Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Selection and fine-tuning of the autoimmune T-cell repertoire

Key Points

  • The ability of a self-reactive T cell to mount an autoaggressive response depends on the sensitivity (or functional avidity) that it has for the self-antigen.

  • Functional avidity is determined primarily by the affinity with which the self-peptide binds to the MHC molecule and the affinity of the T-cell receptor (TCR) for the resulting peptide–MHC complex, but alterations in the T-cell-signalling machinery can either raise or lower avidity.

  • High-avidity self-reactive T cells can escape negative selection if the self-antigen is not expressed in the thymus.

  • The self-peptide–MHC complex might be generated only at low levels owing to epitope destruction during antigen processing within the thymus. Low-affinity peptide–MHC binding might also allow high-avidity autoreactive T cells to escape negative selection and populate the periphery.

  • T cells remain sensitive to negative selection once in the periphery. Immunization with superagonist antigens results in the death of T cells that express high-affinity TCRs, which allows the selective expansion of T-cell populations that express low- to moderate-affinity TCRs and, therefore, have low to moderate functional avidity.

  • There is now increasing evidence that a T cell can modulate its functional avidity for antigen by altering the levels of molecules that control the TCR proximal-signalling events that lead to activation. This has become known as 'tuning'.

  • Tuning has been shown to take place during thymic development, which results in the reduced avidity of T cells that express transgenic TCRs of fixed affinity for peptide–MHC. This allows T cells to avoid negative selection by lowering their functional avidity.

  • Recent data indicate that T cells can also down-modulate their functional avidity after encountering neo-self-antigen in the periphery. Maintenance of this low-avidity state is dependent on continued exposure to the self-antigen.

  • These mechanisms of TCR-based selection and biochemical tuning prevent autoimmunity by maintaining the avidity of the normal self-reactive T-cell repertoire at a low level. The activation of these self-reactive T cells, therefore, requires levels of self-peptide–MHC complexes that might not be achieved under physiological conditions.

  • Activation of a pathological autoreactive response would, therefore, (probably) require a combination of factors that increase the level of self-antigen that is available and the avidity of the anti-self T-cell response.

Abstract

The immune system must avoid aggressive T-cell responses against self-antigens. But, paradoxically, exposure to self-peptides seems to have an important role in positive selection in the thymus and the maintenance of a broad T-cell repertoire in the periphery. Recent experiments have highlighted situations that allow high-avidity self-reactive T cells to avoid negative selection in the thymus. Accumulating evidence indicates that other, non-deleting mechanisms control the avidity with which T cells recognize self-antigens — a phenomenon that is known as 'tuning'. This might maximize the peripheral T-cell repertoire by allowing the survival of T cells that can respond to self, but only at concentrations that are not normally reached in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Factors that affect functional T-cell avidity.
Figure 2: How self-reactive T cells might avoid negative selection in the thymus.
Figure 3: Model for avidity-based modulation of the peripheral T-cell repertoire.
Figure 4: How avidity-based peripheral tolerance might be broken.

Similar content being viewed by others

References

  1. Walker, L. S. K. & Abbas, A. K. The enemy within: keeping self-reactive T cells at bay in the periphery. Nature Rev Immunol 2, 11–19 (2002).

    CAS  Google Scholar 

  2. Maloy, K. J. & Powrie, F. Regulatory T cells in the control of immune pathology. Nature Immunol. 2, 816–822 (2001).

    CAS  Google Scholar 

  3. Margulies, D. H. TCR avidity: it's not how strong you make it, it's how you make it strong. Nature Immunol. 2, 669–670 (2001).

    CAS  Google Scholar 

  4. Wraith, D. C., Smilek, D. E., Mitchell, D. J., Steinman, L. & McDevitt, H. O. Antigen recognition in autoimmune encephalomyelitis and the potential for peptide-mediated immunotherapy. Cell 59, 247–255 (1989).

    CAS  PubMed  Google Scholar 

  5. Anderton, S. M., Radu, C. G., Lowrey, P. A., Ward, E. S. & Wraith, D. C. Negative selection during the peripheral immune response to antigen. J. Exp. Med. 193, 1–11 (2001).Clear evidence for the deletion of self-reactive T cells that express high-affinity TCRs during an in vivo immune response.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Nugent, C. T. et al. Characterization of CD8+ T lymphocytes that persist after peripheral tolerance to a self antigen expressed in the pancreas. J. Immunol. 164, 191–200 (2000).

    CAS  PubMed  Google Scholar 

  7. Yee, C., Savage, P. A., Lee, P. P., Davis, M. M. & Greenberg, P. D. Isolation of high-avidity melanoma-reactive CTL from heterogeneous populations using peptide–MHC tetramers. J. Immunol. 162, 2227–2234 (1999).

    CAS  PubMed  Google Scholar 

  8. Zuniga-Pflucker, J. C. et al. Role of CD4 in thymocyte selection and maturation. J. Exp. Med. 169, 2085–2096 (1989).

    CAS  PubMed  Google Scholar 

  9. Chidgey, A. & Boyd, R. Agonist peptide modulates T-cell selection thresholds through qualitative and quantitative shifts in CD8 co-receptor expression. Int. Immunol. 9, 1527–1536 (1997).

    CAS  PubMed  Google Scholar 

  10. Stein, P. L., Lee, H. M., Rich, S. & Soriano, P. pp59fyn mutant mice display differential signaling in thymocytes and peripheral T cells. Cell 70, 741–750 (1992).

    CAS  PubMed  Google Scholar 

  11. Azzam, H. S. et al. Fine tuning of TCR signaling by CD5. J. Immunol. 166, 5464–5472 (2001).

    CAS  PubMed  Google Scholar 

  12. Plas, D. R. et al. Direct regulation of ZAP-70 by SHP-1 in T-cell antigen receptor signaling. Science 272, 1173–1176 (1996).

    CAS  PubMed  Google Scholar 

  13. Kim, E. Y. & Teh, H. S. TNF type 2 receptor (p75) lowers the threshold of T-cell activation. J. Immunol. 167, 6812–6820 (2001).

    CAS  PubMed  Google Scholar 

  14. al-Ramadi, B. K., Jelonek, M. T., Boyd, L. F., Margulies, D. H. & Bothwell, A. L. Lack of strict correlation of functional sensitization with the apparent affinity of MHC–peptide complexes for the TCR. J. Immunol. 155, 662–673 (1995).

    CAS  PubMed  Google Scholar 

  15. Kersh, G. J. & Allen, P. M. Structural basis for T-cell recognition of altered peptide ligands: a single T-cell receptor can productively recognize a large continuum of related ligands. J. Exp. Med. 184, 1259–1268 (1996).

    CAS  PubMed  Google Scholar 

  16. Wraith, D. C., Bruun, B. & Fairchild, P. J. Cross-reactive antigen recognition by an encephalitogenic T-cell receptor. Implications for T-cell biology and autoimmunity. J. Immunol. 149, 3765–3770 (1992).

    CAS  PubMed  Google Scholar 

  17. Anderson, A. C. et al. Autoantigen-responsive T-cell clones demonstrate unfocused TCR cross-reactivity toward multiple related ligands: implications for autoimmunity. Cell. Immunol. 202, 88–96 (2000).

    CAS  PubMed  Google Scholar 

  18. Mason, D. A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol. Today 19, 395–404 (1998).

    CAS  PubMed  Google Scholar 

  19. Borghans, J. A., Noest, A. J. & De Boer, R. J. How specific should immunological memory be? J. Immunol. 163, 569–575 (1999).

    CAS  PubMed  Google Scholar 

  20. Ashtonrickardt, P. G. et al. Evidence for a differential avidity model of T-cell selection in the thymus. Cell 76, 651–663 (1994).

    CAS  Google Scholar 

  21. Sebzda, E. et al. Selection of the T-cell repertoire. Annu. Rev. Immunol. 17, 829–874 (1999).

    CAS  PubMed  Google Scholar 

  22. Savage, P. A. & Davis, M. M. A kinetic window constricts the T-cell receptor repertoire in the thymus. Immunity 14, 243–252 (2001).

    CAS  PubMed  Google Scholar 

  23. Zamvil, S. S. et al. T-cell epitope of the autoantigen myelin basic protein that induces encephalomyelitis. Nature 324, 258–260 (1986).

    CAS  PubMed  Google Scholar 

  24. Harrington, C. J. et al. Differential tolerance is induced in T cells recognizing distinct epitopes of myelin basic protein. Immunity 8, 571–580 (1998).

    CAS  PubMed  Google Scholar 

  25. Targoni, O. S. & Lehmann, P. V. Endogenous myelin basic protein inactivates the high avidity T-cell repertoire. J. Exp. Med. 187, 2055–2063 (1998).References 24 and 25 show that high-avidity MBP-reactive T cells are present in MBP-deficient mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Tuohy, V. K., Lu, Z., Sobel, R. A., Laursen, R. A. & Lees, M. B. Identification of an encephalitogenic determinant of myelin proteolipid protein for SJL mice. J. Immunol. 142, 1523–1527 (1989).

    CAS  PubMed  Google Scholar 

  27. Anderson, A. C. et al. High frequency of autoreactive myelin proteolipid protein-specific T cells in the periphery of naive mice: mechanisms of selection of the self-reactive repertoire. J. Exp. Med. 191, 761–770 (2000).Lack of autoantigen in the thymus allows a high frequency of PLP-reactive T cells to reach the periphery.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Nave, K. A., Lai, C., Bloom, F. E. & Milner, R. J. Splice site selection in the proteolipid protein (PLP) gene transcript and primary structure of the DM-20 protein of central nervous system myelin. Proc. Natl Acad. Sci. USA 84, 5665–5669 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu, H., MacKenzie-Graham, A. J., Kim, S. & Voskuhl, R. R. Mice resistant to experimental autoimmune encephalomyelitis have increased thymic expression of myelin basic protein and increased MBP-specific T-cell tolerance. J. Neuroimmunol. 115, 118–126 (2001).

    CAS  PubMed  Google Scholar 

  30. Lee, D. S., Ahn, C., Ernst, B., Sprent, J. & Surh, C. D. Thymic selection by a single MHC–peptide ligand: autoreactive T cells are low-affinity cells. Immunity 10, 83–92 (1999).

    CAS  PubMed  Google Scholar 

  31. Liu, G. Y. et al. Low-avidity recognition of self-antigen by T cells permits escape from central tolerance. Immunity 3, 407–415 (1995).The administration of superagonist, but not wild-type, MBP peptide deletes TCR-transgenic thymocytes. Therefore, weak peptide–MHC interactions fail to induce central tolerance.

    CAS  PubMed  Google Scholar 

  32. Lee, C. et al. Evidence that the autoimmune antigen myelin basic protein (MBP) Ac1-9 binds towards one end of the major histocompatibility complex (MHC) cleft. J. Exp. Med. 187, 1505–1516 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Fritz, R. B. & Zhao, M. L. Thymic expression of myelin basic protein (MBP). Activation of MBP-specific T cells by thymic cells in the absence of exogenous MBP. J. Immunol. 157, 5249–5253 (1996).

    CAS  PubMed  Google Scholar 

  34. Carrasco-Marin, E., Shimizu, J., Kanagawa, O. & Unanue, E. R. The class II MHC I–Ag7 molecules from non-obese diabetic mice are poor peptide binders. J. Immunol. 156, 450–458 (1996).

    CAS  PubMed  Google Scholar 

  35. Ridgway, W. M., Fasso, M. & Fathman, C. G. A new look at MHC and autoimmune disease. Science 284, 749–751 (1999).

    CAS  PubMed  Google Scholar 

  36. Offner, H. et al. T-cell determinants of myelin basic protein include a unique encephalitogenic I-E-restricted epitope for Lewis rats. J. Exp. Med. 170, 355–367 (1989).

    CAS  PubMed  Google Scholar 

  37. Kono, D. H. et al. Two minor determinants of myelin basic protein induce experimental allergic encephalomyelitis in SJL/J mice. J. Exp. Med. 168, 213–227 (1988).

    CAS  PubMed  Google Scholar 

  38. Ota, K. et al. T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature 346, 183–187 (1990).

    CAS  PubMed  Google Scholar 

  39. Anderton, S. M., Viner, N. J., Matharu, P., Lowrey, P. A. & Wraith, D. C. Influence of a dominant cryptic epitope on autoimmune T-cell tolerance. Nature Immunol. 3,175–181 (2002).

    CAS  Google Scholar 

  40. Manoury, B. et al. An asparaginyl endopeptidase processes a microbial antigen for class II MHC presentation. Nature 396, 695–699 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Antoniou, A. N., Blackwood, S. L., Mazzeo, D. & Watts, C. Control of antigen presentation by a single protease cleavage site. Immunity 12, 391–398 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Manoury, B. et al. Destructive processing by asparagine endopeptidase limits presentation of a dominant T-cell epitope in MBP. Nature Immunol. 3, 169–174 (2002).Antigen processing might infuence thymic deletion by preventing efficient generation of self-peptide–MHC complexes.

    CAS  Google Scholar 

  43. Grossman, Z. & Paul, W. E. Adaptive cellular interactions in the immune system: the tunable activation threshold and the significance of subthreshold responses. Proc. Natl Acad. Sci. USA 89, 10365–10369 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Grossman, Z. & Paul, W. E. Autoreactivity, dynamic tuning and selectivity. Curr. Opin. Immunol. 13, 687–698 (2001).

    CAS  PubMed  Google Scholar 

  45. Davey, G. M. et al. Preselection thymocytes are more sensitive to T-cell receptor stimulation than mature T cells. J. Exp. Med. 188, 1867–1874 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sebzda, E. et al. Mature T-cell reactivity altered by peptide agonist that induces positive selection. J. Exp. Med. 183, 1093–1104 (1996).

    CAS  PubMed  Google Scholar 

  47. Hogquist, K. A., Jameson, S. C., Carbone, F. R. & Bevan, M. J. TCR antagonists induce positive selection. Cell 76, 17–27 (1994).

    CAS  PubMed  Google Scholar 

  48. Lucas, B., Stefanova, I., Yasutomo, K., Dautigny, N. & Germain, R. N. Divergent changes in the sensitivity of maturing T cells to structurally related ligands underlies formation of a useful T-cell repertoire. Immunity 10, 367–376 (1999).References 46–48 provide strong evidence for the tuning of T-cell avidity during thymic maturation.

    CAS  PubMed  Google Scholar 

  49. Sloan-Lancaster, J., Shaw, A. S., Rothbard, J. B. & Allen, P. M. Partial T-cell signaling: altered phospho-ζ and lack of ZAP70 recruitment in APL-induced T-cell anergy. Cell 79, 913–922 (1994).

    CAS  PubMed  Google Scholar 

  50. Miller, J. et al. Induction of peripheral CD8+ T-cell tolerance by cross-presentation of self-antigens. Immunol. Rev. 165, 267–277 (1998).

    CAS  PubMed  Google Scholar 

  51. Goldrath, A. W. & Bevan, M. J. Selecting and maintaining a diverse T-cell repertoire. Nature 402, 255–262 (1999).

    CAS  PubMed  Google Scholar 

  52. Marrack, P. et al. Homeostasis of αβ TCR+ T cells. Nature Immunol. 1, 107–111 (2000).

    CAS  Google Scholar 

  53. Ernst, B., Lee, D. S., Chang, J. M., Sprent, J. & Surh, C. D. The peptide ligands mediating positive selection in the thymus control T-cell survival and homeostatic proliferation in the periphery. Immunity 11, 173–181 (1999).

    CAS  PubMed  Google Scholar 

  54. Brocker, T. Survival of mature CD4 T lymphocytes is dependent on major histocompatibility complex class II-expressing dendritic cells. J. Exp. Med. 186, 1223–1232 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Goldrath, A. W. & Bevan, M. J. Low-affinity ligands for the TCR drive proliferation of mature CD8+ T cells in lymphopenic hosts. Immunity 11, 183–190 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kirberg, J., Berns, A. & von Boehmer, H. Peripheral T-cell survival requires continual ligation of the T-cell receptor to major histocompatibility complex-encoded molecules. J. Exp. Med. 186, 1269–1275 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Alfonso, C. & Karlsson, L. Nonclassical MHC class II molecules. Annu. Rev. Immunol. 18, 113–142 (2000).

    CAS  PubMed  Google Scholar 

  58. Viret, C., Wong, F. S. & Janeway, C. A. Jr. Designing and maintaining the mature TCR repertoire: the continuum of self-peptide–self-MHC complex recognition. Immunity 10, 559–568 (1999).

    CAS  PubMed  Google Scholar 

  59. Fung-Leung, W.-P. et al. Antigen presentation and T-cell development in H2-M-deficient mice. Science 271, 1278–1281 (1996).

    CAS  PubMed  Google Scholar 

  60. Tanchot, C., Barber, D. L., Chiodetti, L. & Schwartz, R. H. Adaptive tolerance of CD4+ T cells in vivo: multiple thresholds in response to a constant level of antigen presentation. J. Immunol. 167, 2030–2039 (2001).This study shows that encounter with self-antigen tunes T-cell-activation thresholds in the periphery.

    CAS  PubMed  Google Scholar 

  61. Germain, R. N. & Stefanova, I. The dynamics of T-cell receptor signaling: complex orchestration and the key roles of tempo and cooperation. Annu. Rev. Immunol. 17, 467–522 (1999).

    CAS  PubMed  Google Scholar 

  62. Daniels, M. A. et al. CD8 binding to MHC class I molecules is influenced by maturation and T-cell glycosylation. Immunity 15, 1051–1061 (2001).

    CAS  PubMed  Google Scholar 

  63. Moody, A. M. et al. Developmentally regulated glycosylation of the CD8 αβ coreceptor stalk modulates ligand binding. Cell 107, 501–512 (2001).

    CAS  PubMed  Google Scholar 

  64. Perez-Villar, J. J. et al. CD5 negatively regulates the T-cell antigen receptor signal-transduction pathway: involvement of SH2-containing phosphotyrosine phosphatase SHP-1. Mol. Cell. Biol. 19, 2903–2912 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Pena-Rossi, C. et al. Negative regulation of CD4 lineage development and responses by CD5. J. Immunol. 163, 6494–6501 (1999).

    CAS  PubMed  Google Scholar 

  66. Smith, K. et al. Sensory adaptation in naive peripheral CD4 T cells. J. Exp. Med. 194, 1253–1261 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Sen, G., Bikah, G., Venkataraman, C. & Bondada, S. Negative regulation of antigen receptor-mediated signaling by constitutive association of CD5 with the SHP-1 protein tyrosine phosphatase in B-1 B cells. Eur. J. Immunol. 29, 3319–3328 (1999).

    CAS  PubMed  Google Scholar 

  68. Wong, P., Barton, G. M., Forbush, K. A. & Rudensky, A. Y. Dynamic tuning of T-cell reactivity by self-peptide–major histocompatibility complex ligands. J. Exp. Med. 193, 1179–1187 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Nicholson, L. B., Anderson, A. C. & Kuchroo, V. K. Tuning T-cell activation threshold and effector function with cross-reactive peptide ligands. Int. Immunol. 12, 205–213 (2000).

    CAS  PubMed  Google Scholar 

  70. Fahmy, T. M., Bieler, J. G., Edidin, M. & Schneck, J. P. Increased TCR avidity after T-cell activation: a mechanism for sensing low-density antigen. Immunity 14, 135–143 (2001).

    CAS  PubMed  Google Scholar 

  71. Slifka, M. K. & Whitton, J. L. Functional avidity maturation of CD8+ T cells without selection of higher affinity TCR. Nature Immunol. 2, 711–717 (2001).

    CAS  Google Scholar 

  72. Smilek, D. E. et al. A single amino-acid change in a myelin basic protein peptide confers the capacity to prevent, rather than induce, experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA 88, 9633–9637 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kim, D. T., Rothbard, J. B., Bloom, D. D. & Fathman, C. G. Quantitative analysis of T-cell activation: role of TCR–ligand density and TCR affinity. J. Immunol. 156, 2737–2742 (1996).

    CAS  PubMed  Google Scholar 

  74. Davis, M. M. et al. Ligand recognition by αβ T-cell receptors. Annu. Rev. Immunol. 16, 523–544 (1998).

    CAS  PubMed  Google Scholar 

  75. Nicholson, L. B. et al. Heteroclitic proliferative responses and changes in cytokine profile induced by altered peptides: implications for autoimmunity. Proc. Natl Acad. Sci. USA 95, 264–269 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Savage, P. A., Boniface, J. J. & Davis, M. M. A kinetic basis for T-cell-receptor repertoire selection during an immune response. Immunity 10, 485–492 (1999).

    CAS  PubMed  Google Scholar 

  77. Busch, D. H. & Pamer, E. G. T-cell affinity maturation by selective expansion during infection. J. Exp. Med. 189, 701–710 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Fasso, M. et al. T-cell receptor (TCR)-mediated repertoire selection and loss of TCR Vβ diversity during the initiation of a CD4+ T-cell response in vivo. J. Exp. Med. 192, 1719–1730 (2000).This paper describes the selection of moderate-affinity TCRs during an immune response.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Rees, W. et al. An inverse relationship between T-cell receptor affinity and antigen dose during CD4+ T-cell responses in vivo and in vitro. Proc. Natl Acad. Sci. USA 96, 9781–9786 (1999).The loss of high-affinity TCRs can be caused by high antigen doses in vivo and in vitro.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Zugel, U. et al. Termination of peripheral tolerance to a T-cell epitope by heteroclitic antigen analogues. J. Immunol. 161, 1705–1709 (1998).

    CAS  PubMed  Google Scholar 

  81. Wang, R., Wang-Zhu, Y., Gabaglia, C. R., Kimachi, K. & Grey, H. M. The stimulation of low-affinity, non-tolerized clones by heteroclitic antigen analogues causes the breaking of tolerance established to an immunodominant T-cell epitope. J. Exp. Med. 190, 983–994 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Falk, K., Rotzschke, O. & Strominger, J. L. Antigen-specific elimination of T cells induced by oligomerized hemagglutinin (HA) 306–318. Eur. J. Immunol. 30, 3012–3020 (2000).

    CAS  PubMed  Google Scholar 

  83. Mitchison, N. A. The dosage requirements for immunological paralysis by soluble proteins. Immunology 15, 509–530 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Liblau, R. S. et al. Intravenous injection of soluble antigen induces thymic and peripheral T-cell apoptosis. Proc. Natl Acad. Sci. USA 93, 3031–3036 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Critchfield, J. M. et al. T-cell deletion in high-antigen-dose therapy of autoimmune encephalomyelitis. Science 263, 1139–1143 (1994).

    CAS  PubMed  Google Scholar 

  86. Gaur, A. et al. Amelioration of relapsing experimental autoimmune encephalomyelitis with altered myelin basic protein peptides involves different cellular mechanisms. J. Neuroimmunol. 74, 149–158 (1997).

    CAS  PubMed  Google Scholar 

  87. Lenardo, M. et al. Mature T lymphocyte apoptosis — immune regulation in a dynamic and unpredictable antigenic environment. Annu. Rev. Immunol. 17, 221–253 (1999).

    CAS  PubMed  Google Scholar 

  88. Pearson, C. I., van Ewijk, W. & McDevitt, H. O. Induction of apoptosis and T helper 2 (Th2) responses correlates with peptide affinity for the major histocompatibility complex in self-reactive T-cell-receptor-transgenic mice. J. Exp. Med. 185, 583–599 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Fujinami, R. S. & Oldstone, M. B. Amino-acid homology between the encephalitogenic site of myelin basic protein and virus: mechanism for autoimmunity. Science 230, 1043–1045 (1985).

    CAS  PubMed  Google Scholar 

  90. Sandberg, J. K. et al. T-cell tolerance based on avidity thresholds rather than complete deletion allows maintenance of maximal repertoire diversity. J. Immunol. 165, 25–33 (2000).

    CAS  PubMed  Google Scholar 

  91. Bouneaud, C., Kourilsky, P. & Bousso, P. Impact of negative selection on the T-cell repertoire reactive to a self-peptide: a large fraction of T-cell clones escapes clonal deletion. Immunity 13, 829–840 (2000).References 90 and 91 show that a proportion of self-reactive TCR-transgenic T cells avoid deletion, but that they are of low avidity.

    CAS  PubMed  Google Scholar 

  92. Harding, C. V. & Unanue, E. R. Quantitation of antigen-presenting cell MHC class-II–peptide complexes necessary for T-cell stimulation. Nature 346, 574–576 (1990).

    CAS  PubMed  Google Scholar 

  93. Kimachi, K., Croft, M. & Grey, H. M. The minimal number of antigen–major histocompatibility complex class II complexes required for activation of naive and primed T cells. Eur. J. Immunol. 27, 3310–3317 (1997).

    CAS  PubMed  Google Scholar 

  94. Valitutti, S., Muller, S., Cella, M., Padovan, E. & Lanzavecchia, A. Serial triggering of many T-cell receptors by a few peptide–MHC complexes. Nature 375, 148–151 (1995).

    CAS  PubMed  Google Scholar 

  95. Wucherpfennig, K. W. & Strominger, J. L. Molecular mimicry in T-cell-mediated autoimmunity: viral peptides activate human T-cell clones specific for myelin basic protein. Cell 80, 695–705 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Gautam, A. M., Liblau, R., Chelvanayagam, G., Steinman, L. & Boston, T. A viral peptide with limited homology to a self-peptide can induce clinical signs of experimental autoimmune encephalomyelitis. J. Immunol. 161, 60–64 (1998).

    CAS  PubMed  Google Scholar 

  97. Ufret-Vincenty, R. L. et al. In vivo survival of viral antigen-specific T cells that induce experimental autoimmune encephalomyelitis. J. Exp. Med. 188, 1725–1738 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Ruiz, P. J. et al. Microbial epitopes act as altered peptide ligands to prevent experimental autoimmune encephalomyelitis. J. Exp. Med. 189, 1275–1284 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Murtaza, A., Kuchroo, V. K. & Freeman, G. J. Changes in the strength of co-stimulation through the B7/CD28 pathway alter functional T-cell responses to altered peptide ligands. Int. Immunol. 11, 407–416 (1999).

    CAS  PubMed  Google Scholar 

  100. Kissler, S., Anderton, S. M. & Wraith, D. C. Antigen-presenting cell activation: a link between infection and autoimmunity? J. Autoimmun. 16, 303–308 (2001).

    CAS  PubMed  Google Scholar 

  101. Drakesmith, H., Chain, B. & Beverley, P. How can dendritic cells cause autoimmune disease? Immunol. Today 21, 214–217 (2000).

    CAS  PubMed  Google Scholar 

  102. Drakesmith, H. et al. In vivo priming of T cells against cryptic determinants by dendritic cells exposed to interleukin-6 and native antigen. Proc. Natl Acad. Sci. USA 95, 14903–14908 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Manoury, B., Gregory, W. F., Maizels, R. M. & Watts, C. Bm-CPI-2, a cystatin homolog secreted by the filarial parasite Brugia malayi, inhibits class II MHC-restricted antigen processing. Curr. Biol. 11, 447–451 (2001).

    CAS  PubMed  Google Scholar 

  104. Doyle, H. A. & Mamula, M. J. Post-translational protein modifications in antigen recognition and autoimmunity. Trends Immunol. 22, 443–449 (2001).

    CAS  PubMed  Google Scholar 

  105. Evavold, B. D., Sloanlancaster, J. & Allen, P. M. Tickling the TCR — selective T-cell functions stimulated by altered peptide ligands. Immunol. Today 14, 602–609 (1993).

    CAS  PubMed  Google Scholar 

  106. Evavold, B. D. & Allen, P. M. Separation of IL-4 production from TH-cell proliferation by an altered T-cell receptor ligand. Science 252, 1308–1310 (1991).

    CAS  PubMed  Google Scholar 

  107. De Magistris, M. T. et al. Antigen analog–major histocompatibility complexes act as antagonists of the T-cell receptor. Cell 68, 625–634 (1992).

    CAS  PubMed  Google Scholar 

  108. Sloan-Lancaster, J. & Allen, P. M. Altered peptide ligand-induced partial T-cell activation: molecular mechanisms and role in T-cell biology. Annu. Rev. Immunol. 14, 1–27 (1996).

    CAS  PubMed  Google Scholar 

  109. Anderton, S. M. Peptide-based immunotherapy of autoimmunity: a path of puzzles, paradoxes and possibilities. Immunology 104, 367–376 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Benoist, C. & Mathis, D. Autoimmunity provoked by infection: how good is the case for T-cell epitope mimicry? Nature Immunol. 2, 797–801 (2001).

    CAS  Google Scholar 

  111. Panoutsakopoulou, V. & Cantor, H. On the relationship between viral infection and autoimmunity. J. Autoimmun. 16, 341–345 (2001).

    CAS  PubMed  Google Scholar 

  112. Albert, L. J. & Inman, R. D. Molecular mimicry and autoimmunity. N. Engl J. Med. 341, 2068–2074 (1999).

    CAS  PubMed  Google Scholar 

  113. Ohashi, P. S. et al. Ablation of 'tolerance' and induction of diabetes by virus infection in viral antigen-transgenic mice. Cell 65, 305–317 (1991).

    CAS  PubMed  Google Scholar 

  114. Oldstone, M. B., Nerenberg, M., Southern, P., Price, J. & Lewicki, H. Virus infection triggers insulin-dependent diabetes mellitus in a transgenic model: role of anti-self (virus) immune response. Cell 65, 319–331 (1991).

    CAS  PubMed  Google Scholar 

  115. Carrizosa, A. M. et al. Expansion by self antigen is necessary for the induction of experimental autoimmune encephalomyelitis by T cells primed with a cross-reactive environmental antigen. J. Immunol. 161, 3307–3314 (1998).

    CAS  PubMed  Google Scholar 

  116. Padovan, E. et al. Expression of two T-cell receptor α-chains: dual receptor T cells. Science 262, 422–424 (1993).

    CAS  PubMed  Google Scholar 

  117. Zal, T., Weiss, S., Mellor, A. & Stockinger, B. Expression of a second receptor rescues self-specific T cells from thymic deletion and allows activation of autoreactive effector function. Proc. Natl Acad. Sci. USA 93, 9102–9107 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

S.M.A. is a Medical Research Council Research Fellow. Additional work in our laboratories is funded by grants from The Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen M. Anderton.

Related links

Related links

DATABASES

Entrez

moth cytochrome c

PCC

LocusLink

AEP

CD3

CD3 ζ-chain

CD4

CD5

CD8

CD28

CD45

CD74

CD80

CD86

CTLA4

H2-M

HLA-DM

ICAM1

LFA1

MBP

p56 LCK

PLP

SHP1

Smcy

ZAP70

OMIM

multiple sclerosis

Glossary

NEGATIVE SELECTION

The deletion of self-reactive thymocytes in the thymus. Thymocytes that express T-cell receptors that strongly recognize self-peptide bound to self-MHC undergo apoptosis in response to the signalling that is generated by high-affinity binding.

ANERGY

A state of T cells that have been stimulated by their T-cell receptors in the absence of CD28 ligation. On restimulation, these T cells are unable to make interleukin-2 or to proliferate, even in the presence of co-stimulatory signals.

POSITIVE SELECTION

The maturation of immature CD4+CD8+ precursor thymocytes induced by T-cell receptor (TCR) signals that result from binding to self-peptide–MHC ligands on thymic epithelial cells. This process selects thymocytes that express TCRs that are able to interact with self-MHC.

PEPTIDE–MHC TETRAMERS

Recombinant MHC molecules can be engineered to contain the antigenic peptide of interest in their peptide-binding groove. Biotinylation, followed by incubation with fluorescently labelled streptavidin, generates tetrameric complexes. These can be used to stain T cells that express TCRs that are specific for that peptide–MHC complex. In general, the intensity of tetramer staining correlates directly with T-cell receptor affinity.

FETAL THYMIC ORGAN CULTURE

Removal of day 16 fetal thymi allows the analysis of antigen-driven positive- and negative-selection events during in vitro culture.

ACTIVATION-INDUCED CELL DEATH

(AICD). The apoptotic cell death of activated lymphocytes. It ensures the rapid elimination of effector cells after their antigen-dependent clonal expansion. Defects in AICD result in lymphoproliferative diseases that are associated with autoimmune disorders.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderton, S., Wraith, D. Selection and fine-tuning of the autoimmune T-cell repertoire. Nat Rev Immunol 2, 487–498 (2002). https://doi.org/10.1038/nri842

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri842

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing