoirs of HIV-1 and their role in viral persistence. Curr. HIV Res. 6, 388–400 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yadav, A. & Collman, R. G. CNS inflammation and macrophage/microglial biology associated with HIV-1 infection. J. Neuroimmune Pharmacol. 4, 430–447 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Brenchley, J. M. et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nature Med. 12, 1365–1371 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Witwer, K. W. et al. Coordinated regulation of SIV replication and immune responses in the CNS. PLoS ONE 4, e8129 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Barber, S. A. et al. Mechanism for the establishment of transcriptional HIV latency in the brain in a simian immunodeficiency virus–macaque model. J. Infect. Dis. 193, 963–970 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Barber, S. A., Herbst, D. S., Bullock, B. T., Gama, L. & Clements, J. E. Innate immune responses and control of acute simian immunodeficiency virus replication in the central nervous system. J. Neurovirol. 10 (Suppl. 1), 15–20 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Ravimohan, S., Gama, L., Barber, S. A. & Clements, J. E. Regulation of SIVmac239 basal long terminal repeat activity and viral replication in macrophages: functional roles of two CCAAT/enhancer-binding protein β sites in activation and interferon β-mediated suppression. J. Biol. Chem. 285, 2258–2273 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Witwer, K. W., Sisk, J. M., Gama, L. & Clements, J. E. MicroRNA regulation of IFN-β protein expression: rapid and sensitive modulation of the innate immune response. J. Immunol. 184, 2369–2376 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Akhtar, L. N. et al. Suppressor of cytokine signaling 3 inhibits antiviral IFN-β signaling to enhance HIV-1 replication in macrophages. J. Immunol. 185, 2393–2404 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Mankowski, J. L., Clements, J. E. & Zink, M. C. Searching for clues: tracking the pathogenesis of human immunodeficiency virus central nervous system disease by use of an accelerated, consistent simian immunodeficiency virus macaque model. J. Infect. Dis. 186, S199–S208 (2002).

    Article  PubMed  Google Scholar 

  81. Schmitz, J. E. et al. Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science 283, 857–860 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Jin, X. et al. Dramatic rise in plasma viremia after CD8+ T cell depletion in simian immunodeficiency virus-infected macaques. J. Exp. Med. 189, 991–998 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Fox, H. S. Virus–host interaction in the simian immunodeficiency virus-infected brain. J. Neurovirol. 14, 286–291 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kim, W. K. et al. Identification of T lymphocytes in simian immunodeficiency virus encephalitis: distribution of CD8+ T cells in association with central nervous system vessels and virus. J. Neurovirol. 10, 315–325 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Roberts, E. S. et al. Host response and dysfunction in the CNS during chronic simian immunodeficiency virus infection. J. Neurosci. 26, 4577–4585 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sadagopal, S. et al. Enhancement of human immunodeficiency virus (HIV)-specific CD8+ T cells in cerebrospinal fluid compared to those in blood among antiretroviral therapy-naive HIV-positive subjects. J. Virol. 82, 10418–10428 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. McCrossan, M. et al. An immune control model for viral replication in the CNS during presymptomatic HIV infection. Brain 129, 503–516 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Cosenza, M. A., Zhao, M. L., Si, Q. & Lee, S. C. Human brain parenchymal microglia express CD14 and CD45 and are productively infected by HIV-1 in HIV-1 encephalitis. Brain Pathol. 12, 442–455 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    Article  CAS  PubMed  Google Scholar 

  90. Germain, R. N., Miller, M. J., Dustin, M. L. & Nussenzweig, M. C. Dynamic imaging of the immune system: progress, pitfalls and promise. Nature Rev. Immunol. 6, 497–507 (2006).

    Article  CAS  Google Scholar 

  91. Zinselmeyer, B. H. et al. Chapter 16. Two-photon microscopy and multidimensional analysis of cell dynamics. Methods Enzymol. 461, 349–378 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Kang, S. S. & McGavern, D. B. Inflammation on the mind: visualizing immunity in the central nervous system. Curr. Top. Microbiol. Immunol. 334, 227–263 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Yang, G., Pan, F., Parkhurst, C. N., Grutzendler, J. & Gan, W. B. Thinned-skull cranial window technique for long-term imaging of the cortex in live mice. Nature Protoc. 5, 201–208 (2010).

    Article  CAS  Google Scholar 

  94. Xu, H. T., Pan, F., Yang, G. & Gan, W. B. Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex. Nature Neurosci. 10, 549–551 (2007). This important study demonstrated how tissue preparation can influence the results of intravital two-photon imaging studies in the CNS.

    Article  CAS  PubMed  Google Scholar 

  95. Mainen, Z. F. et al. Two-photon imaging in living brain slices. Methods 18, 231–239 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Wilson, E. H. et al. Behavior of parasite-specific effector CD8+ T cells in the brain and visualization of a kinesis-associated system of reticular fibers. Immunity 30, 300–311 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Schaeffer, M. et al. Dynamic imaging of T cell–parasite interactions in the brains of mice chronically infected with Toxoplasma gondii. J. Immunol. 182, 6379–6393 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Bajenoff, M. et al. Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity 25, 989–1001 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Brockhaus, J., Moller, T. & Kettenmann, H. Phagocytozing ameboid microglial cells studied in a mouse corpus callosum slice preparation. Glia 16, 81–90 (1996).

    Article  CAS  PubMed  Google Scholar 

  100. Davalos, D. et al. ATP mediates rapid microglial response to local brain injury in vivo. Nature Neurosci. 8, 752–758 (2005). This study demonstrated that extracellular ATP regulates microglial branch dynamics and mediates their rapid response to CNS injury.

    Article  CAS  PubMed  Google Scholar 

  101. Haynes, S. E. et al. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nature Neurosci. 9, 1512–1519 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Kim, J. V. & Dustin, M. L. Innate response to focal necrotic injury inside the blood–brain barrier. J. Immunol. 177, 5269–5277 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Vilela, M. C. et al. Traffic of leukocytes in the central nervous system is associated with chemokine up-regulation in a severe model of herpes simplex encephalitis: an intravital microscopy study. Neurosci. Lett. 445, 18–22 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Kim, J. V., Kang, S. S., Dustin, M. L. & McGavern, D. B. Myelomonocytic cell recruitment causes fatal CNS vascular injury during acute viral meningitis. Nature 457, 191–195 (2009). This study uncovered a novel mechanism in the pathogenesis of viral meningitis by demonstrating that this classic CTL-dependent disease depends on the recruitment of pathogenic innate immune cells for vascular breakdown and induction of fatal convulsive seizures.

    Article  CAS  PubMed  Google Scholar 

  105. Kang, S. S. & McGavern, D. B. Lymphocytic choriomeningitis infection of the central nervous system. Front. Biosci. 13, 4529–4543 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. McGavern, D. B., Christen, U. & Oldstone, M. B. Molecular anatomy of antigen-specific CD8+ T cell engagement and synapse formation in vivo. Nature Immunol. 3, 918–925 (2002).

    Article  CAS  Google Scholar 

  107. Fung-Leung, W. P., Kundig, T. M., Zinkernagel, R. M. & Mak, T. W. Immune response against lymphocytic choriomeningitis virus infection in mice without CD8 expression. J. Exp. Med. 174, 1425–1429 (1991).

    Article  CAS  PubMed  Google Scholar 

  108. Kang, S. S. & McGavern, D. B. Microbial induction of vascular pathology in the CNS. J. Neuroimmune Pharmacol. 5, 370–386 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Major, E. O. Progressive multifocal leukoencephalopathy in patients on immunomodulatory therapies. Annu. Rev. Med. 61, 35–47 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Langer-Gould, A., Atlas, S. W., Green, A. J., Bollen, A. W. & Pelletier, D. Progressive multifocal leukoencephalopathy in a patient treated with natalizumab. N. Engl. J. Med. 353, 375–381 (2005). This study was the first to document JC virus-induced PML in a patient treated with the immunosuppressive adhesion-molecule blocker natalizumab.

    Article  CAS  PubMed  Google Scholar 

  111. Carrat, F. & Flahault, A. Influenza vaccine: the challenge of antigenic drift. Vaccine 25, 6852–6862 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Wong, K. T. Emerging epidemic viral encephalitides with a special focus on henipaviruses. Acta Neuropathol. 120, 317–325 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Astrom, K. E., Mancall, E. L. & Richardson, E. P. Jr. Progressive multifocal leuko-encephalopathy: a hitherto unrecognized complication of chronic lymphatic leukaemia and Hodgkin's disease. Brain 81, 93–111 (1958).

    Article  CAS  PubMed  Google Scholar 

  114. Cinque, P., Koralnik, I. J., Gerevini, S., Miro, J. M. & Price, R. W. Progressive multifocal leukoencephalopathy in HIV-1 infection. Lancet Infect. Dis. 9, 625–636 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Focosi, D. et al. Progressive multifocal leukoencephalopathy: what's new? Neuroscientist 16, 308–323 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Sunyaev, S. R., Lugovskoy, A., Simon, K. & Gorelik, L. Adaptive mutations in the JC virus protein capsid are associated with progressive multifocal leukoencephalopathy (PML). PLoS Genet. 5, e1000368 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Tan, C. S. et al. JC virus latency in the brain and extraneural organs of patients with and without progressive multifocal leukoencephalopathy. J. Virol. 84, 9200–9209 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tan, C. S. & Koralnik, I. J. Progressive multifocal leukoencephalopathy and other disorders caused by JC virus: clinical features and pathogenesis. Lancet Neurol. 9, 425–437 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Aksamit, A. J., Mourrain, P., Sever, J. L. & Major, E. O. Progressive multifocal leukoencephalopathy: investigation of three cases using in situ hybridization with JC virus biotinylated DNA probe. Ann. Neurol. 18, 490–496 (1985).

    Article  CAS  PubMed  Google Scholar 

  120. Pho, M. T., Ashok, A. & Atwood, W. J. JC virus enters human glial cells by clathrin-dependent receptor-mediated endocytosis. J. Virol. 74, 2288–2292 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (NIH) intramural program. S.S.K. is presently supported by a NIH National Research Service Award (NS061447-01). We would like to thank J. Kim and M. Dustin at New York University for insightful discussions and a very supportive collaboration focused on imaging CNS antiviral immunity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorian B. McGavern.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (Movie)

CNS immune sentinels. (MOV 37922 kb)

41577_2011_BFnri2971_MOESM4_ESM.pdf

Supplementary information S2 (Movie)

3D projections of the meninges, glial limitans and BBB. (MOV 24025 kb)

41577_2011_BFnri2971_MOESM6_ESM.pdf

Supplementary information S3 (Movie)

Distribution of LCMV in meningeal stroma. (MOV 9580 kb)

41577_2011_BFnri2971_MOESM8_ESM.pdf

Supplementary information S4 (Movie)

Viral meningitis in 4D. (MOV 27455 kb)

41577_2011_BFnri2971_MOESM10_ESM.pdf

Supplementary information S5 (Movie)

Vascular occlusion and breakdown during LCMV meningitis. (MOV 8191 kb)

41577_2011_BFnri2971_MOESM12_ESM.pdf

Glossary

Immune-privileged

A term used to describe areas of the body with a decreased inflammatory response to foreign antigens, including tissue grafts. These sites include the brain, eye, testis and placenta.

Blood–brain barrier

A barrier formed by tight junctions between endothelial cells that markedly limits entry to the CNS by leukocytes and all large molecules, including to some extent immunoglobulins, cytokines and complement proteins.

Meninges

The membranes surrounding the brain and spinal cord. There are three layers of meninges: the dura mater (outer), the arachnoid mater (middle) and the pia mater (inner).

Aseptic meningitis

Infection and inflammation of the meninges that is not caused by bacteria. Enteroviruses such as echovirus and coxsackie virus are the most common cause of viral meningitis, but cytomegalovirus, HSV, HIV, JEV, LCMV, mumps virus, rabies virus, VZV and WNV can also cause the disease.

Encephalitis

Infection and inflammation of the brain parenchyma. This can be caused by adenovirus, cytomegalovirus, coxsackievirus, EBV, echovirus, HSV, measles virus, poliovirus, mumps virus, rabies virus, rubella virus, VZV and WNV.

Meningoencephalitis

A disease that resembles both meningitis and encephalitis and is characterized by infection and inflammation of both the meninges and brain parenchyma.

Two-photon laser scanning microscopy

(TPLSM). Laser scanning microscopy that uses pulsed infrared laser light for the excitation of conventional fluorophores or fluorescent proteins. This technique greatly reduces photodamage to living specimens and improves the depth of tissue penetration, owing to the low level of light scattering within the tissue.

Tight junctions

A belt-like region of adhesion between adjacent epithelial or endothelial cells that regulates paracellular flux. Tight-junction proteins include the integral membrane proteins occludin and claudin, in association with cytoplasmic zonula occludins proteins.

Pericytes

Cells embedded in the vascular basement membrane of microvessels that are thought to be derived from the vascular smooth muscle lineage. They make close cellular contact with endothelial cells and this interaction is essential for the maintenance of vessel function, as well as for the regulation of angiogenesis and vascular remodelling.

Anterograde and retrograde transport systems

Cargo is moved between the cell body (soma) and the synapse of neurons using two transport mechanisms. The anterograde transport system uses kinesin motors to move cargo from the cell body to the synapse, whereas the retrograde system moves material from the synapse back to the cell body using dynein.

Antigenic drift

A process by which circulating influenza viruses are constantly changing, which allows the virus to cause annual epidemics of illness. Antigenic drift occurs when mutations accumulate in the haemagglutinin and neuraminidase genes and alter the antigenicity of these proteins such that the 'drifted' strains are no longer neutralized by antibodies that were specific for previously circulating strains.

Pathogen-associated molecular patterns

(PAMPs). Molecular patterns that are found in pathogens but not in mammalian cells. Examples include terminally mannosylated and polymannosylated compounds (which bind the mannose receptor) and various microbial components, such as bacterial lipopolysaccharide, hypomethylated DNA, flagellin and double-stranded RNA (all of which bind Toll-like receptors).

γδ T cells

T cells that express the γδ T cell receptor. These T cells are present in the skin, vagina and intestinal epithelium as intraepithelial lymphocytes.

MicroRNAs

(miRNAs). Small RNA molecules that regulate the expression of genes by binding to the 3′-untranslated regions (3′-UTRs) of specific mRNAs.

Quantum dot

A nanocrystalline semiconductor of extremely small size (5–50 nm in diameter) that absorbs incident photons and then emits light of a slightly longer wavelength. Because of a phenomenon called the quantum confinement effect, the colour (wavelength) of the emitted light is determined by the size of the nanocrystal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGavern, D., Kang, S. Illuminating viral infections in the nervous system. Nat Rev Immunol 11, 318–329 (2011). https://doi.org/10.1038/nri2971

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2971

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing