Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Living by the calendar: how plants know when to flower

Key Points

  • The ability of organisms to anticipate daily and seasonal changes in their environment is crucial for survival and reproductive success. During the early and mid 1920s, it was shown that plants and animals time developmental and behavioural processes throughout the year by responding to daylength, or photoperiod, which is an environmental cue that is associated with seasonal progression. In 1936, Erwin Bünning proposed that daylength was measured through the coincidence of light with a rhythm of sensitivity to this environmental signal that was driven by an endogenous circadian clock.

  • Arabidopsis thaliana, the model organism for plant biologists, flowers earlier under long-day conditions than short-day conditions. The molecular-genetic dissection of flowering time, circadian rhythms and light signalling in Arabidopsis has provided strong support for Bünning's hypothesis and, more importantly, is helping us to understand the molecular basis of daylength measurement in this species.

  • The acceleration of flowering time by long days in Arabidopsis results in part from the direct effects of light, perceived by cryptochrome 2 and phytochrome A, on the expression of FLOWERING LOCUS T (FT), a gene that triggers the transition from vegetative to reproductive development when expressed above a certain threshold level. This direct effect of light on FT expression requires CONSTANS (CO) — a transcriptional regulator the expression of which is regulated by the clock such that the overlap between high levels of CO mRNA and the illuminated part of the day is minimal on short days and maximal on long days. So, FT mRNA levels accumulate to levels that are sufficient to promote flowering only under the latter condition.

  • Other plants, such as rice, flower earlier on short days than long days. Several genes that affect the photoperiodic regulation of flowering time in rice have been identified recently. Remarkably, all of them encode genes that are known to mediate the photoperiodic regulation of flowering time in Arabidopsis, which indicates that these two species measure daylength by similar mechanisms. The contrasting effect of photoperiod on flowering time in Arabidopsis and rice is due to the fact that FT expression in Arabidopsis is activated when there is a coincidence of light with high levels of CO, whereas in rice the expression of FT-like genes is activated by a CO-like gene in the dark and is repressed by light perceived through phytochromes.

  • Finally, many cereals grown in temperate regions of the world, as well as several Arabidopsis ecotypes, flower more rapidly in response to long days when these are preceded by a prolonged exposure to cold — a phenomenon known as vernalization. This ensures that flowering takes place during the optimal environmental conditions of the spring. Recent studies indicate that the interaction between photoperiodic and temperature signalling pathways in the regulation of flowering time is mediated by the antagonistic effects of CO and FLC (a MADS-box transcription factor) on the expression of floral-inductive genes.

Abstract

Reproductive processes in plants and animals are usually synchronized with favourable seasons of the year. It has been known for 80 years that organisms anticipate seasonal changes by adjusting developmental programmes in response to daylength. Recent studies indicate that plants perceive daylength through the degree of coincidence of light with the expression of CONSTANS, which encodes a clock-regulated transcription factor that controls the expression of floral-inductive genes in a light-dependent manner.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Physiological models of photoperiodic time measurement.
Figure 2: Molecular interactions that shape the plant circadian oscillator.
Figure 3: Photoperiodic regulation of CO and FT expression.
Figure 4: The regulation of flowering time by photoperiod in Arabidopsis and rice.
Figure 5: The Arabidopsis calendar.

Similar content being viewed by others

References

  1. Hastings, M. H. & Follett, B. K. Toward a molecular biological calendar? J. Biol. Rhythms 16, 424–430 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Garner, W. W. & Allard, H. A. Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. J. Agric. Res. 18, 553–606 (1920).

    Google Scholar 

  3. Pittendrigh, C. S. Circadian surfaces and the diversity of possible roles of circadian organization in photoperiodic induction. Proc. Natl Acad. Sci. USA 69, 2734–2737 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Thomas, B. & Vince-Prue, D. Photoperiodism in Plants (Academic, San Diego, 1997).

  5. Bünning, E. Die endogene Tagesrhythmik als Grundlage der photoperiodischen Reaktion. Ber. Dtsch. Bot. Ges. 54, 590–607 (1936) (in German).

    Google Scholar 

  6. Pittendrigh, C. S. & Minis, D. H. The entrainment of circadian oscillations by light and their role as photoperiodic clocks. Am. Nat. 98, 261–294 (1964).

    Article  Google Scholar 

  7. Pittendrigh, C. S. Circadian rhythms and the circadian organization of living systems. Cold Spring Harbor Symp. Quant. Biol. 25, 159–184 (1960).

    Article  CAS  PubMed  Google Scholar 

  8. Hicks, K. A. et al. Conditional circadian dysfunction of the Arabidopsis early-flowering 3 mutant. Science 274, 790–792 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Schaffer, R. et al. The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell 93, 1219–1229 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Park, D. H. et al. Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science 285, 1579–1582 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Fowler, S. et al. GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J. 18, 4679–4688 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Doyle, M. R. et al. The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana. Nature 419, 74–77 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Millar, A. J., Carré, I. A., Strayer, C. A., Chua, N.-H. & Kay, S. A. Circadian clock mutants in Arabidopsis identified by luciferase imaging. Science 267, 1161–1163 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Somers, D. E., Webb, A. A. R., Pearson, M. & Kay, S. The short-period mutant, toc1-1, alters circadian clock regulation of multiple outputs throughout development in Arabidopsis thaliana. Development 125, 485–494 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Strayer, C. A. et al. Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science 289, 768–771 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Somers, D. E., Schultz, T. F., Milnamow, M. & Kay, S. A. ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell 101, 319–329 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Mas, P., Alabadi, D., Yanovsky, M. J., Oyama, T. & Kay, S. A. Dual role of TOC1 in the control of circadian and photomorphogenic responses in Arabidopsis. Plant Cell 15, 223–236 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Harmer, S. L., Panda, S. & Kay, S. A. Molecular bases of circadian rhythms. Annu. Rev. Cell Dev. Biol. 17, 215–253 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Alabadi, D. et al. Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293, 880–883 (2001). The authors propose that circadian oscillations in Arabidopsis are based, at least in part, on a negative-feedback loop in which the Myb-related transcription factors CCA1 and LHY downregulate their own expression by repressing that of their positive regulator, TOC1.

    Article  CAS  PubMed  Google Scholar 

  20. Wang, Z. Y. & Tobin, E. M. Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93, 1207–1217 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Alabadi, D., Yanovsky, M. J., Mas, P., Harmer, S. L. & Kay, S. A. Critical role for CCA1 and LHY in maintaining circadian rhythmicity in Arabidopsis. Curr. Biol. 12, 757–761 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Mizoguchi, T. et al. LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis. Dev. Cell 2, 629–641 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Makino, S. et al. Genes encoding pseudo-response regulators: insight into His-to-Asp phosphorelay and circadian rhythm in Arabidopsis thaliana. Plant Cell Physiol. 41, 791–803 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Matsushika, A., Makino, S., Kojima, M. & Mizuno, T. Circadian waves of expression of the APRR1/TOC1 family of pseudo-response regulators in Arabidopsis thaliana: insight into the plant circadian clock. Plant Cell Physiol. 41, 1002–1012 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Makino, S., Matsushika, A., Kojima, M., Yamashino, T. & Mizuno, T. The APRR1/TOC1 quintet implicated in circadian rhythms of Arabidopsis thaliana: I. Characterization with APRR1-overexpressing plants. Plant Cell Physiol. 43, 58–69 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Harmer, S. L. et al. Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290, 2110–2113 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, Z. Y. et al. A Myb-related transcription factor is involved in the phytochrome regulation of an Arabidopsis Lhcb gene. Plant Cell 9, 491–507 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Panda, S., Hogenesch, J. B. & Kay, S. A. Circadian rhythms from flies to human. Nature 417, 329–335 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Goto, N., Kumagai, T. & Koornneef, M. Flowering responses to light-breaks in photomorphogenic mutants of Arabidopsis thaliana, a long-day plant. Physiol. Plant. 83, 209–215 (1991).

    Article  Google Scholar 

  30. Quail, P. H. Phytochrome photosensory signalling networks. Nature Rev. Mol. Cell Biol. 3, 85–93 (2002).

    Article  CAS  Google Scholar 

  31. Johnson, E., Bradley, M., Harberd, N. P. & Whitelam, G. C. Photoresponses of light-grown phyA mutants of Arabidopsis. Phytochrome A is required for the perception of daylength extensions. Plant Physiol. 105, 141–149 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Weller, J. L., Murfet, I. C. & Reid, J. B. Pea mutants with reduced sensitivity to far-red light define an important role for phytochrome a in day-length detection. Plant Physiol. 114, 1225–1236 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Weller, J. L., Beauchamp, N., Kerckhoffs, L. H., Platten, J. D. & Reid, J. B. Interaction of phytochromes A and B in the control of de-etiolation and flowering in pea. Plant J. 26, 283–294 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Mockler, T. et al. Regulation of photoperiodic flowering by Arabidopsis photoreceptors. Proc. Natl Acad. Sci. USA 100, 2140–2145 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Takano, M. et al. Isolation and characterization of rice phytochrome A mutants. Plant Cell 13, 521–534 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Izawa, T., Oikawa, T., Tokutomi, S., Okuno, K. & Shimamoto, K. Phytochromes confer the photoperiodic control of flowering in rice (a short-day plant). Plant J. 22, 391–399 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Cashmore, A. R., Jarillo, J. A., Wu, Y. J. & Liu, D. Cryptochromes: blue light receptors for plants and animals. Science 284, 760–765 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Briggs, W. R. & Christie, J. M. Phototropins 1 and 2: versatile plant blue-light receptors. Trends Plant Sci. 7, 204–210 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Nelson, D. C., Lasswell, J., Rogg, L. E., Cohen, M. A. & Bartel, B. FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis. Cell 101, 331–340 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Kiyosue, T. & Wada, M. LKP1 (LOV kelch protein 1): a factor involved in the regulation of flowering time in Arabidopsis. Plant J. 23, 807–815 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Schultz, T. F., Kiyosue, T., Yanovsky, M., Wada, M. & Kay, S. A. A role for LKP2 in the circadian clock of Arabidopsis. Plant Cell 13, 2659–2670 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jarillo, J. A. et al. An Arabidopsis circadian clock component interacts with both CRY1 and phyB. Nature 410, 487–490 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Ahmad, M. & Cashmore, A. R. HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366, 162–166 (1993).

    Article  CAS  PubMed  Google Scholar 

  44. Lin, C. et al. Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. Proc. Natl. Acad. Sci. USA 95, 2686–2690 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Van Gelder, R. N. Tales from the crypt(ochromes). J. Biol. Rhythms 17, 110–120 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Guo, H. W., Yang, W. Y., Mockler, T. C. & Lin, C. Regulation of flowering time by Arabidopsis photoreceptors. Science 279, 1360–1363 (1998). This paper describes the isolation of the cry2 mutant, which is shown to flower late on long days but not short days. These findings established cry2 as a crucial photoperiodic photoreceptor in Arabidopsis.

    Article  CAS  PubMed  Google Scholar 

  47. Mockler, T. C., Guo, H., Yang, H., Duong, H. & Lin, C. Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction. Development 126, 2073–2082 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Mas, P., Devlin, P. F., Panda, S. & Kay, S. A. Functional interaction of phytochrome B and cryptochrome 2. Nature 408, 207–211 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Mazzella, M. A., Cerdan, P. D., Staneloni, R. J. & Casal, J. J. Hierarchical coupling of phytochromes and cryptochromes reconciles stability and light modulation of Arabidopsis development. Development 128, 2291–2299 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Somers, D. E., Devlin, P. F. & Kay, S. A. Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science 282, 1488–1490 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Devlin, P. F. & Kay, S. A. Cryptochromes are required for phytochrome signaling to the circadian clock but not for rhythmicity. Plant Cell 12, 2499–2510 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yanovsky, M. J. et al. Phytochrome A resets the circadian clock and delays tuber formation under long days in potato. Plant J. 23, 223–232 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Yanovsky, M. J., Mazzella, M. A., Whitelam, G. C. & Casal, J. J. Resetting of the circadian clock by phytochromes and cryptochromes in Arabidopsis. J. Biol. Rhythms 16, 523–530 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Yanovsky, M. J., Mazzella, M. A. & Casal, J. J. A quadruple photoreceptor mutant still keeps track of time. Curr. Biol. 10, 1013–1015 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Kipreos, E. T. & Pagano, M. The F-box protein family. Genome Biol. 1, 3002.1–3002.7 (2000).

    Article  Google Scholar 

  56. Adams, J., Kelso, R. & Cooley, L. The kelch repeat superfamily of proteins: propellers of cell function. Trends Cell Biol. 10, 17–24 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Martinez-Garcia, J. F., Huq, E. & Quail, P. H. Direct targeting of light signals to a promoter element-bound transcription factor. Science 288, 859–863 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Covington, M. F., Panda, S., Strayer, C. A., Kay, S. A. & Wagner, D. R. ELF3 modulates resetting of the circadian clock in Arabidopsis. Plant Cell 13, 1305–1316 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zagotta, M. T. et al. The Arabidopsis ELF3 gene regulates vegetative photomorphogenesis and the photoperiodic induction of flowering. Plant J. 10, 691–702 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Huq, E., Tepperman, J. M. & Quail, P. H. GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis. Proc. Natl Acad. Sci. USA 97, 9789–9794 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Reed, J. W. et al. Independent action of ELF3 and phyB to control hypocotyl elongation and flowering time. Plant Physiol. 122, 1149–1160 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Liu, X. L., Covington, M. F., Fankhauser, C., Chory, J. & Wagner, D. R. ELF3 encodes a circadian clock-regulated nuclear protein that functions in an Arabidopsis PHYB signal transduction pathway. Plant Cell 13, 1293–1304 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. McWatters, H. G., Bastow, R. M., Hall, A. & Millar, A. J. The ELF3 zeitnehmer regulates light signalling to the circadian clock. Nature 408, 716–720 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Desnos, T., Puente, P., Whitelam, G. C. & Harberd, N. P. FHY1: a phytochrome A-specific signal transducer. Genes Dev. 15, 2980–2990 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Whitelam, G. C. et al. Phytochrome A null mutants of Arabidopsis display a wild-type phenotype in white light. Plant Cell 5, 757–768 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Barnes, S. A., Quaggio, R. B., Whitelam, G. C. & Chua, N. H. fhy1 defines a branch point in phytochrome A signal transduction pathways for gene expression. Plant J. 10, 1155–1161 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. Bognar, L. K. et al. The circadian clock controls the expression pattern of the circadian input photoreceptor, phytochrome B. Proc. Natl Acad. Sci. USA 96, 14652–14657 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Toth, R. et al. Circadian clock-regulated expression of phytochrome and cryptochrome genes in Arabidopsis. Plant Physiol. 127, 1607–1616 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hall, A., Kozma-Bognar, L., Toth, R., Nagy, F. & Millar, A. J. Conditional circadian regulation of PHYTOCHROME A gene expression. Plant Physiol. 127, 1808–1818 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sharrock, R. A. & Clack, T. Patterns of expression and normalized levels of the five Arabidopsis phytochromes. Plant Physiol. 130, 442–456 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Din El-Assal, S., Alonso-Blanco, C., Peeters, A. J., Raz, V. & Koornneef, M. A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2. Nature Genet. 29, 435–440 (2001).

    Article  PubMed  Google Scholar 

  72. Kircher, S. et al. Nucleocytoplasmic partitioning of the plant photoreceptors phytochrome A, B, C, D, and E is regulated differentially by light and exhibits a diurnal rhythm. Plant Cell 14, 1541–1555 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tepperman, J. M., Zhu, T., Chang, H. S., Wang, X. & Quail, P. H. Multiple transcription-factor genes are early targets of phytochrome A signaling. Proc. Natl Acad. Sci. USA 98, 9437–9442 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hicks, K. A., Albertson, T. M. & Wagner, D. R. EARLY FLOWERING3 encodes a novel protein that regulates circadian clock function and flowering in Arabidopsis. Plant Cell 13, 1281–1292 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Putterill, J., Robson, F., Lee, K., Simon, R. & Coupland, G. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80, 847–857 (1995).

    Article  CAS  PubMed  Google Scholar 

  76. Samach, A. et al. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288, 1613–1616 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Kardailsky, I. et al. Activation tagging of the floral inducer FT. Science 286, 1962–1965 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Kobayashi, Y., Kaya, H., Goto, K., Iwabuchi, M. & Araki, T. A pair of related genes with antagonistic roles in mediating flowering signals. Science 286, 1960–1962 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Onouchi, H., Igeno, M. I., Perilleux, C., Graves, K. & Coupland, G. Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes. Plant Cell 12, 885–900 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Suarez-Lopez, P. et al. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410, 1116–1120 (2001). The data reported here indicated that the acceleration of flowering on long days in Arabidopsis could be mediated by clock regulation of CO expression and light modulation of its function.

    Article  CAS  PubMed  Google Scholar 

  81. Yanovsky, M. J. & Kay, S. A. Molecular basis of seasonal time measurement in Arabidopsis. Nature 419, 308–312 (2002). This paper shows that precise clock control of the timing of CO expression is crucial for daylength discrimination, and that flowering time in Arabidopsis is regulated by photoperiod through the degree of coincidence of the illuminated part of the day with a circadian phase that is characterized by high CO levels.

    Article  CAS  PubMed  Google Scholar 

  82. Blazquez, M. A., Trenor, M. & Weigel, D. Independent control of gibberellin biosynthesis and flowering time by the circadian clock in Arabidopsis. Plant Physiol. 130, 1770–1775 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Roden, L. C., Song, H. R., Jackson, S., Morris, K. & Carre, I. A. Floral responses to photoperiod are correlated with the timing of rhythmic expression relative to dawn and dusk in Arabidopsis. Proc. Natl Acad. Sci. USA 99, 13313–13318 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Goldman, B. D. Mammalian photoperiodic system: formal properties and neuroendocrine mechanisms of photoperiodic time measurement. J Biol. Rhythms 16, 283–301 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Izawa, T. et al. Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Genes Dev. 16, 2006–2020 (2002). This paper describes the first molecular model for the photoperiodic regulation of flowering time in rice, a SDP. The inhibitory effect of long days on flowering in rice is based on the repression of FT -like genes by the CO homologue in light and their upregulation by CO in the dark.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yano, M., Kojima, S., Takahashi, Y., Lin, H. & Sasaki, T. Genetic control of flowering time in rice, a short-day plant. Plant Physiol. 127, 1425–1429 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Takahashi, Y., Shomura, A., Sasaki, T. & Yano, M. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the α-subunit of protein kinase CK2. Proc. Natl Acad. Sci. USA 98, 7922–7927 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sugano, S., Andronis, C., Green, R. M., Wang, Z. Y. & Tobin, E. M. Protein kinase CK2 interacts with and phosphorylates the Arabidopsis circadian clock-associated 1 protein. Proc. Natl Acad. Sci. USA 95, 11020–11025 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sugano, S., Andronis, C., Ong, M. S., Green, R. M. & Tobin, E. M. The protein kinase CK2 is involved in regulation of circadian rhythms in Arabidopsis. Proc. Natl Acad. Sci. USA 96, 12362–12366 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yang, Y., Cheng, P. & Liu, Y. Regulation of the Neurospora circadian clock by casein kinase II. Genes Dev. 16, 994–1006 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lin, J. M. et al. A role for casein kinase 2α in the Drosophila circadian clock. Nature 420, 816–820 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Yano, M. et al. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12, 2473–2484.

  93. Kojima, S. et al. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol. 43, 1096–1105 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Liu, J., Yu, J., McIntosh, L., Kende, H. & Zeevaart, J. A. Isolation of a CONSTANS ortholog from Pharbitis nil and its role in flowering. Plant Physiol. 125, 1821–1830 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Simpson, G. G. & Dean, C. Arabidopsis, the Rosetta stone of flowering time? Science 296, 285–289 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Michaels, S. D. & Amasino, R. M. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11, 949–956 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sheldon, C. C. et al. The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell 11, 445–458 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hepworth, S. R., Valverde, F., Ravenscroft, D., Mouradov, A. & Coupland, G. Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. EMBO J. 21, 4327–4337 (2002). This papers describes a possible molecular mechanism for the integration of photoperiodic and temperature signalling pathways regulating flowering time in Arabidopsis . The authors suggest that this integration might result from antagonistic interactions between CO and FLC at the promoter of the floral-inductive gene SOC1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Levy, Y. Y., Mesnage, S., Mylne, J. S., Gendall, A. R. & Dean, C. Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control. Science 297, 243–246 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Gendall, A. R., Levy, Y. Y., Wilson, A. & Dean, C. The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell 107, 525–535 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Kim, D. H. et al. A phytochrome-associated protein phosphatase 2A modulates light signals in flowering time control in Arabidopsis. Plant Cell 14, 3043–3056 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Martinez-Garcia, J. F., Virgos-Soler, A. & Prat, S. Control of photoperiod-regulated tuberization in potato by the Arabidopsis flowering-time gene CONSTANS. Proc. Natl Acad. Sci. USA 99, 15211–15216 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Shinomura, T., Uchida, K. & Furuya, M. Elementary processes of photoperception by phytochrome A for high-irradiance response of hypocotyl elongation in Arabidopsis. Plant Physiol. 122, 147–156 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lin, C. Blue light receptors and signal transduction. Plant Cell 14, S207–S225 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Daan, S. et al. Assembling a clock for all seasons: are there M and E oscillators in the genes? J. Biol. Rhythms 16, 105–116 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Thain, S. C., Murtas, G., Lynn, J. R., McGrath, R. B. & Millar, A. J. The circadian clock that controls gene expression in Arabidopsis is tissue specific. Plant Physiol. 130, 102–110 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hall, A., Kozma-Bognar, L., Bastow, R. M., Nagy, F. & Millar, A. J. Distinct regulation of CAB and PHYB gene expression by similar circadian clocks. Plant J. 32, 529–537 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Sato, E., Nakamichi, N., Yamashino, T. & Mizuno, T. Aberrant expression of the Arabidopsis circadian-regulated APRR5 gene belonging to the APRR1/TOC1 quintet results in early flowering and hypersensitiveness to light in early photomorphogenesis. Plant Cell Physiol. 43, 1374–1385 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Matsushika, A., Imamura, A., Yamashino, T. & Mizuno, T. Aberrant expression of the light-inducible and circadian-regulated APRR9 gene belonging to the circadian-associated APRR1/TOC1 quintet results in the phenotype of early flowering in Arabidopsis thaliana. Plant Cell Physiol. 43, 833–843 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our thanks to C. Dean, J.J. Casal, F. Harmon, P. Mas and S. Harmer for their critical reading of this review. We apologize to those colleagues whose work is not discussed here because of space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve A. Kay.

Related links

Related links

DATABASES

Entrez

Hd3a

Hd1

Interpro

F-box

kelch

PAS

Swiss-Prot

cry2

phyA

The Arabidopsis Information Resource

CCA1

CO

ELF4

FT

LHY

TOC1

FURTHER INFORMATION

Steve A. Kay's laboratory

The Flowering Web

Tutorials on Biological Clocks

Glossary

DAYLENGTH

(photoperiod). The duration of the illuminated phase of a daily light/dark cycle.

PHOTOPERIODIC RESPONSE

The biological response to changes in daylength, or photoperiod, that are associated with seasonal adaptations.

CIRCADIAN RHYTHM

A rhythm with an approximate 24-h period.

ENTRAINMENT

The synchronization or adjustment of a rhythm to another cycle of similar periodicity. In the case of circadian rhythms, it refers to their synchronization to the 24-h solar cycle in response to changes in environmental cues such as light and temperature that normally occur at dawn and dusk.

TEMPERATURE COMPENSATION

The ability of circadian clocks to maintain a relatively constant pace over a wide temperature range.

PHOTOMORPHOGENIC RESPONSE

The morphological and physiological adaptation of plants to changes in the quality and quantity of their light environment.

PSEUDO-RESPONSE REGULATOR

A protein that shares strong sequence similarity to response regulators of bacterial two-component signalling systems, but that lacks the conserved residues that are phosphorylated by a sensor kinase, which modulates its activity.

CHROMOPROTEIN

A protein that is linked to a chromophore, which allows the holoprotein (protein plus chromophore) to work as a photoreceptor.

SHORT-/LONG-DAY CONDITIONS

In Arabidopsis, short-day conditions usually consist of 8–10-h photoperiods, and long-day conditions of 14–16-h photoperiods. The length of the day that, when exceeded, promotes or inhibits flowering varies for each species.

CHROMOPHORE

A molecule that selectively absorbs certain wavelengths.

PAS/LOV

PAS is a signalling domain that was identified initially in period circadian protein, Ah receptor nuclear translocator protein and single-minded protein. It mediates protein–protein interactions and/or binds small ligands. LOV domains are a subset of PAS domains that are found in signalling proteins that are activated by light, oxygen or voltage.

MERISTEM-IDENTITY GENE

A gene, such as LEAFY and APETALA1, that triggers the initiation of flowers, instead of leaves, from the shoot apical meristem.

MERISTEM

A small group of undifferentiated cells from which plant organs are formed.

QUANTITATIVE TRAIT LOCUS

(QTL). A genetic locus that is identified through the statistical analysis of complex traits (such as plant height or body weight). These traits are typically influenced by more than one gene and also by the environment.

MADS BOX

A conserved DNA-binding domain that is found in a family of transcriptional regulators that are present in animals, fungi and plants.

EPIGENETIC

A heritable change in gene expression that is controlled by modifications in DNA methylation and/or chromatin structure.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yanovsky, M., Kay, S. Living by the calendar: how plants know when to flower. Nat Rev Mol Cell Biol 4, 265–276 (2003). https://doi.org/10.1038/nrm1077

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1077

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing