Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Marginal-zone B cells

Key Points

  • Naive, long-lived B cells in rodents and humans are heterogeneous in phenotype, topography and functions. Follicular recirculating B cells populate follicles in the spleen and lymph nodes; static marginal-zone (MZ) B cells are enriched in the MZ of the spleen; and B1 cells recirculate between the blood and the body cavities.

  • Different B-cell clones are enriched with various B-cell subsets by means of a mechanism of positive selection, maturation and maintenance.

  • Selection of the MZ repertoire depends on the rate of clonal production and the specific molecular signals that are received, in part through the B-cell clonal receptor (BCR).

  • Clonal signals through BCRs integrate with signals for survival (through the tumour-necrosis-factor receptor family) and movement (through G-protein-coupled receptors) in regulating the selection and function of MZ B cells.

  • In vitro, MZ B cells present antigen to T cells faster and more efficiently than follicular B cells.

  • Favoured by their location and easy triggering, MZ and B1 B cells are early participants in in vivo T-cell-independent antigen responses and generate a vigorous plasma-cell response.

  • MZ alterations are associated with various autoimmune conditions in both mouse and human.

Abstract

Recent advances in genomics and proteomics, combined with the facilitated generation and analysis of transgenic and gene-knockout animals, have revealed new complexities in classical biological systems, including the B-cell compartment. Studies on an 'old', but poorly characterized, B-cell subset — the naive, marginal-zone (MZ) B-cell subset — over the past two years have spawned an avalanche of data that encompass the generation and function of these cells. Now that the initial 'infatuation' is over, it is time to reconsider these data and generate some conclusions that can be incorporated into a working model of the B-cell system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Selection into effector (plasma-cell) and effector-precursor (B1 and MZ) compartments favours a diverse and complete repertoire.
Figure 2: Model summarizing the signals that are involved in MZ B-cell generation, maintenance and function.
Figure 3: MZ B cells and 'natural immunity' function early in blood-borne antigen removal.

Similar content being viewed by others

References

  1. Goodnow, C. C. Balancing immunity, autoimmunity and self-tolerance. Ann. NY Acad. Sci. 815, 55–66 (1997).

    CAS  PubMed  Google Scholar 

  2. Rolink, A. & Melchers, F. B-cell development in the mouse. Immunol. Lett. 54, 157–161 (1996).

    CAS  PubMed  Google Scholar 

  3. Osmond, D. G., Rolink, A. & Melchers, F. Murine B lymphopoiesis: towards a unified model. Immunol. Today 19, 65–68 (1998).

    CAS  PubMed  Google Scholar 

  4. Kantor, A. B., Stall, A. M., Adams, S. & Herzenberg, L. A. Adoptive transfer of murine B-cell lineages. Ann. NY Acad. Sci. 651, 168–169 (1992).

    CAS  PubMed  Google Scholar 

  5. Stall, A. M., Wells, S. M. & Lam, K. P. B-1 cells: unique origins and functions. Semin. Immunol. 8, 45–59 (1996).

    CAS  PubMed  Google Scholar 

  6. Gray, D., MacLennan, I. C., Bazin, H. & Khan, M. Migrant μ+δ+ and static μ+δ B-lymphocyte subsets. Eur. J. Immunol. 12, 564–569 (1982).

    CAS  PubMed  Google Scholar 

  7. Oliver, A. M., Martin, F., Gartland, G. L., Carter, R. H. & Kearney, J. F. Marginal-zone B cells exhibit unique activation, proliferative and immunoglobulin secretory responses. Eur. J. Immunol. 27, 2366–2374 (1997).

    CAS  PubMed  Google Scholar 

  8. Bendelac, A., Bonneville, M. & Kearney, J. F. Autoreactivity by design: innate B and T lymphocytes. Nature Rev. Immunol. 1, 177–186 (2001).

    CAS  Google Scholar 

  9. Martin, F. & Kearney, J. F. CD21highIgMhigh splenic B cells enriched in the marginal zone: distinct phenotypes and functions. Curr. Top. Microbiol. Immunol. 246, 45–50 (1999).

    CAS  PubMed  Google Scholar 

  10. Martin, F. & Kearney, J. F. B-cell subsets and the mature preimmune repertoire. Marginal-zone and B1 B cells as part of a 'natural immune memory'. Immunol. Rev. 175, 70–79 (2000).

    CAS  PubMed  Google Scholar 

  11. Fagarasan, S., Watanabe, N. & Honjo, T. Generation, expansion, migration and activation of mouse B1 cells. Immunol. Rev. 176, 205–215 (2000).

    CAS  PubMed  Google Scholar 

  12. MacLennan, I. C., Bazin, H., Chassoux, D., Gray, D. & Lortan, J. Comparative analysis of the development of B cells in marginal zones and follicles. Adv. Exp. Med. Biol. 186, 139–144 (1985).

    CAS  PubMed  Google Scholar 

  13. Mond, J. J., Vos, Q., Lees, A. & Snapper, C. M. T-cell-independent antigens. Curr. Opin. Immunol. 7, 349–354 (1995).

    CAS  PubMed  Google Scholar 

  14. Ridge, J. P., Fuchs, E. J. & Matzinger, P. Neonatal tolerance revisited: turning on newborn T cells with dendritic cells. Science 271, 1723–1726 (1996).

    CAS  PubMed  Google Scholar 

  15. Hardy, R. R. & Hayakawa, K. A developmental switch in B lymphopoiesis. Proc. Natl Acad. Sci. USA 88, 11550–11554 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hamilton, A. M., Lehuen, A. & Kearney, J. F. Immunofluorescence analysis of B-1 cell ontogeny in the mouse. Int. Immunol. 6, 355–361 (1994).

    CAS  PubMed  Google Scholar 

  17. Goodnow, C. C. et al. Altered immunoglobulin expression and functional silencing of self-reactive B lymphocytes in transgenic mice. Nature 334, 676–682 (1988).

    CAS  PubMed  Google Scholar 

  18. Martin, F., Chen, X. & Kearney, J. F. Development of VH81X transgene-bearing B cells in fetus and adult: sites for expansion and deletion in conventional and CD5/B1 cells. Int. Immunol. 9, 493–505 (1997).

    CAS  PubMed  Google Scholar 

  19. Martin, F. & Kearney, J. F. Positive selection from newly formed to marginal-zone B cells depends on the rate of clonal production, CD19 and btk. Immunity 12, 39–49 (2000).This study shows positive selection of specific clones into the MZ B-cell compartment.

    CAS  PubMed  Google Scholar 

  20. Erikson, J. et al. Expression of anti-DNA immunoglobulin transgenes in non-autoimmune mice. Nature 349, 331–334 (1991).

    CAS  PubMed  Google Scholar 

  21. Wellmann, U., Werner, A. & Winkler, T. H. Altered selection processes of B lymphocytes in autoimmune NZB/W mice, despite intact central tolerance against DNA. Eur. J. Immunol. 31, 2800–2810 (2001).

    CAS  PubMed  Google Scholar 

  22. Kenny, J. J. et al. Autoreactive B cells escape clonal deletion by expressing multiple antigen receptors. J. Immunol. 164, 4111–4119 (2000).

    CAS  PubMed  Google Scholar 

  23. Weaver, D. et al. Altered repertoire of endogenous immunoglobulin gene expression in transgenic mice containing a rearranged μ heavy-chain gene. Cell 45, 247–259 (1986).

    CAS  PubMed  Google Scholar 

  24. Cascalho, M., Wong, J. & Wabl, M. VH gene replacement in hyperselected B cells of the quasimonoclonal mouse. J. Immunol. 159, 5795–5801 (1997).

    CAS  PubMed  Google Scholar 

  25. Qin, X. F. et al. Secondary V(D)J recombination in B-1 cells. Nature 397, 355–359 (1999).

    CAS  PubMed  Google Scholar 

  26. Carvalho, T. L., Mota-Santos, T., Cumano, A., Demengeot, J. & Vieira, P. Arrested B lymphopoiesis and persistence of activated B cells in adult interleukin-7−/− mice. J. Exp. Med. 194, 1141–1150 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hao, Z. & Rajewsky, K. Homeostasis of peripheral B cells in the absence of B-cell influx from the bone marrow. J. Exp. Med. 194, 1151–1164 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Martin, F., Won, W. J. & Kearney, J. F. Generation of the germline peripheral B-cell repertoire: VH81X-λ B cells are unable to complete all developmental programs. J. Immunol. 160, 3748–3758 (1998).

    CAS  PubMed  Google Scholar 

  29. Cariappa, A. et al. The follicular versus marginal-zone B-lymphocyte cell-fate decision is regulated by Aiolos, Btk and CD21. Immunity 14, 603–615 (2001).

    CAS  PubMed  Google Scholar 

  30. Cooper, M. D., Cain, W. A., Van Alten, P. J. & Good, R. A. Development and function of the immunoglobulin producing system. I. Effect of bursectomy at different stages of development on germinal centers, plasma cells, immunoglobulins and antibody production. Int. Arch. Allergy Appl. Immunol. 35, 242–252 (1969).

    CAS  PubMed  Google Scholar 

  31. Kincade, P. W., Self, K. S. & Cooper, M. D. Survival and function of bursa-derived cells in bursectomized chickens. Cell. Immunol. 8, 93–102 (1973).

    CAS  PubMed  Google Scholar 

  32. Sprent, J., Schaefer, M., Hurd, M., Surh, C. D. & Ron, Y. Mature murine B and T cells transferred to SCID mice can survive indefinitely and many maintain a virgin phenotype. J. Exp. Med. 174, 717–728 (1991).

    CAS  PubMed  Google Scholar 

  33. Agenes, F. & Freitas, A. A. Transfer of small resting B cells into immunodeficient hosts results in the selection of a self-renewing activated B-cell population. J. Exp. Med. 189, 319–330 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Oliver, A. M., Martin, F. & Kearney, J. F. IgMhighCD21high lymphocytes enriched in the splenic marginal zone generate effector cells more rapidly than the bulk of follicular B cells. J. Immunol. 162, 7198–7207 (1999).

    CAS  PubMed  Google Scholar 

  35. Hayakawa, K. et al. Positive selection of natural autoreactive B cells. Science 285, 113–116 (1999).The first demonstration of a defined self antigen (Thy1-associated epitope) that has a role in positive selection and/or maintenance of the B1 repertoire.

    CAS  PubMed  Google Scholar 

  36. Radic, M. Z., Erikson, J., Litwin, S. & Weigert, M. B lymphocytes may escape tolerance by revising their antigen receptors. J. Exp. Med. 177, 1165–1173 (1993).

    CAS  PubMed  Google Scholar 

  37. Li, H., Jiang, Y., Prak, E. L., Radic, M. & Weigert, M. Editors and editing of anti-DNA receptors. Immunity 15, 947–957 (2001).

    CAS  PubMed  Google Scholar 

  38. Chen, X., Martin, F., Forbush, K. A., Perlmutter, R. M. & Kearney, J. F. Evidence for selection of a population of multi-reactive B cells into the splenic marginal zone. Int. Immunol. 9, 27–41 (1997).

    PubMed  Google Scholar 

  39. Li, Y., Li, H. & Weigert, M. Autoreactive B cells in the marginal zone that express dual receptors. J. Exp. Med. 195, 181–188 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Okamoto, M. et al. A transgenic model of autoimmune hemolytic anemia. J. Exp. Med. 175, 71–79 (1992).

    CAS  PubMed  Google Scholar 

  41. Torres, R. M., Flaswinkel, H., Reth, M. & Rajewsky, K. Aberrant B-cell development and immune response in mice with a compromised BCR complex. Science 272, 1804–1808 (1996).

    CAS  PubMed  Google Scholar 

  42. Kraus, M. et al. Interference with immunoglobulin (Ig)α immunoreceptor tyrosine-based activation motif (ITAM) phosphorylation modulates or blocks B-cell development, depending on the availability of an Igβ cytoplasmic tail. J. Exp. Med. 194, 455–469 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Makowska, A., Faizunnessa, N. N., Anderson, P., Midtvedt, T. & Cardell, S. CD1high B cells: a population of mixed origin. Eur. J. Immunol. 29, 3285–3294 (1999).

    CAS  PubMed  Google Scholar 

  44. Otipoby, K. L. et al. CD22 regulates thymus-independent responses and the lifespan of B cells. Nature 384, 634–637 (1996).

    CAS  PubMed  Google Scholar 

  45. Sato, S. et al. CD22 is both a positive and negative regulator of B-lymphocyte antigen receptor signal transduction: altered signaling in CD22-deficient mice. Immunity 5, 551–562 (1996).

    CAS  PubMed  Google Scholar 

  46. O'Keefe, T. L., Williams, G. T., Batista, F. D. & Neuberger, M. S. Deficiency in CD22, a B-cell-specific inhibitory receptor, is sufficient to predispose to development of high-affinity autoantibodies. J. Exp. Med. 189, 1307–1313 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Cornall, R. J. et al. Polygenic autoimmune traits: Lyn, CD22 and SHP-1 are limiting elements of a biochemical pathway regulating BCR signaling and selection. Immunity 8, 497–508 (1998).

    CAS  PubMed  Google Scholar 

  48. Cyster, J. G. et al. Regulation of B-lymphocyte negative and positive selection by tyrosine phosphatase CD45. Nature 381, 325–328 (1996).

    CAS  PubMed  Google Scholar 

  49. Pan, C., Baumgarth, N. & Parnes, J. R. CD72-deficient mice reveal nonredundant roles of CD72 in B-cell development and activation. Immunity 11, 495–506 (1999).

    CAS  PubMed  Google Scholar 

  50. Bikah, G., Carey, J., Ciallella, J. R., Tarakhovsky, A. & Bondada, S. CD5-mediated negative regulation of antigen-receptor-induced growth signals in B-1 B cells. Science 274, 1906–1909 (1996).

    CAS  PubMed  Google Scholar 

  51. Cyster, J. G. & Goodnow, C. C. Protein tyrosine phosphatase 1C negatively regulates antigen receptor signaling in B lymphocytes and determines thresholds for negative selection. Immunity 2, 13–24 (1995).

    CAS  PubMed  Google Scholar 

  52. Schmidt, K. N., Hsu, C. W., Griffin, C. T., Goodnow, C. C. & Cyster, J. G. Spontaneous follicular exclusion of SHP1-deficient B cells is conditional on the presence of competitor wild-type B cells. J. Exp. Med. 187, 929–937 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Tarakhovsky, A. et al. Defective antigen-receptor-mediated proliferation of B and T cells in the absence of Vav. Nature 374, 467–470 (1995).

    CAS  PubMed  Google Scholar 

  54. Fruman, D. A. et al. Impaired B-cell development and proliferation in absence of phosphoinositide 3-kinase p85α. Science 283, 393–397 (1999).

    CAS  PubMed  Google Scholar 

  55. Suzuki, H. et al. Xid-like immunodeficiency in mice with disruption of the p85α subunit of phosphoinositide 3-kinase. Science 283, 390–392 (1999).

    CAS  PubMed  Google Scholar 

  56. Leitges, M. et al. Immunodeficiency in protein-kinase-Cβ-deficient mice. Science 273, 788–791 (1996).

    CAS  PubMed  Google Scholar 

  57. Wang, J. H. et al. Aiolos regulates B-cell activation and maturation to effector state. Immunity 9, 543–553 (1998).

    CAS  PubMed  Google Scholar 

  58. Hatzivassiliou, G. et al. IRTA1 and IRTA2, novel immunoglobulin superfamily receptors expressed in B cells and involved in chromosome 1q21 abnormalities in B-cell malignancy. Immunity 14, 277–289 (2001).

    CAS  PubMed  Google Scholar 

  59. Davis, R. S., Wang, Y. H., Kubagawa, H. & Cooper, M. D. Identification of a family of Fc receptor homologs with preferential B-cell expression. Proc. Natl Acad. Sci. 98, 9772–9777 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Matsumoto, M. et al. Role of lymphotoxin and the type I TNF receptor in the formation of germinal centers. Science 271, 1289–1291 (1996).

    CAS  PubMed  Google Scholar 

  61. Matsumoto, M. et al. Distinct roles of lymphotoxin-α and the type I tumor-necrosis factor (TNF) receptor in the establishment of follicular dendritic cells from non-bone-marrow-derived cells. J. Exp. Med. 186, 1997–2004 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Korner, H. et al. Recirculating and marginal-zone B-cell populations can be established and maintained independently of primary and secondary follicles. Immunol. Cell Biol. 79, 54–61 (2001).

    CAS  PubMed  Google Scholar 

  63. Ngo, V. N. et al. Lymphotoxin α/β and tumor-necrosis factor are required for stromal-cell expression of homing chemokines in B- and T-cell areas of the spleen. J. Exp. Med. 189, 403–412 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ansel, K. M. et al. A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature 406, 309–314 (2000).Using BLC-deficient mice, this study shows the positive effect of BLC on the lymphotoxin pathway that eventually amplifies B-cell migration; it separates B-cell follicles into two 'migratory' subunits.

    CAS  PubMed  Google Scholar 

  65. Gross, J. A. et al. TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease. Nature 404, 995–999 (2000).Together with reference 68 , this paper identifies the first two receptors in the BAFF pathway.

    CAS  PubMed  Google Scholar 

  66. Xu, S. & Lam, K. P. B-cell maturation protein, which binds the tumor-necrosis factor family members BAFF and APRIL, is dispensable for humoral immune responses. Mol. Cell Biol. 21, 4067–4074 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Yan, M. et al. Identification of a receptor for BLyS demonstrates a crucial role in humoral immunity. Nature Immunol. 1, 37–41 (2000).

    CAS  Google Scholar 

  68. Laabi, Y., Egle, A. & Strasser, A. TNF cytokine family: more BAFF-ling complexities. Curr. Biol. 11, R1013–R1016 (2001).

    CAS  PubMed  Google Scholar 

  69. Thompson, J. S. et al. BAFF-R, a newly identified TNF receptor that specifically interacts with BAFF. Science 293, 2108–2111 (2001).Together with reference 70 , this study identifies a third, specific BAFF receptor that has an important impact on B-cell development.

    CAS  PubMed  Google Scholar 

  70. Yan, M. et al. Identification of a novel receptor for B-lymphocyte stimulator that is mutated in a mouse strain with severe B-cell deficiency. Curr. Biol. 11, 1547–1552 (2001).

    CAS  PubMed  Google Scholar 

  71. MacKay, F. et al. Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J. Exp. Med. 190, 1697–1710 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Batten, M. et al. BAFF mediates survival of peripheral immature B lymphocytes. J. Exp. Med. 192, 1453–1465 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Khare, S. D. et al. Severe B-cell hyperplasia and autoimmune disease in TALL-1-transgenic mice. Proc. Natl Acad. Sci. USA 97, 3370–3375 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Schiemann, B. et al. An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science 293, 2111–2114 (2001).

    CAS  PubMed  Google Scholar 

  75. von Bulow, G. U., van Deursen, J. M. & Bram, R. J. Regulation of the T-independent humoral response by TACI. Immunity 14, 573–582 (2001).Together with reference 76 , this paper implicates TACI as being crucial in T-cell-independent immune responses and as an attenuator of B-cell development and signalling.

    CAS  PubMed  Google Scholar 

  76. Yan, M. et al. Activation and accumulation of B cells in TACI-deficient mice. Nature Immunol. 2, 638–643 (2001).

    CAS  Google Scholar 

  77. Nishimura, H., Minato, N., Nakano, T. & Honjo, T. Immunological studies on PD-1-deficient mice: implication of PD-1 as a negative regulator for B-cell responses. Int. Immunol. 10, 1563–1572 (1998).

    CAS  PubMed  Google Scholar 

  78. Nishimura, H., Nose, M., Hiai, H., Minato, N. & Honjo, T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM-motif-carrying immunoreceptor. Immunity 11, 141–151 (1999).

    CAS  PubMed  Google Scholar 

  79. Yoshinaga, S. K. et al. T-cell co-stimulation through B7RP-1 and ICOS. Nature 402, 827–832 (1999).

    CAS  PubMed  Google Scholar 

  80. Yoshinaga, S. K. et al. Characterization of a new human B7-related protein: B7RP-1 is the ligand to the co-stimulatory protein ICOS. Int. Immunol. 12, 1439–1447 (2000).

    CAS  PubMed  Google Scholar 

  81. Gunn, M. D. et al. A B-cell-homing chemokine made in lymphoid follicles activates Burkitt's lymphoma receptor-1. Nature 391, 799–803 (1998).

    CAS  PubMed  Google Scholar 

  82. Cyster, J. G. et al. Chemokines and B-cell homing to follicles. Curr. Top. Microbiol. Immunol. 246, 87–92 (1999).

    CAS  PubMed  Google Scholar 

  83. Guinamard, R., Okigaki, M., Schlessinger, J. & Ravetch, J. V. Abscence of marginal zone B cells in Pyk-2-deficient mice defines their role in the humoral response. Nature Immunol. 1, 31–36 (2000)The first glimpse of a defect that is related to a migratory pathway that affects marginal-zone (MZ) B-cell development; also indicates a role for the MZ in T-cell-independent immune responses.

    CAS  Google Scholar 

  84. Fukui, Y. et al. Haematopoietic cell-specific CDM-family protein DOCK2 is essential for lymphocyte migration. Nature 412, 826–831 (2001).DOCK2 is a crucial molecule for the chemokine-mediated activation of Rac and lymphocyte migration; DOCK2-deficient animals lack marginal-zone and B1 B cells, in addition to other defects.

    CAS  PubMed  Google Scholar 

  85. Girkontaite, I. et al. Lsc is required for marginal-zone B cells, regulation of lymphocyte motility and immune responses. Nature Immunol. 2, 855–862 (2001).Lsc is another player in the lymphocyte-migration pathway, which, when missing, affects marginal-zone but not B1 B cells.

    CAS  Google Scholar 

  86. Doody, G. M. et al. Signal transduction through Vav-2 participates in humoral immune responses and B-cell maturation. Nature Immunol. 2, 542–547 (2001).

    CAS  Google Scholar 

  87. Tedford, K. et al. Compensation between Vav-1 and Vav-2 in B-cell development and antigen-receptor signaling. Nature Immunol. 2, 548–555 (2001).

    CAS  Google Scholar 

  88. Hla, T., Lee, M. J., Ancellin, N., Paik, J. H. & Kluk, M. J. Lysophospholipids – receptor revelations. Science 294, 1875–1878 (2001).

    CAS  PubMed  Google Scholar 

  89. Le, L. Q. et al. Mice lacking the orphan G-protein-coupled receptor G2A develop a late-onset autoimmune syndrome. Immunity 14, 561–571 (2001).

    CAS  PubMed  Google Scholar 

  90. Shi, C. S. & Kehrl, J. H. PYK2 links G(q)α and G(13)α signaling to NF-κB activation. J. Biol. Chem. 276, 31845–31850 (2001).

    CAS  PubMed  Google Scholar 

  91. Moratz, C. et al. Regulator of G protein signaling 1 (RGS1) markedly impairs Giα signaling responses of B lymphocytes. J. Immunol. 164, 1829–1838 (2000).

    CAS  PubMed  Google Scholar 

  92. Reif, K. & Cyster, J. G. RGS molecule expression in murine B lymphocytes and ability to down-regulate chemotaxis to lymphoid chemokines. J. Immunol. 164, 4720–4729 (2000).

    CAS  PubMed  Google Scholar 

  93. Cariappa, A., Liou, H.-C. & Pillai, S. Nuclear factor κB is required for the development of marginal-zone B lymphocytes. J. Exp. Med. 192, 1175–1182 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Weih, D. S., Yilmaz, Z. B. & Weih, F. Essential role of RelB in germinal-center and marginal-zone formation and proper expression of homing chemokines. J. Immunol. 167, 1909–1919 (2001).

    CAS  PubMed  Google Scholar 

  95. Grossmann, M. et al. The anti-apoptotic activities of Rel and RelA required during B-cell maturation involve the regulation of Bcl-2 expression. EMBO J. 19, 6351–6360 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Fagarasan, S. et al. Alymphoplasia (aly)-type nuclear-factor-κB-inducing kinase (NIK) causes defects in secondary lymphoid tissue chemokine receptor signaling and homing of peritoneal cells to the gut-associated lymphatic tissue system. J. Exp. Med. 191, 1477–1486 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Yin, L. et al. Defective lymphotoxin-β-receptor-induced NF-κB transcriptional activity in NIK-deficient mice. Science 291, 2162–2165 (2001).

    CAS  PubMed  Google Scholar 

  98. Senftleben, U. et al. Activation by IKKα of a second, evolutionary conserved, NF-κB signaling pathway. Science 293, 1495–1499 (2001).

    CAS  PubMed  Google Scholar 

  99. Kaisho, T. et al. IκB kinase-α is essential for mature B-cell development and function. J. Exp. Med. 193, 417–426 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Hu, C. J. et al. PU.1/Spi-B regulation of c-rel is essential for mature B-cell survival. Immunity 15, 545–555 (2001).

    CAS  PubMed  Google Scholar 

  101. Cheng, P. et al. Notch-1 regulates NF-κB activity in hemopoietic progenitor cells. J. Immunol. 167, 4458–4467 (2001).

    CAS  PubMed  Google Scholar 

  102. Koch, U. et al. Subversion of the T/B lineage decision in the thymus by lunatic-fringe-mediated inhibition of Notch-1. Immunity 15, 225–236 (2001).

    CAS  PubMed  Google Scholar 

  103. Wilson, A., MacDonald, H. R. & Radtke, F. Notch-1-deficient common lymphoid precursors adopt a B-cell fate in the thymus. J. Exp. Med. 194, 1003–1012 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Humbert, P. O. & Corcoran, L. M. Oct-2 gene disruption eliminates the peritoneal B-1 lymphocyte lineage and attenuates B-2 cell maturation and function. J. Immunol. 159, 5273–5284 (1997).

    CAS  PubMed  Google Scholar 

  105. Martin, F. & Kearney, J. F. Selection in the mature B-cell repertoire. Curr. Top. Microbiol. Immunol. 252, 97–105 (2000).

    CAS  PubMed  Google Scholar 

  106. Martin, F. & Kearney, J. F. Positive selection from newly formed to marginal-zone B cells depends on the rate of clonal production, CD19 and btk. Immunity 12, 39–49 (2000).

    CAS  PubMed  Google Scholar 

  107. Shaw, P. X. et al. Natural antibodies with the T15 idiotype may act in atherosclerosis, apoptotic clearance and protective immunity. J. Clin. Invest. 105, 1731–1740 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Kearney, J. F. Immune recognition of OxLDL in atherosclerosis. J. Clin. Invest. 105, 1683–1685 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Gumperz, J. E. et al. Murine CD1d-restricted T-cell recognition of cellular lipids. Immunity 12, 211–221 (2000).

    CAS  PubMed  Google Scholar 

  110. Martin, F., Oliver, A. M. & Kearney, J. F. Marginal-zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens. Immunity 14, 617–629 (2001).

    CAS  PubMed  Google Scholar 

  111. Qian, Y., Santiago, C., Borrero, M., Tedder, T. F. & Clarke, S. H. Lupus-specific antiribonucleoprotein B-cell tolerance in nonautoimmune mice is maintained by differentiation to B-1 and governed by B-cell receptor signaling thresholds. J. Immunol. 166, 2412–2419 (2001).

    CAS  PubMed  Google Scholar 

  112. Grimaldi, C. M., Michael, D. J. & Diamond, B. Cutting edge: expansion and activation of a population of autoreactive marginal-zone B cells in a model of estrogen-induced lupus. J. Immunol. 167, 1886–1890 (2001).

    CAS  PubMed  Google Scholar 

  113. Wither, J. E., Roy, V. & Brennan, L. A. Activated B cells express increased levels of costimulatory molecules in young autoimmune NZB and (NZB × NZW)F(1) mice. Clin. Immunol. 94, 51–63 (2000).

    CAS  PubMed  Google Scholar 

  114. Segundo, C. et al. Thyroid-infiltrating B lymphocytes in Graves' disease are related to marginal-zone and memory B-cell compartments. Thyroid 11, 525–530 (2001).

    CAS  PubMed  Google Scholar 

  115. Groom, J. et al. Association of BAFF/BLyS overexpression and altered B-cell differentiation with Sjogren's syndrome. J. Clin. Invest. 109, 59–68 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Korganow, A. S. et al. From systemic T-cell self-reactivity to organ-specific autoimmune disease via immunoglobulins. Immunity 10, 451–461 (1999).

    CAS  PubMed  Google Scholar 

  117. Hori, M. et al. Non-Hodgkin lymphomas of mice. Blood Cells Mol. Dis. 27, 217–222 (2001).

    CAS  PubMed  Google Scholar 

  118. Morse, H. C. et al. Cells of the marginal zone — origins, function and neoplasia. Leuk. Res. 25, 169–178 (2001).

    CAS  PubMed  Google Scholar 

  119. Kraal, G. Cells in the marginal zone of the spleen. Int. Rev. Cytol. 132, 31–74 (1992).

    CAS  PubMed  Google Scholar 

  120. Pettersen, J. C., Borgen, D. F. & Graupner, K. C. A morphological and histochemical study of the primary and secondary immune responses in the rat spleen. Am. J. Anat. 121, 305–317 (1967).

    CAS  PubMed  Google Scholar 

  121. Clark, J. M. & Weiss, L. Effects of a bacterial vaccine on the marginal zone of the spleen. Am. J. Anat. 132, 79–92 (1971).

    CAS  PubMed  Google Scholar 

  122. Kumararatne, D. S., Bazin, H. & MacLennan, I. C. Marginal zones: the major B-cell compartment of rat spleens. Eur. J. Immunol. 11, 858–864 (1981).

    CAS  PubMed  Google Scholar 

  123. Kumararatne, D. S. & MacLennan, I. C. Cells of the marginal zone of the spleen are lymphocytes derived from recirculating precursors. Eur. J. Immunol. 11, 865–869 (1981).

    CAS  PubMed  Google Scholar 

  124. Kumararatne, D. S., MacLennan, I. C., Bazin, H. & Gray, D. Marginal zones: the largest B-cell compartment of the rat spleen. Adv. Exp. Med. Biol. 149, 67–73 (1982).

    CAS  PubMed  Google Scholar 

  125. Gray, D., Kumararatne, D. S., Lortan, J., Khan, M. & MacLennan, I. C. Relation of intra-splenic migration of marginal-zone B cells to antigen localization on follicular dendritic cells. Immunology 52, 659–669 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Humphrey, J. H. Splenic macrophages: antigen-presenting cells for T1-2 antigens. Immunol. Lett. 11, 149–152 (1985).

    CAS  PubMed  Google Scholar 

  127. Kraal, G. & Janse, M. Marginal metallophilic cells of the mouse spleen identified by a monoclonal antibody. Immunology 58, 665–669 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Dijkstra, C. D., Van, V. E., Dopp, E. A., van der Lelij, A. A. & Kraal, G. Marginal-zone macrophages identified by a monoclonal antibody: characterization of immuno- and enzyme-histochemical properties and functional capacities. Immunology 55, 23–30 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Balazs, M., Horvath, G., Grama, L. & Balogh, P. Phenotypic identification and development of distinct microvascular compartments in the postnatal mouse spleen. Cell. Immunol. 212, 126–137 (2001).

    CAS  PubMed  Google Scholar 

  130. Liu, Y. J., Zhang, J., Lane, P. J., Chan, E. Y. & MacLennan, I. C. Sites of specific B-cell activation in primary and secondary responses to T-cell-dependent and T-cell-independent antigens. Eur. J. Immunol. 21, 2951–2962 (1991).

    CAS  PubMed  Google Scholar 

  131. Dunn-Walters, D. K., Isaacson, P. G. & Spencer, J. Analysis of mutations in immunoglobulin heavy-chain variable-region genes of microdissected marginal-zone (MGZ) B cells suggests that the MGZ of human spleen is a reservoir of memory B cells. J. Exp. Med. 182, 559–566 (1995).

    CAS  PubMed  Google Scholar 

  132. Spencer, J., Perry, M. E. & Dunn–Walters, D. K. Human marginal-zone B cells. Immunol. Today 19, 421–426 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank P. Balogh (University of Pecs, Hungary) for the anti-endothelial antibody IBL7/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. Kearney.

Related links

Related links

DATABASES

Cancer.gov

lymphoma

InterPro

CDM family

ETS

NFκB/REL family

POU

RGS

LocusLink

Aiolos

APRIL

B7

B7RP1

BAFF

Baff

BAFFR

Baffr

BCMA

BLC

BTK

CD1

CD5

CD11c

CD19

CD21

CD22

CD23

CD28

CD45

CD72

CD79A

CD79B

CTLA4

Delta

Dock2

DOCK180

Gα12

Gα13

G2A

G2a

GPR4

ICOS

Igh

Igl

Il7

Il7r

IRTA1

Jagged

Lsc

Ltα

Ltβ

Ltβr

MADCAM

mbc

Nfκb1

Notch

OCT2

OGR1

PD1

PI3K

PKCβ

PU.1

Pyk2

Rag

cRel

Rela

Relb

RELB

Serrate

SHP1

Spib

TACI

TDAG8

TLRs

TNF

Tnf

Tnfr2

VAV1

Vav1

Vav2

λ5

OMIM

autoimmune haemolytic anaemia

Grave's disease

lupus

rheumatoid arthritis

Sjogren's syndrome

Wormbase

ced5

Glossary

NEONATAL TOLERANCE

Functional status of the newborn immune system — discovered by Billingham, Brent and Medawar — that is characterized by the inability to reject allografts.

ALLELIC EXCLUSION

Property of lymphocytes to express a clonal receptor that is derived from only one of the two genetic loci.

Rag-KNOCKOUT MICE

Mice in which a recombination-activating gene (Rag1 or Rag2) has been knocked out; as a result, these mice are not able to generate mature T and B cells.

SCID MICE

Severe combined immunodeficient mice with a spontaneous mutation in the DNA protein kinase that results in a lack of mature T and B cells.

BURSA OF FABRICIUS

Lymphoid organ giving rise to B cells that is located at the junction of the cloaca and gut in birds.

NOTCH

A Drosophila gene that is required in ectodermal cells to prevent differentiation into neuroblasts. Mammalian homologues have been described to have roles in cell-fate specification in various systems.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, F., Kearney, J. Marginal-zone B cells. Nat Rev Immunol 2, 323–335 (2002). https://doi.org/10.1038/nri799

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri799

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing