Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Working out the strength and flexibility of desmosomes

Key Points

  • Genetic-manipulation studies in mice, and work with human patients, has demonstrated key structural roles for several desmosomal proteins in the skin, heart and hair. As the molecular composition of desmosomes varies in different cell types, tissue-specific functional requirements for these intercellular junctions probably exist.

  • High-resolution analysis has revealed molecular details of the organization of desmosomal cadherins at the cell surface and the structure of the subdomains of desmoplakin that are implicated in intermediate-filament binding. Short peptides that are specific to desmosomal cadherins can block adhesion, but interfering with the ability of desmoplakin to recruit intermediate filaments to desmosomes also reduces the adhesive strength of epithelial cells.

  • Desmosomal cadherins have essential adhesive functions within desmosomes and are mutated in human disease. Recent work suggests that the desmogleins and desmocollins are also important in the cell-sorting and signalling events that drive tissue morphogenesis.

  • Members of the armadillo-protein family, including plakoglobin, the plakophilins and p0071, are present within desmosomes, but, in some cases, might also function within the cytoplasm and the nucleus.

  • Desmoplakin has been confirmed as an essential cytoskeletal linker protein in desmosomes and is required not only to maintain the integrity of epidermal and cardiac tissues, but also for the development of the microvasculature network. The factors that are required to regulate desmoplakin recruitment and function within junctions are still being identified.

Abstract

Desmosomes have long been regarded as essential 'spot welds' that externally glue together cells within a tissue, and internally anchor the cytoskeletal network of intermediate filaments. Inactivation of desmosomal components by mutation, autoimmune antibodies and bacterial toxins breaches the structural integrity of embryos and adult tissues. But desmosomes are also functionally flexible organelles that recruit molecules capable of instructing cells within a tissue to undergo proper morphogenesis and patterning.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A model for the structural organization of desmosomes.
Figure 2: The genomic and molecular organization of the human desmosomal cadherins.
Figure 3: Desmosomal proteins in the different epithelial cell layers of the skin.
Figure 4: Structural models for cadherin interactions at the cell surface.
Figure 5: Segregating the functions of desmoplakin according to its structural ends.

Similar content being viewed by others

References

  1. Garrod, D. R., Merritt, A. J. & Nie, Z. Desmosomal cadherins. Curr. Opin. Cell Biol. 14, 537–545 (2002).

    CAS  PubMed  Google Scholar 

  2. Kljuic, A. et al. Desmoglein 4 in hair follicle differentiation and epidermal adhesion: evidence from inherited hypotrichosis and acquired pemphigus vulgaris. Cell 113, 249–260 (2003). Demonstrates that mutations in a novel desmosomal cadherin isoform are linked to hair-follicle defects in mice and humans.

    CAS  PubMed  Google Scholar 

  3. Whittock, N. V. & Bower, C. Genetic evidence for a novel human desmosomal cadherin, desmoglein 4. J. Invest. Dermatol. 120, 523–530 (2003).

    CAS  PubMed  Google Scholar 

  4. Hatzfeld, M. The armadillo family of structural proteins. Int. Rev. Cytol. 186, 179–224 (1999).

    CAS  PubMed  Google Scholar 

  5. Chen, X., Bonne, S., Hatzfeld, M., van Roy, F. & Green, K. J. Protein binding and functional characterization of plakophilin 2. Evidence for its diverse roles in desmosomes and β-catenin signaling. J. Biol. Chem. 277, 10512–10522 (2002).

    CAS  PubMed  Google Scholar 

  6. Bonne, S. et al. Defining desmosomal plakophilin-3 interactions. J. Cell Biol. 161, 403–416 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hatzfeld, M., Green, K. J. & Sauter, H. Targeting of p0071 to desmosomes and adherens junctions is mediated by different protein domains. J. Cell Sci. 116, 1219–1233 (2003).

    CAS  PubMed  Google Scholar 

  8. Bornslaeger, E. A., Corcoran, C. M., Stappenbeck, T. S. & Green, K. J. Breaking the connection: displacement of the desmosomal plaque protein desmoplakin from cell–cell interfaces disrupts anchorage of intermediate filament bundles and alters intercellular junction assembly. J. Cell Biol. 134, 985–1001 (1996).

    CAS  PubMed  Google Scholar 

  9. Gallicano, G. I. et al. Desmoplakin is required early in development for assembly of desmosomes and cytoskeletal linkage. J. Cell Biol. 143, 2009–2022 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Borrmann, C. M. et al. Molecular diversity of plaques of epithelial-adhering junctions. Ann. NY Acad. Sci. 915, 144–150 (2000).

    CAS  PubMed  Google Scholar 

  11. Gallicano, G. I., Bauer, C. & Fuchs, E. Rescuing desmoplakin function in extra-embryonic ectoderm reveals the importance of this protein in embryonic heart, neuroepithelium, skin and vasculature. Development 128, 929–941 (2001). In these studies, the authors used chimaeric wild-type and desmoplakin-deficient morulae to rescue desmoplakin function in extra-embryonic tissues, and showed that this plakin-family member has important structural roles not only in the heart, neuroepithelium and epidermis, but also in microvasculature development.

    CAS  PubMed  Google Scholar 

  12. Bierkamp, C., McLaughlin, K. J., Schwarz, H., Huber, O. & Kemler, R. Embryonic heart and skin defects in mice lacking plakoglobin. Dev. Biol. 180, 780–785 (1996).

    CAS  PubMed  Google Scholar 

  13. Ruiz, P. et al. Targeted mutation of plakoglobin in mice reveals essential functions of desmosomes in the embryonic heart. J. Cell Biol. 135, 215–225 (1996).

    CAS  PubMed  Google Scholar 

  14. Kurzen, H. et al. Compositionally different desmosomes in the various compartments of the human hair follicle. Differentiation 63, 295–304 (1998).

    CAS  PubMed  Google Scholar 

  15. Runswick, S. K., O'Hare, M. J., Jones, L., Streuli, C. H. & Garrod, D. R. Desmosomal adhesion regulates epithelial morphogenesis and cell positioning. Nature Cell Biol. 3, 823–830 (2001). This paper was the first to demonstrate that interfering with desmosomal cadherins can alter cell sorting and reorganization events in an in vitro model of alveolar morphogenesis.

    CAS  PubMed  Google Scholar 

  16. Wu, H., Stanley, J. R. & Cotsarelis, G. Desmoglein isotype expression in the hair follicle and its cysts correlates with type of keratinization and degree of differentiation. J. Invest. Dermatol. 120, 1052–1057 (2003).

    CAS  PubMed  Google Scholar 

  17. Ruhrberg, C., Hajibagheri, M. A., Simon, M., Dooley, T. P. & Watt, F. M. Envoplakin, a novel precursor of the cornified envelope that has homology to desmoplakin. J. Cell Biol. 134, 715–729 (1996).

    CAS  PubMed  Google Scholar 

  18. Ruhrberg, C., Hajibagheri, M. A., Parry, D. A. & Watt, F. M. Periplakin, a novel component of cornified envelopes and desmosomes that belongs to the plakin family and forms complexes with envoplakin. J. Cell Biol. 139, 1835–1849 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Blaschuk, O. W., Sullivan, R., David, S. & Pouliot, Y. Identification of a cadherin cell adhesion recognition sequence. Dev. Biol. 139, 227–229 (1990).

    CAS  PubMed  Google Scholar 

  20. Tselepis, C., Chidgey, M., North, A. & Garrod, D. Desmosomal adhesion inhibits invasive behavior. Proc. Natl Acad. Sci. USA 95, 8064–8069 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Chitaev, N. A. & Troyanovsky, S. M. Direct Ca2+-dependent heterophilic interaction between desmosomal cadherins, desmoglein and desmocollin, contributes to cell–cell adhesion. J. Cell Biol. 138, 193–201 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Troyanovsky, R. B., Klingelhofer, J. & Troyanovsky, S. Removal of calcium ions triggers a novel type of intercadherin interaction. J. Cell Sci. 112, 4379–4387 (1999).

    CAS  PubMed  Google Scholar 

  23. Syed, S. E. et al. Molecular interactions between desmosomal cadherins. Biochem. J. 362, 317–327 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Boggon, T. J. et al. C-cadherin ectodomain structure and implications for cell adhesion mechanisms. Science 296, 1308–1313 (2002).

    CAS  PubMed  Google Scholar 

  25. Patel, S. D., Chen, C. P., Bahna, F., Honig, B. & Shapiro, L. Cadherin-mediated cell–cell adhesion: sticking together as a family. Curr. Opin. Struct. Biol. 13, 690–698 (2003).

    CAS  PubMed  Google Scholar 

  26. He, W., Cowin, P. & Stokes, D. L. Untangling desmosomal knots with electron tomography. Science 302, 109–113 (2003). Supports previous crystallization work that indicated that cadherins might interact through their amino-terminal tips. Also the first study to demonstrate that cadherins form discrete clusters at the cell surface, presumably as a result of flexible intermolecular interactions within junctions.

    CAS  PubMed  Google Scholar 

  27. Amagai, M. et al. Conformational epitopes of pemphigus antigens (Dsg1 and Dsg3) are calcium dependent and glycosylation independent. J. Invest. Dermatol. 105, 243–247 (1995).

    CAS  PubMed  Google Scholar 

  28. Hanakawa, Y. et al. Calcium-dependent conformation of desmoglein 1 is required for its cleavage by exfoliative toxin. J. Invest. Dermatol. 121, 383–389 (2003).

    CAS  PubMed  Google Scholar 

  29. Rickman, L. et al. N-terminal deletion in a desmosomal cadherin causes the autosomal dominant skin disease striate palmoplantar keratoderma. Hum. Mol. Genet. 8, 971–976 (1999).

    CAS  PubMed  Google Scholar 

  30. Eshkind, L. et al. Loss of desmoglein 2 suggests essential functions for early embryonic development and proliferation of embryonal stem cells. Eur. J. Cell Biol. 81, 592–598 (2002).

    CAS  PubMed  Google Scholar 

  31. Chidgey, M. et al. Mice lacking desmocollin 1 show epidermal fragility accompanied by barrier defects and abnormal differentiation. J. Cell Biol. 155, 821–832 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Elias, P. M. et al. Desmoglein isoform distribution affects stratum corneum structure and function. J. Cell Biol. 153, 243–249 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Merritt, A. J. et al. Suprabasal desmoglein 3 expression in the epidermis of transgenic mice results in hyperproliferation and abnormal differentiation. Mol. Cell. Biol. 22, 5846–5858 (2002). References 32 and 33 demonstrate that the inappropriate overexpression of desmoglein 3 in the upper epidermal-cell layers results in either abnormal differentiation or abnormal function of this tissue, depending on the promoter used to drive suprabasal expression of the transgene.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Peifer, M. & Polakis, P. Wnt signaling in oncogenesis and embryogenesis — a look outside the nucleus. Science 287, 1606–1609 (2000).

    CAS  PubMed  Google Scholar 

  35. Jamora, C. & Fuchs, E. Intercellular adhesion, signalling and the cytoskeleton. Nature Cell Biol. 4, E101–E108 (2002).

    CAS  PubMed  Google Scholar 

  36. Kitajima, Y. Mechanisms of desmosome assembly and disassembly. Clin. Exp. Dermatol. 27, 684–690 (2002).

    CAS  PubMed  Google Scholar 

  37. Collins, J. E. et al. Cloning and sequence analysis of desmosomal glycoproteins 2 and 3 (desmocollins): cadherin-like desmosomal adhesion molecules with heterogeneous cytoplasmic domains. J. Cell Biol. 113, 381–391 (1991).

    CAS  PubMed  Google Scholar 

  38. Smith, E. A. & Fuchs, E. Defining the interactions between intermediate filaments and desmosomes. J. Cell Biol. 141, 1229–1241 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bornslaeger, E. A. et al. Plakophilin 1 interferes with plakoglobin binding to desmoplakin, yet together with plakoglobin promotes clustering of desmosomal plaque complexes at cell–cell borders. J. Cell Sci. 114, 727–738 (2001).

    CAS  PubMed  Google Scholar 

  40. McKoy, G. et al. Identification of a deletion in plakoglobin in arrhythmogenic right ventricular cardiomyopathy with palmoplantar keratoderma and woolly hair (Naxos disease). Lancet 355, 2119–2124 (2000).

    CAS  PubMed  Google Scholar 

  41. Bierkamp, C., Schwarz, H., Huber, O. & Kemler, R. Desmosomal localization of β-catenin in the skin of plakoglobin null-mutant mice. Development 126, 371–381 (1999).

    CAS  PubMed  Google Scholar 

  42. Caldelari, R. et al. A central role for the armadillo protein plakoglobin in the autoimmune disease pemphigus vulgaris. J. Cell Biol. 153, 823–834 (2001). Demonstrates an essential role for plakoglobin in mediating cytoplasmic responses to pemphigus antibodies that bind to desmoglein 3 at the cell surface.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Maeda, O. et al. Plakoglobin (γ-catenin) has TCF/LEF family-dependent transcriptional activity in β-catenin-deficient cell line. Oncogene 23, 964–972 (2003).

    Google Scholar 

  44. Zhurinsky, J., Shtutman, M. & Ben-Ze'ev, A. Differential mechanisms of LEF/TCF family-dependent transcriptional activation by β-catenin and plakoglobin. Mol. Cell. Biol. 20, 4238–4252 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Simcha, I. et al. Differential nuclear translocation and transactivation potential of β-catenin and plakoglobin. J. Cell Biol. 141, 1433–1448 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Miravet, S. et al. The transcriptional factor Tcf-4 contains different binding sites for β-catenin and plakoglobin. J. Biol. Chem. 277, 1884–1891 (2002). This indicates that plakoglobin can inhibit β-catenin-mediated signalling through Tcf4 by directly binding this transcriptional complex.

    CAS  PubMed  Google Scholar 

  47. Gat, U., DasGupta, R., Degenstein, L. & Fuchs, E. De novo hair follicle morphogenesis and hair tumors in mice expressing a truncated β-catenin in skin. Cell 95, 605–614 (1998).

    CAS  PubMed  Google Scholar 

  48. Charpentier, E., Lavker, R. M., Acquista, E. & Cowin, P. Plakoglobin suppresses epithelial proliferation and hair growth in vivo. J. Cell Biol. 149, 503–520 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Hoschuetzky, H., Aberle, H. & Kemler, R. β-catenin mediates the interaction of the cadherin–catenin complex with epidermal growth factor receptor. J. Cell Biol. 127, 1375–1380 (1994).

    CAS  PubMed  Google Scholar 

  50. Fuchs, M., Muller, T., Lerch, M. M. & Ullrich, A. Association of human protein-tyrosine phosphatase κ with members of the armadillo family. J. Biol. Chem. 271, 16712–16719 (1996).

    CAS  PubMed  Google Scholar 

  51. Muller, T., Choidas, A., Reichmann, E. & Ullrich, A. Phosphorylation and free pool of β-catenin are regulated by tyrosine kinases and tyrosine phosphatases during epithelial cell migration. J. Biol. Chem. 274, 10173–10183 (1999).

    CAS  PubMed  Google Scholar 

  52. Gaudry, C. A. et al. Tyrosine-phosphorylated plakoglobin is associated with desmogleins but not desmoplakin after epidermal growth factor receptor activation. J. Biol. Chem. 276, 24871–24880 (2001).

    CAS  PubMed  Google Scholar 

  53. Hu, P., Berkowitz, P., O'Keefe, E. J. & Rubenstein, D. S. Keratinocyte adherens junctions initiate nuclear signaling by translocation of plakoglobin from the membrane to the nucleus. J. Invest. Dermatol. 121, 242–251 (2003).

    CAS  PubMed  Google Scholar 

  54. Miravet, S. et al. Tyrosine phosphorylation of plakoglobin causes contrary effects on its association with desmosomes and adherens junction components and modulates β-catenin-mediated transcription. Mol. Cell. Biol. 23, 7391–7402 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kofron, M., Heasman, J., Lang, S. A. & Wylie, C. C. Plakoglobin is required for maintenance of the cortical actin skeleton in early Xenopus embryos and for cdc42-mediated wound healing. J. Cell Biol. 158, 695–708 (2002). Reveals a novel link between plakoglobin and processes that assemble cortical actin in X. laevis embryos.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Bonne, S., van Hengel, J., Nollet, F., Kools, P. & van Roy, F. Plakophilin-3, a novel armadillo-like protein present in nuclei and desmosomes of epithelial cells. J. Cell Sci. 112, 2265–2276 (1999).

    CAS  PubMed  Google Scholar 

  57. McGrath, J. A. et al. Mutations in the plakophilin 1 gene result in ectodermal dysplasia/skin fragility syndrome. Nature Genet. 17, 240–244 (1997).

    CAS  PubMed  Google Scholar 

  58. Kowalczyk, A. P. et al. The head domain of plakophilin-1 binds to desmoplakin and enhances its recruitment to desmosomes. Implications for cutaneous disease. J. Biol. Chem. 274, 18145–18148 (1999).

    CAS  PubMed  Google Scholar 

  59. Koeser, J., Troyanovsky, S. M., Grund, C. & Franke, W. W. De novo formation of desmosomes in cultured cells upon transfection of genes encoding specific desmosomal components. Exp. Cell. Res. 285, 114–130 (2003).

    CAS  PubMed  Google Scholar 

  60. Chen, X., Kojima, S., Borisy, G. G. & Green, K. J. p120 catenin associates with kinesin and facilitates the transport of cadherin–catenin complexes to intercellular junctions. J. Cell Biol. 163, 547–557 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Davis, M. A., Ireton, R. C. & Reynolds, A. B. A core function for p120-catenin in cadherin turnover. J. Cell Biol. 163, 525–534 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Xiao, K. et al. Cellular levels of p120 catenin function as a set point for cadherin expression levels in microvascular endothelial cells. J. Cell Biol. 163, 535–545 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. South, A. P. et al. Lack of plakophilin 1 increases keratinocyte migration and reduces desmosome stability. J. Cell Sci. 116, 3303–3314 (2003).

    CAS  PubMed  Google Scholar 

  64. Anastasiadis, P. Z. et al. Inhibition of RhoA by p120 catenin. Nature Cell Biol. 2, 637–644 (2000).

    CAS  PubMed  Google Scholar 

  65. Noren, N. K., Liu, B. P., Burridge, K. & Kreft, B. p120 catenin regulates the actin cytoskeleton via Rho family GTPases. J. Cell Biol. 150, 567–580 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Daniel, J. M. & Reynolds, A. B. The catenin p120(ctn) interacts with Kaiso, a novel BTB/POZ domain zinc finger transcription factor. Mol. Cell. Biol. 19, 3614–3623 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Mertens, C. et al. Nuclear particles containing RNA polymerase III complexes associated with the junctional plaque protein plakophilin 2. Proc. Natl Acad. Sci. USA 98, 7795–7800 (2001). This study provided evidence of the first nuclear binding partner for the plakophilins, namely RNA polymerase III.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Calkins, C. C. et al. The Armadillo family protein p0071 is a VE-cadherin- and desmoplakin-binding protein. J. Biol. Chem. 278, 1774–1783 (2003).

    CAS  PubMed  Google Scholar 

  69. Deguchi, M. et al. PAPIN. A novel multiple PSD-95/Dlg-A/ZO-1 protein interacting with neural plakophilin-related armadillo repeat protein/δ-catenin and p0071. J. Biol. Chem. 275, 29875–29880 (2000).

    CAS  PubMed  Google Scholar 

  70. Izawa, I. et al. ERBIN associates with p0071, an armadillo protein, at cell–cell junctions of epithelial cells. Genes Cells 7, 475–485 (2002).

    CAS  PubMed  Google Scholar 

  71. Jaulin-Bastard, F. et al. Interaction between Erbin and a Catenin-related protein in epithelial cells. J. Biol. Chem. 277, 2869–2875 (2002).

    CAS  PubMed  Google Scholar 

  72. Borg, J. P. et al. ERBIN: a basolateral PDZ protein that interacts with the mammalian ERBB2/HER2 receptor. Nature Cell Biol. 2, 407–414 (2000).

    CAS  PubMed  Google Scholar 

  73. Huang, Y. Z. et al. Compartmentalized NRG signaling and PDZ domain-containing proteins in synapse structure and function. Int. J. Dev. Neurosci. 20, 173–185 (2002).

    CAS  PubMed  Google Scholar 

  74. Ohno, H. et al. Localization of p0071-interacting proteins, plakophilin-related armadillo-repeat protein-interacting protein (PAPIN) and ERBIN, in epithelial cells. Oncogene 21, 7042–7049 (2002).

    CAS  PubMed  Google Scholar 

  75. Leung, C. L., Green, K. J. & Liem, R. K. Plakins: a family of versatile cytolinker proteins. Trends Cell Biol. 12, 37–45 (2002).

    CAS  PubMed  Google Scholar 

  76. Gregory, S. L. & Brown, N. H. kakapo, a gene required for adhesion between and within cell layers in Drosophila, encodes a large cytoskeletal linker protein related to plectin and dystrophin. J. Cell Biol. 143, 1271–1282 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Prokop, A., Uhler, J., Roote, J. & Bate, M. The kakapo mutation affects terminal arborization and central dendritic sprouting of Drosophila motorneurons. J. Cell Biol. 143, 1283–1294 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Lee, S. & Kolodziej, P. A. The plakin Short Stop and the RhoA GTPase are required for E-cadherin-dependent apical surface remodeling during tracheal tube fusion. Development 129, 1509–1520 (2002).

    CAS  PubMed  Google Scholar 

  79. Subramanian, A. et al. Shortstop recruits EB1/APC1 and promotes microtubule assembly at the muscle-tendon junction. Curr. Biol. 13, 1086–1095 (2003).

    CAS  PubMed  Google Scholar 

  80. Bosher, J. M. et al. The Caenorhabditis elegans vab-10 spectraplakin isoforms protect the epidermis against internal and external forces. J. Cell. Biol. 161, 757–768 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Andra, K. et al. Targeted inactivation of plectin reveals essential function in maintaining the integrity of skin, muscle, and heart cytoarchitecture. Genes Dev. 11, 3143–3156 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Pulkkinen, L. et al. Homozygous deletion mutations in the plectin gene (PLEC1) in patients with epidermolysis bullosa simplex associated with late-onset muscular dystrophy. Hum. Mol. Genet. 5, 1539–1546 (1996).

    CAS  PubMed  Google Scholar 

  83. Maatta, A., DiColandrea, T., Groot, K. & Watt, F. M. Gene targeting of envoplakin, a cytoskeletal linker protein and precursor of the epidermal cornified envelope. Mol. Cell. Biol. 21, 7047–7053 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Armstrong, D. K. et al. Haploinsufficiency of desmoplakin causes a striate subtype of palmoplantar keratoderma. Hum. Mol. Genet. 8, 143–148 (1999).

    CAS  PubMed  Google Scholar 

  85. Norgett, E. E. et al. Recessive mutation in desmoplakin disrupts desmoplakin-intermediate filament interactions and causes dilated cardiomyopathy, woolly hair and keratoderma. Hum. Mol. Genet. 9, 2761–2766 (2000).

    CAS  PubMed  Google Scholar 

  86. Vasioukhin, V., Bowers, E., Bauer, C., Degenstein, L. & Fuchs, E. Desmoplakin is essential in epidermal sheet formation. Nature Cell Biol. 3, 1076–1085 (2001). Showed an essential role for desmoplakin in the formation of epidermal sheets, and was the first to demonstrate that a lack of desmoplakin can influence adherens-junction formation.

    CAS  PubMed  Google Scholar 

  87. Huen, A. C. et al. Intermediate filament-membrane attachments function synergistically with actin-dependent contacts to regulate intercellular adhesive strength. J. Cell Biol. 159, 1005–1017 (2002). Demonstrated the effects of uncoupling intermediate filaments from desmosomes on adhesive strength, and further showed that the actin-based cytoskeleton works together with intermediate filaments to mediate adhesion in epithelial cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Rampazzo, A. et al. Mutation in human desmoplakin domain binding to plakoglobin causes a dominant form of arrhythmogenic right ventricular cardiomyopathy. Am. J. Hum. Genet. 71, 1200–1206 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Choi, H. J., Park-Snyder, S., Pascoe, L. T., Green, K. J. & Weis, W. I. Structures of two intermediate filament-binding fragments of desmoplakin reveal a unique repeat motif structure. Nature Struct. Biol. 9, 612–620 (2002). The first group to crystallize a plakin-family member, showing the three-dimensional structures of the plakin-repeat domains within the intermediate-filament-binding domain of desmoplakin.

    CAS  PubMed  Google Scholar 

  90. Nikolic, B., Mac Nulty, E., Mir, B. & Wiche, G. Basic amino acid residue cluster within nuclear targeting sequence motif is essential for cytoplasmic plectin–vimentin network junctions. J. Cell Biol. 134, 1455–1467 (1996).

    CAS  PubMed  Google Scholar 

  91. Fontao, L. et al. Interaction of the bullous pemphigoid antigen 1 (BP230) and desmoplakin with intermediate filaments is mediated by distinct sequences within their COOH terminus. Mol. Biol. Cell 14, 1978–1992 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Demlehner, M. P., Schafer, S., Grund, C. & Franke, W. W. Continual assembly of half-desmosomal structures in the absence of cell contacts and their frustrated endocytosis: a coordinated Sisyphus cycle. J. Cell Biol. 131, 745–760 (1995).

    CAS  PubMed  Google Scholar 

  93. Kowalczyk, A. P. et al. The amino-terminal domain of desmoplakin binds to plakoglobin and clusters desmosomal cadherin-plakoglobin complexes. J. Cell Biol. 139, 773–784 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Palka, H. L. & Green, K. J. Roles of plakoglobin end domains in desmosome assembly. J. Cell Sci. 110, 2359–2371 (1997).

    CAS  PubMed  Google Scholar 

  95. Yap, A. S., Brieher, W. M., Pruschy, M. & Gumbiner, B. M. Lateral clustering of the adhesive ectodomain: a fundamental determinant of cadherin function. Curr. Biol. 7, 308–315 (1997).

    CAS  PubMed  Google Scholar 

  96. Windoffer, R., Borchert-Stuhltrager, M. & Leube, R. E. Desmosomes: interconnected calcium-dependent structures of remarkable stability with significant integral membrane protein turnover. J. Cell Sci. 115, 1717–1732 (2002).

    CAS  PubMed  Google Scholar 

  97. Pasdar, M. & Nelson, W. J. Kinetics of desmosome assembly in Madin–Darby canine kidney epithelial cells: temporal and spatial regulation of desmoplakin organization and stabilization upon cell–cell contact. I. Biochemical analysis. J. Cell Biol. 106, 677–685 (1988).

    CAS  PubMed  Google Scholar 

  98. Pasdar, M. & Nelson, W. J. Regulation of desmosome assembly in epithelial cells: kinetics of synthesis, transport, and stabilization of desmoglein I, a major protein of the membrane core domain. J. Cell Biol. 109, 163–177 (1989).

    CAS  PubMed  Google Scholar 

  99. Pasdar, M., Li, Z. & Chan, H. Desmosome assembly and disassembly are regulated by reversible protein phosphorylation in cultured epithelial cells. Cell Motil. Cytoskeleton 30, 108–121 (1995).

    CAS  PubMed  Google Scholar 

  100. Stappenbeck, T. S., Lamb, J. A., Corcoran, C. M. & Green, K. J. Phosphorylation of the desmoplakin COOH terminus negatively regulates its interaction with keratin intermediate filament networks. J. Biol. Chem. 269, 29351–29354 (1994).

    CAS  PubMed  Google Scholar 

  101. Anastasiadis, P. Z. & Reynolds, A. B. The p120 catenin family: complex roles in adhesion, signaling and cancer. J. Cell Sci. 113, 1319–1334 (2000).

    CAS  PubMed  Google Scholar 

  102. Savagner, P., Yamada, K. M. & Thiery, J. P. The zinc-finger protein slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition. J. Cell Biol. 137, 1403–1419 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Bolos, V. et al. The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J. Cell Sci. 116, 499–511 (2003).

    CAS  PubMed  Google Scholar 

  104. Conacci-Sorrell, M. et al. Autoregulation of E-cadherin expression by cadherin–cadherin interactions: the roles of β-catenin signaling, Slug, and MAPK. J. Cell Biol. 163, 847–857 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Adams, M. J. et al. Characterization of the regulatory regions in the human desmoglein genes encoding the pemphigus foliaceous and pemphigus vulgaris antigens. Biochem. J. 329, 165–174 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Kljuic, A. & Christiano, A. M. A novel mouse desmosomal cadherin family member, desmoglein 1γ. Exp. Dermatol. 12, 20–29 (2003).

    CAS  PubMed  Google Scholar 

  107. Pulkkinen, L., Choi, Y. W., Kljuic, A., Uitto, J. & Mahoney, M. G. Novel member of the mouse desmoglein gene family: Dsg1-β. Exp. Dermatol. 12, 11–19 (2003).

    CAS  PubMed  Google Scholar 

  108. Boussadia, O., Kutsch, S., Hierholzer, A., Delmas, V. & Kemler, R. E-cadherin is a survival factor for the lactating mouse mammary gland. Mech. Dev. 115, 53–62 (2002).

    CAS  PubMed  Google Scholar 

  109. Dumstrei, K., Wang, F., Shy, D., Tepass, U. & Hartenstein, V. Interaction between EGFR signaling and DE-cadherin during nervous system morphogenesis. Development 129, 3983–3994 (2002).

    CAS  PubMed  Google Scholar 

  110. Weiske, J. et al. The fate of desmosomal proteins in apoptotic cells. J. Biol. Chem. 276, 41175–41181 (2001).

    CAS  PubMed  Google Scholar 

  111. Suyama, K., Shapiro, I., Guttman, M. & Hazan, R. B. A signaling pathway leading to metastasis is controlled by N-cadherin and the FGF receptor. Cancer Cell 2, 301–314 (2002).

    CAS  PubMed  Google Scholar 

  112. Grazia Lampugnani, M. et al. Contact inhibition of VEGF-induced proliferation requires vascular endothelial cadherin, β-catenin, and the phosphatase DEP-1/CD148. J. Cell Biol. 161, 793–804 (2003).

    PubMed  Google Scholar 

  113. Muller, J., Ritt, D. A., Copeland, T. D. & Morrison, D. K. Functional analysis of C-TAK1 substrate binding and identification of PKP2 as a new C-TAK1 substrate. EMBO J. 22, 4431–4442 (2003).

    PubMed  PubMed Central  Google Scholar 

  114. Wong, A. S. & Gumbiner, B. M. Adhesion-independent mechanism for suppression of tumor cell invasion by E-cadherin. J. Cell Biol. 161, 1191–1203 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Karnovsky, A. & Klymkowsky, M. W. Anterior axis duplication in Xenopus induced by the over-expression of the cadherin-binding protein plakoglobin. Proc. Natl Acad. Sci. USA 92, 4522–4526 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Jamora, C., DasGupta, R., Kocieniewski, P. & Fuchs, E. Links between signal transduction, transcription and adhesion in epithelial bud development. Nature 422, 317–322 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Stanley, J. R., Koulu, L., Klaus-Kovtun, V. & Steinberg, M. S. A monoclonal antibody to the desmosomal glycoprotein desmoglein I binds the same polypeptide as human autoantibodies in pemphigus foliaceus. J. Immunol. 136, 1227–1230 (1986).

    CAS  PubMed  Google Scholar 

  118. Amagai, M., Hashimoto, T., Green, K. J., Shimizu, N. & Nishikawa, T. Antigen-specific immunoadsorption of pathogenic autoantibodies in pemphigus foliaceus. J. Invest. Dermatol. 104, 895–901 (1995).

    CAS  PubMed  Google Scholar 

  119. Wu, H. et al. Protection against pemphigus foliaceus by desmoglein 3 in neonates. N. Engl. J. Med. 343, 31–35 (2000).

    CAS  PubMed  Google Scholar 

  120. Shirakata, Y., Amagai, M., Hanakawa, Y., Nishikawa, T. & Hashimoto, K. Lack of mucosal involvement in pemphigus foliaceus may be due to low expression of desmoglein 1. J. Invest. Dermatol. 110, 76–78 (1998).

    CAS  PubMed  Google Scholar 

  121. Melish, M. E. & Glasgow, L. A. The staphylococcal scalded-skin syndrome. N. Engl. J. Med. 282, 1114–1119 (1970).

    CAS  PubMed  Google Scholar 

  122. Amagai, M., Matsuyoshi, N., Wang, Z. H., Andl, C. & Stanley, J. R. Toxin in bullous impetigo and staphylococcal scalded-skin syndrome targets desmoglein 1. Nature Med. 6, 1275–1277 (2000). This paper was the first to demonstrate that the exfoliative toxins produced by Staphylococcus aureus can cleave desmoglein-1 and cause blisters in the superficial epidermis of mice that are similar to the blisters observed in patients with pemphigus foliaceus.

    CAS  PubMed  Google Scholar 

  123. Hanakawa, Y. et al. Molecular mechanisms of blister formation in bullous impetigo and staphylococcal scalded skin syndrome. J. Clin. Invest. 110, 53–60 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Vasioukhin, V., Bauer, C., Yin, M. & Fuchs, E. Directed actin polymerization is the driving force for epithelial cell–cell adhesion. Cell 100, 209–219 (2000).

    CAS  PubMed  Google Scholar 

  125. Gumbiner, B., Stevenson, B. & Grimaldi, A. The role of the cell adhesion molecule uvomorulin in the formation and maintenance of the epithelial junctional complex. J. Cell Biol. 107, 1575–1587 (1988).

    CAS  PubMed  Google Scholar 

  126. Cowin, P., Kapprell, H. P., Franke, W. W., Tamkun, J. & Hynes, R. O. Plakoglobin: a protein common to different kinds of intercellular adhering junctions. Cell 46, 1063–1073 (1986).

    CAS  PubMed  Google Scholar 

  127. Lewis, J. E. et al. Cross-talk between adherens junctions and desmosomes depends on plakoglobin. J. Cell Biol. 136, 919–934 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Marcozzi, C., Burdett, I. D., Buxton, R. S. & Magee, A. I. Coexpression of both types of desmosomal cadherin and plakoglobin confers strong intercellular adhesion. J. Cell Sci. 111, 495–509 (1998).

    CAS  PubMed  Google Scholar 

  129. North, A. J. et al. Molecular map of the desmosomal plaque. J. Cell Sci. 112, 4325–4336 (1999).

    CAS  PubMed  Google Scholar 

  130. Kowalczyk, A. P. et al. Structure and function of desmosomal transmembrane core and plaque molecules. Biophys. Chem. 50, 97–112 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all of their colleagues who provided input and information prior to publication. Thanks go also to A. P. Kowalczyk, J. R. Stanley, W. I. Weis and members of the Green laboratory for critical reading of the manuscript. We regret that the work of many colleagues and authors could not be cited in this review because of space limitations. The authors are supported by grants from the National Institutes of Health (to K.J.G.) and a Canadian Institutes of Health Research postdoctoral fellowship (to S.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen J. Green.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Flybase

Armadillo

Shot

LocusLink

DSG1–4

DSC1–3

plakophilin-1–3

Protein Data Bank

C-cadherin ectodomain

Swiss-Prot

β-catenin

desmin

envoplakin

erbin

LEF

p0071

p120CTN

periplakin

plakoglobin

plectin

vimentin

Glossary

INTERMEDIATE FILAMENT

A cytoskeletal filament, of typically 10 nm in diameter, that occurs in higher eukaryotic cells.

ADHERENS JUNCTION

A cell–cell adhesion complex that contains classical cadherins and catenins that are attached to cytoplasmic actin filaments.

TIGHT JUNCTION

A belt-like region of adhesion between adjacent epithelial or endothelial cells. Tight junctions regulate paracellular flux, and contribute to the maintenance of cell polarity by stopping molecules from diffusing within the plane of the membrane.

APICAL-MEMBRANE DOMAIN

The surface of an epithelial cell that faces the lumen.

BASOLATERAL-MEMBRANE DOMAIN

The surface of an epithelial cell that adjoins underlying tissue.

GAP JUNCTION

A junction between two cells that consists of pores that allow passage of molecules (up to 1 kDa).

DESMOSOMAL PLAQUE

An electron-dense region that is present beneath the plasma membrane of desmosomes, and which can be readily observed at the ultrastructural level.

MENINGES

Three connective-tissue layers (dura, arachnoid and pia mater) that line the outer surface of the brain and spinal cord.

TYPE I INTEGRAL MEMBRANE GLYCOPROTEIN

A single-pass transmembrane protein that contains an amino-terminal lumenal domain with sugar moieties and a carboxy-terminal cytoplasmic domain.

ELECTRON TOMOGRAPHY

A technique for modelling three-dimensional (3D) objects using a series of two-dimensional electron-microscope images.

KERATINOCYTE

A specialized epithelial cell that is present in the skin.

PROTEASOME

A large multisubunit protease complex that selectively degrades intracellular proteins. Targeting to proteasomes most often occurs through the attachment of multi-ubiquitin tags.

RHO-FAMILY GTPASE

A Ras-related GTPase that is involved in controlling the polymerization of actin.

PDZ DOMAIN

(Postsynaptic-density protein of 95 kDa, Discs large, Zona occludens-1). A protein-interaction domain that often occurs in scaffolding proteins and is named after the founding members of this protein family.

MORULAE

A mulberry-like mass of early-stage embryonic cells.

14-3-3 PROTEIN

A protein that binds to two phosphoserine/phosphothreonine-containing polypeptides to form crosslinks.

RNA INTERFERENCE

The process by which double-stranded RNA specifically silences the expression of genes by causing the degradation of their cognate mRNAs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Getsios, S., Huen, A. & Green, K. Working out the strength and flexibility of desmosomes. Nat Rev Mol Cell Biol 5, 271–281 (2004). https://doi.org/10.1038/nrm1356

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1356

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing