Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Decision making in the immune system

Regulation of B-cell fate by antigen-receptor signals

Key Points

  • B cells are instructed continuously by B-cell receptor (BCR) signals to make crucial cell-fate decisions at several checkpoints during their development.

  • Protein tyrosine kinases, such as LYN, SYK and BTK, and effector enzymes, such as phosphatidylinositol 3-kinase (PI3K) and phospholipase Cγ2, have crucial roles in the BCR-induced activation of transcription factors, including nuclear factor-κB (NF-κB) and nuclear factor of activated T cells, that are important for B-cell fate decisions. Moreover, BCR signalling is integrated by adaptors in B cells and fine-tuned by co-receptors on B cells.

  • The BCR induces the signals that are required for survival and proliferation of B cells. These include activation of PI3K-regulated AKT, RAS–RAF–ERK (extracellular signal-regulated kinase) and NF-κB pathways.

  • Immature B cells are eliminated by negative selection (BCR-induced cell death) or inactivated (anergy), or they revise the specificity of their BCRs (receptor editing).

  • Transitional B cells can be divided into two subsets — transitional type 1 (T1) and T2. The T1 to T2 transition is a crucial event in the spleen; BCR signals facilitate T2-cell generation, and signals through the BCR and B-cell activating factor of the tumour-necrosis-factor family (BAFF) maintain the survival of T2 cells by, for example, enhancing NF-κB activation.

  • Different strengths of BCR signalling are required for the development of the three mature B-cell subsets; peritoneal B cells require the strongest BCR signal, follicular B cells require an intermediate BCR signal, and marginal-zone B cells require a weaker BCR signal.

  • B-cell fate is determined by the balance between survival and death signals initiated through the BCR.

Abstract

Recent evidence indicates that B cells are instructed continuously by B-cell receptor (BCR) signals to make crucial cell-fate decisions at several checkpoints during their development. Targeted disruption of BCR signalling components leads to distinct blocks in B-cell maturation, which indicates that key kinases and adaptors fine-tune BCR signalling to direct appropriate cell fates. Recent progress in unravelling the molecular mechanisms of the BCR signalling pathways has helped to clarify how BCR signals regulate the proliferation, survival and apoptosis of developing B cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: BCR-induced signal-transduction pathways.
Figure 2: BCR-induced cell death, survival and proliferation.
Figure 3: Development of transitional and mature B cells.
Figure 4: Model of how BCR signalling might direct B-cell fate at the immature and mature stages.

Similar content being viewed by others

References

  1. Kitamura, D., Roes, J., Kuhn, R. & Rajewsky, K. A B-cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin μ-chain gene. Nature 350, 423–426 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Lam, K. P., Kuhn, R. & Rajewsky, K. In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell 90, 1073–1083 (1997). This paper shows the requirement for surface B-cell receptor (BCR) for the maintenance of mature B-cell subsets.

    Article  CAS  PubMed  Google Scholar 

  3. Meffre, E. & Nussenzweig, M. C. Deletion of immunoglobulin-β in developing B cells leads to cell death. Proc. Natl Acad. Sci. USA 99, 11334–11339 (2002). This paper proposes a requirement for surface BCR and signalling for immature B-cell survival.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hardy, R. R. & Hayakawa, K. B-cell development pathways. Annu. Rev. Immunol. 19, 595–621 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Kurosaki, T. Genetic analysis of B-cell antigen receptor signaling. Annu. Rev. Immunol. 17, 555–592 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Lowell, C. A. & Soriano, P. Knockouts of Src-family kinases: stiff bones, wimpy T cells and bad memories. Genes Dev. 10, 1845–1857 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Texido, G. et al. The B-cell-specific Src-family kinase Blk is dispensable for B-cell development and activation. Mol. Cell. Biol. 20, 1227–1233 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jiang, A., Craxton, A., Kurosaki, T. & Clark, E. A. Different protein tyrosine kinases are required for B-cell antigen-receptor-mediated activation of extracellular signal-regulated kinase, c-Jun NH2-terminal kinase 1, and p38 mitogen-activated protein kinase. J. Exp. Med. 188, 1297–1306 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Takata, M. et al. Tyrosine kinases Lyn and Syk regulate B-cell receptor-coupled Ca2+ mobilization through distinct pathways. EMBO J. 13, 1341–1349 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Turner, M. et al. Perinatal lethality and blocked B-cell development in mice lacking the tyrosine kinase Syk. Nature 378, 298–302 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Turner, M. & Billadeau, D. D. VAV proteins as signal integrators for multi-subunit immune-recognition receptors. Nature Rev. Immunol. 2, 476–486 (2002).

    Article  CAS  Google Scholar 

  12. Holsinger, L. J. et al. Defects in actin-cap formation in Vav-deficient mice implicate an actin requirement for lymphocyte signal transduction. Curr. Biol. 8, 563–572 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Tarakhovsky, A. et al. Defective antigen-receptor-mediated proliferation of B and T cells in the absence of Vav. Nature 374, 467–470 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, R., Alt, F. W., Davidson, L., Orkin, S. H. & Swat, W. Defective signalling through the T- and B-cell antigen receptors in lymphoid cells lacking the Vav proto-oncogene. Nature 374, 470–473 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Doody, G. M. et al. Signal transduction through Vav-2 participates in humoral immune responses and B-cell maturation. Nature Immunol. 2, 542–547 (2001).

    Article  CAS  Google Scholar 

  16. Tedford, K. et al. Compensation between Vav-1 and Vav-2 in B-cell development and antigen-receptor signaling. Nature Immunol. 2, 548–555 (2001).

    Article  CAS  Google Scholar 

  17. Inabe, K. et al. Vav3 modulates B-cell receptor responses by regulating phosphoinositide 3-kinase activation. J. Exp. Med. 195, 189–200 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Marshall, A. J., Niiro, H., Yun, T. J. & Clark, E. A. Regulation of B-cell activation and differentiation by the phosphatidylinositol 3-kinase and phospholipase Cγ pathway. Immunol. Rev. 176, 30–46 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Fu, C., Turck, C. W., Kurosaki, T. & Chan, A. C. BLNK: a central linker protein in B-cell activation. Immunity 9, 93–103 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Hashimoto, S. et al. Identification of the SH2 domain binding protein of Bruton's tyrosine kinase as BLNK — functional significance of Btk-SH2 domain in B-cell antigen receptor-coupled calcium signaling. Blood 94, 2357–2364 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Ishiai, M. et al. BLNK required for coupling Syk to PLCγ2 and Rac1–JNK in B cells. Immunity 10, 117–125 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Pappu, R. et al. Requirement for B-cell linker protein (BLNK) in B-cell development. Science 286, 1949–1954 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Xu, S. et al. B-cell development and activation defects resulting in Xid-like immunodeficiency in BLNK/SLP-65-deficient mice. Int. Immunol. 12, 397–404 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Hayashi, K. et al. The B-cell-restricted adaptor BASH is required for normal development and antigen-receptor-mediated activation of B cells. Proc. Natl Acad. Sci. USA 97, 2755–2760 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hashimoto, A. et al. Cutting edge: essential role of phospholipase Cγ2 in B-cell development and function. J. Immunol. 165, 1738–1742 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Wang, D. et al. Phospholipase Cγ2 is essential in the functions of B-cell and several Fc receptors. Immunity 13, 25–35 (2000).

    Article  PubMed  Google Scholar 

  27. Okada, T., Maeda, A., Iwamatsu, A., Gotoh, K. & Kurosaki, T. BCAP: the tyrosine kinase substrate that connects B-cell receptor to phosphoinositide 3-kinase activation. Immunity 13, 817–827 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Marshall, A. J. et al. A novel B-lymphocyte-associated adaptor protein, Bam32, regulates antigen-receptor signaling downstream of phosphatidylinositol 3-kinase. J. Exp. Med. 191, 1319–1332 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Niiro, H., Maeda, A., Kurosaki, T. & Clark, E. A. The B-lymphocyte adaptor molecule of 32 kD (Bam32) regulates B-cell antigen receptor signaling and cell survival. J. Exp. Med. 195, 143–149 (2002). References 28 and 29 show that after BCR ligation, BAM32 is recruited to the plasma membrane through its pleckstrin-homology domain, and that it binds and regulates the activation of PLCγ2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shlapatska, L. M. et al. CD150 association with either the SH2-containing inositol phosphatase or the SH2-containing protein tyrosine phosphatase is regulated by the adaptor protein SH2D1A. J. Immunol. 166, 5480–5487 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Yankee, T. M., Solow, S. A., Draves, K. E. & Clark, E. A. Expression of the GrpL/Gads adaptor protein in B-cell subsets enhances BCR signaling through MAPK pathways. J. Immunol. (in the press).

  32. Tuveson, D. A., Carter, R. H., Soltoff, S. P. & Fearon, D. T. CD19 of B cells as a surrogate kinase insert region to bind phosphatidylinositol 3-kinase. Science 260, 986–989 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Chacko, G. W. et al. Negative signaling in B lymphocytes induces tyrosine phosphorylation of the 145-kDa inositol polyphosphate 5-phosphatase, SHIP. J. Immunol. 157, 2234–2238 (1996).

    CAS  PubMed  Google Scholar 

  34. Cyster, J. G. & Goodnow, C. C. Protein tyrosine phosphatase 1C negatively regulates antigen-receptor signaling in B lymphocytes and determines thresholds for negative selection. Immunity 2, 13–24 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Poe, J. C., Fujimoto, M., Jansen, P. J., Miller, A. S. & Tedder, T. F. CD22 forms a quaternary complex with SHIP, Grb2 and Shc. A pathway for regulation of B-lymphocyte antigen receptor-induced calcium flux. J. Biol. Chem. 275, 17420–17427 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Otipoby, K. L., Draves, K. E. & Clark, E. A. CD22 regulates B-cell receptor-mediated signals via two domains that independently recruit Grb2 and SHP-1. J. Biol. Chem. 276, 44315–44322 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Schamel, W. W. & Reth, M. Monomeric and oligomeric complexes of the B-cell antigen receptor. Immunity 13, 5–14 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Pierce, S. K. Lipid rafts and B-cell activation. Nature Rev. Immunol. 2, 96–105 (2002).

    Article  CAS  Google Scholar 

  39. Guo, B., Kato, R. M., Garcia-Lloret, M., Wahl, M. I. & Rawlings, D. J. Engagement of the human pre-B-cell receptor generates a lipid raft-dependent calcium signaling complex. Immunity 13, 243–253 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Bannish, G., Fuentes-Panana, E. M., Cambier, J. C., Pear, W. S. & Monroe, J. G. Ligand-independent signaling functions for the B-lymphocyte antigen receptor and their role in positive selection during B lymphopoiesis. J. Exp. Med. 194, 1583–1596 (2001). This paper shows that the plasma-membrane localization of immunoglobulin-associated protein-α (Igα) and Igβ cytoplasmic domains provides basal signalling that is sufficient for transition from the pro-B-cell to pre-B-cell stage, which indicates a role for antigen-independent BCR signals in B-cell development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xavier, R., Brennan, T., Li, Q., McCormack, C. & Seed, B. Membrane compartmentation is required for efficient T-cell activation. Immunity 8, 723–732 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Fruman, D. A., Satterthwaite, A. B. & Witte, O. N. Xid-like phenotypes: a B-cell signalosome takes shape. Immunity 13, 1–3 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Reth, M. Oligomeric antigen receptors: a new view on signaling for the selection of lymphocytes. Trends Immunol. 22, 356–360 (2001). Together with reference 37, this paper proposes an intriguing model in which in the absence of antigen ligation, oligomeric BCR complexes are formed and transduce basal BCR signalling.

    Article  CAS  PubMed  Google Scholar 

  44. Aman, M. J. & Ravichandran, K. S. A requirement for lipid rafts in B-cell receptor induced Ca2+ flux. Curr. Biol. 10, 393–396 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Petrie, R. J., Schnetkamp, P. P., Patel, K. D., Awasthi-Kalia, M. & Deans, J. P. Transient translocation of the B-cell receptor and Src homology 2 domain-containing inositol phosphatase to lipid rafts: evidence toward a role in calcium regulation. J. Immunol. 165, 1220–1227 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Braun, J., Hochman, P. S. & Unanue, E. R. Ligand-induced association of surface immunoglobulin with the detergent-insoluble cytoskeletal matrix of the B lymphocyte. J. Immunol. 128, 1198–1204 (1982).

    CAS  PubMed  Google Scholar 

  47. Pure, E. & Tardelli, L. Tyrosine phosphorylation is required for ligand-induced internalization of the antigen receptor on B lymphocytes. Proc. Natl Acad. Sci. USA 89, 114–117 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ma, H. et al. Visualization of Syk–antigen-receptor interactions using green fluorescent protein: differential roles for Syk and Lyn in the regulation of receptor capping and internalization. J. Immunol. 166, 1507–1516 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Fruman, D. A. et al. Impaired B-cell development and proliferation in absence of phosphoinositide 3-kinase p85α. Science 283, 393–397 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Pogue, S. L., Kurosaki, T., Bolen, J. & Herbst, R. B-cell antigen receptor-induced activation of Akt promotes B-cell survival and is dependent on Syk kinase. J. Immunol. 165, 1300–1306 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Okkenhaug, K. et al. Impaired B- and T-cell antigen receptor signaling in p110δ PI 3-kinase mutant mice. Science 297, 1031–1034 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Clayton, E. et al. A crucial role for the p110δ subunit of phosphatidylinositol 3-kinase in B-cell development and activation. J. Exp. Med. 196, 753–763 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Datta, S. R. et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231–241 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Cross, D. A., Alessi, D. R., Cohen, P., Andjelkovich, M. & Hemmings, B. A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785–789 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Craxton, A., Jiang, A., Kurosaki, T. & Clark, E. A. Syk and Bruton's tyrosine kinase are required for B-cell antigen receptor-mediated activation of the kinase Akt. J. Biol. Chem. 274, 30644–30650 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Gold, M. R. et al. The B-cell antigen receptor activates the Akt (protein kinase B)/glycogen synthase kinase-3 signaling pathway via phosphatidylinositol 3-kinase. J. Immunol. 163, 1894–1905 (1999).

    CAS  PubMed  Google Scholar 

  57. Sears, R. C. & Nevins, J. R. Signaling networks that link cell proliferation and cell fate. J. Biol. Chem. 277, 11617–11620 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Hashimoto, A. et al. Involvement of guanosine triphosphatases and phospholipase C-γ2 in extracellular signal-regulated kinase, c-Jun NH2-terminal kinase, and p38 mitogen-activated protein kinase activation by the B-cell antigen receptor. J. Exp. Med. 188, 1287–1295 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ballif, B. A. & Blenis, J. Molecular mechanisms mediating mammalian mitogen-activated protein kinase (MAPK) kinase (MEK)–MAPK cell-survival signals. Cell. Growth Differ. 12, 397–408 (2001).

    CAS  PubMed  Google Scholar 

  60. Richards, J. D., Dave, S. H., Chou, C. H., Mamchak, A. A. & DeFranco, A. L. Inhibition of the MEK/ERK signaling pathway blocks a subset of B-cell responses to antigen. J. Immunol. 166, 3855–3864 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Piatelli, M. J., Doughty, C. & Chiles, T. C. Requirement for a HSP90 chaperone-dependent MEK1/2–ERK pathway for B-cell antigen receptor-induced cyclin D2 expression in mature B lymphocytes. J. Biol. Chem. 277, 12144–12150 (2002). References 60 and 61 show that the RAF–MEK–ERK pathway has a crucial role in BCR-induced proliferation of mature B cells.

    Article  CAS  PubMed  Google Scholar 

  62. Huser, M. et al. MEK kinase activity is not necessary for Raf-1 function. EMBO J. 20, 1940–1951 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mikula, M. et al. Embryonic lethality and fetal-liver apoptosis in mice lacking the c-raf-1 gene. EMBO J. 20, 1952–1962 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang, H. G., Rapp, U. R. & Reed, J. C. Bcl-2 targets the protein kinase Raf-1 to mitochondria. Cell 87, 629–638 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. Barkett, M. & Gilmore, T. D. Control of apoptosis by Rel/NF-κB transcription factors. Oncogene 18, 6910–6924 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Kaisho, T. et al. IκB kinase-α is essential for mature B-cell development and function. J. Exp. Med. 193, 417–426 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Senftleben, U. et al. Activation by IKKα of a second, evolutionary conserved, NF-κB signaling pathway. Science 293, 1495–1499 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Pasparakis, M., Schmidt-Supprian, M. & Rajewsky, K. IκB kinase signaling is essential for maintenance of mature B cells. J. Exp. Med. 196, 743–752 (2002). This paper shows that IKK-mediated NF-κB activation is crucial for the maintenance of mature B-cell subsets.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Petro, J. B. & Khan, W. N. Phospholipase C-γ2 couples Bruton's tyrosine kinase to the NF-κB signaling pathway in B lymphocytes. J. Biol. Chem. 276, 1715–1719 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Petro, J. B., Rahman, S. M., Ballard, D. W. & Khan, W. N. Bruton's tyrosine kinase is required for activation of IκB kinase and nuclear factor-κB in response to B-cell receptor engagement. J. Exp. Med. 191, 1745–1754 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tan, J. E., Wong, S. C., Gan, S. K., Xu, S. & Lam, K. P. The adaptor protein BLNK is required for B-cell antigen receptor-induced activation of nuclear factor-κB and cell-cycle entry and survival of B lymphocytes. J. Biol. Chem. 276, 20055–20063 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Parekh, D. B., Ziegler, W. & Parker, P. J. Multiple pathways control protein kinase C phosphorylation. EMBO J. 19, 496–503 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lin, X., O'Mahony, A., Mu, Y., Geleziunas, R. & Greene, W. C. Protein kinase Cθ participates in NF-κB activation induced by CD3–CD28 costimulation through selective activation of IκB kinase-β. Mol. Cell. Biol. 20, 2933–2940 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mecklenbrauker, I., Saijo, K., Zheng, N. Y., Leitges, M. & Tarakhovsky, A. Protein kinase Cδ controls self-antigen-induced B-cell tolerance. Nature 416, 860–865 (2002).

    Article  PubMed  CAS  Google Scholar 

  75. Miyamoto, A. et al. Increased proliferation of B cells and auto-immunity in mice lacking protein kinase Cδ. Nature 416, 865–869 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Saijo, K. et al. Protein kinase Cβ controls nuclear factor-κB activation in B cells through selective regulation of the IκB kinase-α. J. Exp. Med. 195, 1647–1652 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Su, T. T. et al. PKC-β controls IκB kinase lipid-raft recruitment and activation in response to BCR signaling. Nature Immunol. 3, 780–786 (2002). References 76 and 77 show the importance of PKCβ for BCR-induced NF-κB activation, and reference 77 also shows that BTK and PKCβ have distinct roles in the maturation of follicular B cells.

    Article  CAS  Google Scholar 

  78. Baldwin, A. S. Jr. The NF-κB and IκB proteins: new discoveries and insights. Annu. Rev. Immunol. 14, 649–683 (1996).

    Article  CAS  PubMed  Google Scholar 

  79. Grumont, R. J. & Gerondakis, S. The subunit composition of NF-κB complexes changes during B-cell development. Cell. Growth Differ. 5, 1321–1331 (1994).

    CAS  PubMed  Google Scholar 

  80. Anderson, J. S., Teutsch, M., Dong, Z. & Wortis, H. H. An essential role for Bruton's tyrosine kinase in the regulation of B-cell apoptosis. Proc. Natl Acad. Sci. USA 93, 10966–10971 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Grumont, R. J. et al. B lymphocytes differentially use the Rel and nuclear factor-κB1 (NF-κB1) transcription factors to regulate cell-cycle progression and apoptosis in quiescent and mitogen-activated cells. J. Exp. Med. 187, 663–674 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Grumont, R. J., Rourke, I. J. & Gerondakis, S. Rel-dependent induction of A1 transcription is required to protect B cells from antigen receptor ligation-induced apoptosis. Genes Dev. 13, 400–411 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Li, C. et al. Bcl-XL affects Ca2+ homeostasis by altering expression of inositol 1,4,5-trisphosphate receptors. Proc. Natl Acad. Sci. USA 99, 9830–9835 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Joyce, D. et al. NF-κB and cell-cycle regulation: the cyclin connection. Cytokine Growth Factor Rev. 12, 73–90 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Glassford, J. et al. Vav is required for cyclin D2 induction and proliferation of mouse B lymphocytes activated via the antigen receptor. J. Biol. Chem. 276, 41040–41048 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Aagaard-Tillery, K. M. & Jelinek, D. F. Differential activation of a calcium-dependent endonuclease in human B lymphocytes. Role in ionomycin-induced apoptosis. J. Immunol. 155, 3297–3307 (1995).

    CAS  PubMed  Google Scholar 

  87. Sugawara, H., Kurosaki, M., Takata, M. & Kurosaki, T. Genetic evidence for involvement of type 1, type 2 and type 3 inositol 1,4,5-trisphosphate receptors in signal transduction through the B-cell antigen receptor. EMBO J. 16, 3078–3088 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sabapathy, K. et al. c-Jun NH2-terminal kinase (JNK)1 and JNK2 have similar and stage-dependent roles in regulating T-cell apoptosis and proliferation. J. Exp. Med. 193, 317–328 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Berard, M. et al. Mitochondria connects the antigen receptor to effector caspases during B-cell receptor-induced apoptosis in normal human B cells. J. Immunol. 163, 4655–4662 (1999).

    CAS  PubMed  Google Scholar 

  90. Bouchon, A., Krammer, P. H. & Walczak, H. Critical role for mitochondria in B-cell receptor-mediated apoptosis. Eur. J. Immunol. 30, 69–77 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Herold, M. J., Kuss, A. W., Kraus, C. & Berberich, I. Mitochondria-dependent caspase-9 activation is necessary for antigen receptor-mediated effector caspase activation and apoptosis in WEHI 231 lymphoma cells. J. Immunol. 168, 3902–3909 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Sandel, P. C. & Monroe, J. G. Negative selection of immature B cells by receptor editing or deletion is determined by site of antigen encounter. Immunity 10, 289–299 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Loder, F. et al. B-cell development in the spleen takes place in discrete steps and is determined by the quality of B-cell receptor-derived signals. J. Exp. Med. 190, 75–89 (1999). The authors characterize T1 and T2 cells in the spleen, and also show that the strength of BCR signalling affects the generation of transitional and follicular B cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Carsetti, R., Kohler, G. & Lamers, M. C. Transitional B cells are the target of negative selection in the B-cell compartment. J. Exp. Med. 181, 2129–2140 (1995).

    Article  CAS  PubMed  Google Scholar 

  95. Su, T. T. & Rawlings, D. J. Transitional B-lymphocyte subsets operate as distinct checkpoints in murine splenic B-cell development. J. Immunol. 168, 2101–2110 (2002). This paper shows that there are distinct profiles of BCR-induced signalling in transitional and follicular B cells.

    Article  CAS  PubMed  Google Scholar 

  96. Allman, D. et al. Resolution of three nonproliferative immature splenic B-cell subsets reveals multiple selection points during peripheral B-cell maturation. J. Immunol. 167, 6834–6840 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Chung, J. B., Sater, R. A., Fields, M. L., Erikson, J. & Monroe, J. G. CD23 defines two distinct subsets of immature B cells which differ in their responses to T-cell help signals. Int. Immunol. 14, 157–166 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Garside, P. et al. Visualization of specific B- and T-lymphocyte interactions in the lymph node. Science 281, 96–99 (1998).

    Article  CAS  PubMed  Google Scholar 

  99. Torres, R. M., Flaswinkel, H., Reth, M. & Rajewsky, K. Aberrant B-cell development and immune response in mice with a compromised BCR complex. Science 272, 1802–1804 (1996).

    Article  Google Scholar 

  100. Reichlin, A. et al. B-cell development is arrested at the immature B-cell stage in mice carrying a mutation in the cytoplasmic domain of immunoglobulin-β. J. Exp. Med. 193, 13–23 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Turner, M. et al. Syk tyrosine kinase is required for the positive selection of immature B cells into the recirculating B-cell pool. J. Exp. Med. 186, 2013–2021 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Cornall, R. J., Cheng, A. M., Pawson, T. & Goodnow, C. C. Role of Syk in B-cell development and antigen-receptor signaling. Proc. Natl Acad. Sci. USA 97, 1713–1718 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Batten, M. et al. BAFF mediates survival of peripheral immature B lymphocytes. J. Exp. Med. 192, 1453–1466 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Schiemann, B. et al. An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science 293, 2111–2114 (2001). This paper shows a crucial role for BAFF in transition from the T1 to T2 stage, and also shows that Baff-deficient mice have a similar phenotype to A/WySnJ mice, which have a mutation of the Baff receptor.

    Article  CAS  PubMed  Google Scholar 

  105. Moore, P. A. et al. BLyS: member of the tumor-necrosis factor family and B-lymphocyte stimulator. Science 285, 260–263 (1999).

    Article  CAS  PubMed  Google Scholar 

  106. Schneider, P. et al. BAFF, a novel ligand of the tumor-necrosis factor family, stimulates B-cell growth. J. Exp. Med. 189, 1747–1756 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hsu, B. L., Harless, S. M., Lindsley, R. C., Hilbert, D. M. & Cancro, M. P. Cutting edge: BLyS enables survival of transitional and mature B cells through distinct mediators. J. Immunol. 168, 5993–5996 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Do, R. K. et al. Attenuation of apoptosis underlies B-lymphocyte stimulator enhancement of humoral immune response. J. Exp. Med. 192, 953–964 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Claudio, E., Brown, K., Park, S., Wang, H. & Siebenlist, U. BAFF-induced NEMO-independent processing of NF-κB2 in maturing B cells. Nature Immunol. 3, 958–965 (2002).

    Article  CAS  Google Scholar 

  110. Kayagaki, N. et al. BAFF/BLyS receptor 3 binds the B-cell survival factor BAFF ligand through a discrete surface loop and promotes processing of NF-κB2. Immunity 17, 515–524 (2002). References 109 and 110 show that BAFF signalling involves a non-classical NF-κB pathway (NEMO-independent processing of NF-κB2) and that this requires the BAFF receptor.

    Article  CAS  PubMed  Google Scholar 

  111. Marsters, S. A. et al. Interaction of the TNF homologues BLyS and APRIL with the TNF receptor homologues BCMA and TACI. Curr. Biol. 10, 785–788 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Franzoso, G. et al. Requirement for NF-κB in osteoclast and B-cell development. Genes Dev. 11, 3482–3496 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Berland, R. & Wortis, H. H. Origins and functions of B-1 cells with notes on the role of CD5. Annu. Rev. Immunol. 20, 253–300 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Martin, F. & Kearney, J. F. Marginal-zone B cells. Nature Rev. Immunol. 2, 323–335 (2002).

    Article  CAS  Google Scholar 

  115. Chan, V. W., Meng, F., Soriano, P., DeFranco, A. L. & Lowell, C. A. Characterization of the B-lymphocyte populations in Lyn-deficient mice and the role of Lyn in signal initiation and down-regulation. Immunity 7, 69–81 (1997).

    Article  CAS  PubMed  Google Scholar 

  116. Meade, J., Fernandez, C. & Turner, M. The tyrosine kinase Lyn is required for B-cell development beyond the T1 stage in the spleen: rescue by over-expression of Bcl-2. Eur. J. Immunol. 32, 1029–1034 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Ellmeier, W. et al. Severe B-cell deficiency in mice lacking the Tec-kinase family members Tec and Btk. J. Exp. Med. 192, 1611–1624 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Martin, F. & Kearney, J. F. Positive selection from newly formed to marginal-zone B cells depends on the rate of clonal production, CD19 and Btk. Immunity 12, 39–49 (2000). This paper shows that CD19 and BTK have distinct roles in the development of marginal-zone (MZ) and follicular B cells.

    Article  CAS  PubMed  Google Scholar 

  119. Cariappa, A. et al. The follicular versus marginal-zone B-lymphocyte cell-fate decision is regulated by Aiolos, Btk and CD21. Immunity 14, 603–615 (2001). This paper indicates that a strong BCR signal might favour the generation of follicular B cells, whereas a weak BCR signal favours the generation of MZ B cells.

    Article  CAS  PubMed  Google Scholar 

  120. Suzuki, H. et al. Xid-like immunodeficiency in mice with disruption of the p85α subunit of phosphoinositide 3-kinase. Science 283, 390–392 (1999).

    Article  CAS  PubMed  Google Scholar 

  121. Yamazaki, T. et al. Essential immunoregulatory role for BCAP in B-cell development and function. J. Exp. Med. 195, 535–545 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Rolink, A. G., Tschopp, J., Schneider, P. & Melchers, F. BAFF is a survival and maturation factor for mouse B cells. Eur. J. Immunol. 32, 2004–2010 (2002).

    Article  CAS  PubMed  Google Scholar 

  123. Hayakawa, K. et al. Positive selection of natural autoreactive B cells. Science 285, 113–116 (1999).

    Article  CAS  PubMed  Google Scholar 

  124. Hao, Z. & Rajewsky, K. Homeostasis of peripheral B cells in the absence of B-cell influx from the bone marrow. J. Exp. Med. 194, 1151–1164 (2001). This paper shows that blockade of the entry of immature B cells from the bone marrow leads to a gradual decrease in the number of follicular B cells, whereas the levels of MZ and peritoneal B cells remain unchanged in this setting.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Balazs, M., Martin, F., Zhou, T. & Kearney, J. Blood dendritic cells interact with splenic marginal-zone B cells to initiate T-independent immune responses. Immunity 17, 341 (2002).

    Article  CAS  PubMed  Google Scholar 

  126. Rothstein, T. L. Cutting edge commentary: two B-1 or not to be one. J. Immunol. 168, 4257–4261 (2002).

    Article  CAS  PubMed  Google Scholar 

  127. Wong, S. C. et al. Peritoneal CD5+ B-1 cells have signaling properties similar to tolerant B cells. J. Biol. Chem. 277, 30707–30715 (2002). The authors characterize the BCR signalling profile of CD5+ peritoneal B cells, and show that it is similar to that of anergic B cells.

    Article  CAS  PubMed  Google Scholar 

  128. Leitges, M. et al. Immunodeficiency in protein kinase Cβ-deficient mice. Science 273, 788–791 (1996).

    Article  CAS  PubMed  Google Scholar 

  129. Croker, B. A. et al. The Rac2 guanosine triphosphatase regulates B-lymphocyte antigen-receptor responses and chemotaxis and is required for establishment of B-1a and marginal-zone B lymphocytes. J. Immunol. 168, 3376–3386 (2002).

    Article  CAS  PubMed  Google Scholar 

  130. Engel, P. et al. Abnormal B-lymphocyte development, activation and differentiation in mice that lack or overexpress the CD19 signal-transduction molecule. Immunity 3, 39–50 (1995).

    Article  CAS  PubMed  Google Scholar 

  131. Rickert, R. C., Rajewsky, K. & Roes, J. Impairment of T-cell-dependent B-cell responses and B-1-cell development in CD19-deficient mice. Nature 376, 352–355 (1995).

    Article  CAS  PubMed  Google Scholar 

  132. Sato, S. et al. CD22 is both a positive and negative regulator of B-lymphocyte antigen-receptor signal transduction: altered signaling in CD22-deficient mice. Immunity 5, 551–562 (1996).

    Article  CAS  PubMed  Google Scholar 

  133. Ujike, A. et al. Impaired dendritic-cell maturation and increased TH2 responses in PIR-B−/− mice. Nature Immunol. 3, 542–548 (2002).

    Article  CAS  Google Scholar 

  134. Morgan, B. et al. Aiolos, a lymphoid-restricted transcription factor that interacts with Ikaros to regulate lymphocyte differentiation. EMBO J. 16, 2004–2013 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wang, J. H. et al. Aiolos regulates B-cell activation and maturation to effector state. Immunity 9, 543–553 (1998).

    Article  CAS  PubMed  Google Scholar 

  136. Samardzic, T. et al. Reduction of marginal-zone B cells in CD22-deficient mice. Eur. J. Immunol. 32, 561–567 (2002).

    Article  CAS  PubMed  Google Scholar 

  137. Guinamard, R., Okigaki, M., Schlessinger, J. & Ravetch, J. V. Absence of marginal-zone B cells in Pyk-2-deficient mice defines their role in the humoral response. Nature Immunol. 1, 31–36 (2000).

    Article  CAS  Google Scholar 

  138. Ganju, R. K. et al. The α-chemokine, stromal-cell-derived factor-1α, binds to the transmembrane G-protein-coupled CXCR-4 receptor and activates multiple signal-transduction pathways. J. Biol. Chem. 273, 23169–23175 (1998).

    Article  CAS  PubMed  Google Scholar 

  139. Cariappa, A., Liou, H. C., Horwitz, B. H. & Pillai, S. Nuclear factor-κB is required for the development of marginal-zone B lymphocytes. J. Exp. Med. 192, 1175–1182 (2000). This paper shows that NF-κB is more crucial for the development of MZ B cells than of follicular B cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Laudanna, C., Kim, J. Y., Constantin, G. & Butcher, E. C. Rapid leukocyte integrin activation by chemokines. Immunol. Rev. 186, 37–46 (2002).

    Article  CAS  PubMed  Google Scholar 

  141. Lu, T. T. & Cyster, J. G. Integrin-mediated long-term B-cell retention in the splenic marginal zone. Science 297, 409–412 (2002). This paper shows that MZ B cells express elevated levels of LFA1 and α4β1 integrin, which are required for MZ B-cell localization.

    Article  CAS  PubMed  Google Scholar 

  142. Bureau, F. et al. Constitutive nuclear factor-κB activity preserves homeostasis of quiescent mature lymphocytes and granulocytes by controlling the expression of distinct Bcl-2-family proteins. Blood 99, 3683–3691 (2002).

    Article  CAS  PubMed  Google Scholar 

  143. Xu, S. & Lam, K. P. Delayed cellular maturation and decreased immunoglobulin-κ light chain production in immature B lymphocytes lacking B-cell linker protein. J. Exp. Med. 196, 197–206 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Chung, J. B., Baumeister, M. A. & Monroe, J. G. Cutting edge: differential sequestration of plasma-membrane-associated B-cell antigen receptor in mature and immature B cells into glycosphingolipid-enriched domains. J. Immunol. 166, 736–740 (2001).

    Article  CAS  PubMed  Google Scholar 

  145. Sproul, T. W., Malapati, S., Kim, J. & Pierce, S. K. Cutting edge: B-cell antigen receptor signaling occurs outside lipid rafts in immature B cells. J. Immunol. 165, 6020–6023 (2000).

    Article  CAS  PubMed  Google Scholar 

  146. Merino, R., Ding, L., Veis, D. J., Korsmeyer, S. J. & Nunez, G. Developmental regulation of the Bcl-2 protein and susceptibility to cell death in B lymphocytes. EMBO J. 13, 683–691 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Tomayko, M. M. & Cancro, M. P. Long-lived B cells are distinguished by elevated expression of A1. J. Immunol. 160, 107–111 (1998).

    CAS  PubMed  Google Scholar 

  148. Nakayama, K. et al. Disappearance of the lymphoid system in Bcl-2 homozygous mutant chimeric mice. Science 261, 1584–1588 (1993).

    Article  CAS  PubMed  Google Scholar 

  149. Otero, D. C., Omori, S. A. & Rickert, R. C. CD19-dependent activation of Akt kinase in B lymphocytes. J. Biol. Chem. 276, 1474–1478 (2001).

    Article  CAS  PubMed  Google Scholar 

  150. Otipoby, K. L. et al. CD22 regulates thymus-independent responses and the lifespan of B cells. Nature 384, 634–637 (1996).

    Article  CAS  PubMed  Google Scholar 

  151. King, L. B., Norvell, A. & Monroe, J. G. Antigen-receptor-induced signal-transduction imbalances associated with the negative selection of immature B cells. J. Immunol. 162, 2655–2662 (1999).

    CAS  PubMed  Google Scholar 

  152. Yellen, A. J., Glenn, W., Sukhatme, V. P., Cao, X. M. & Monroe, J. G. Signaling through surface IgM in tolerance-susceptible immature murine B lymphocytes. Developmentally regulated differences in transmembrane signaling in splenic B cells from adult and neonatal mice. J. Immunol. 146, 1446–1454 (1991).

    CAS  PubMed  Google Scholar 

  153. Helgason, C. D. et al. A dual role for Src homology 2 domain-containing inositol-5-phosphatase (SHIP) in immunity: aberrant development and enhanced function of B lymphocytes in Ship−/− mice. J. Exp. Med. 191, 781–794 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Koncz, G., Bodor, C., Kovesdi, D., Gati, R. & Sarmay, G. BCR-mediated signal transduction in immature and mature B cells. Immunol. Lett. 82, 41–49 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our work in this review was supported by grants from the National Institutes of Health. We would like to thank D. J. Rawlings and J. Braun for communicating unpublished data, and J. D. Graves, A. Craxton and T. M. Yankee for critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward A. Clark.

Related links

Related links

DATABASES

LocusLink

Aiolos

AKT

BAD

BAFF

BAFFR

BAM32

BCL-2

BCL-XL

BCMA

BLK

BLNK

BTK

caspase-3

caspase-7

caspase-9

CD21

CD22

CD23

cyclin D2

ERK

FGR

FYN

GAB

GRB2

GRPL

GSK3

HCK

IgD

IgM

Igα

Igβ

IKKβ

IL-4

LYN

NEMO

NF-κB

NIK

p38 MAPK

PI3K

PIRB

PKC

PLCγ2

Raf1

Rag2

RELA

RELB

SH2D1A

SHIP

SHP1

SYK

TACI

VAV1

VAV2

VAV3

Glossary

DT40 CELLS

A chicken B-cell line that undergoes homologous recombination at a high frequency, and so is a system to generate knockout mutants in vitro to study B-cell biology.

GERMINAL CENTRES

Located in peripheral lymphoid tissues (for example, the spleen), these structures are sites of B-cell proliferation and selection for clones that produce antigen-specific antibodies of higher affinity.

LIPID RAFTS

Cholesterol-rich regions that provide an ordered structure to the lipid bilayer and can include or exclude specific signalling molecules and complexes.

FOLLICULAR B CELL

A recirculating mature B-cell subset that populates the follicles of the spleen and lymph nodes.

MARGINAL-ZONE B CELL

A static, mature B-cell subset that is enriched primarily in the marginal zone of the spleen.

PERITONEAL B CELL

A mature B-cell subset in the peritoneal cavity that is enriched with a unique population of B cells known as B1 cells that recirculate between the blood and body cavities.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niiro, H., Clark, E. Regulation of B-cell fate by antigen-receptor signals. Nat Rev Immunol 2, 945–956 (2002). https://doi.org/10.1038/nri955

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri955

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing