Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Shaping the nuclear action of NF-κB

Key Points

  • The nuclear factor (NF)-κB/REL family of transcription factors regulate a diverse range of cellular responses, which include proliferation, differentiation, programmed cell death and tumorigenesis, and they are the 'master regulators' of inflammation and immunity.

  • Classical NF-κB activation involves stimulus-coupled phosphorylation of cytoplasmic IκB inhibitors by IκB kinases (IKK). The IκB inhibitors are targeted to the 26S proteasome allowing the p50/RELA NF-κB complexes to enter the nucleus and stimulate target-gene transcription.

  • A parallel non-classical pathway of REL protein activation has been identified that generates nuclear p52/RELB heterodimers.

  • Post-translational modifications, such as phosphorylation and acetylation, have recently been found to regulate NF-κB transcriptional activity and contribute to shaping the strength and duration of the NF-κB response.

  • The RELA subunit of NF-κB is targeted for stimulus-coupled phosphorylation at different sites by different kinases. RELA phosphorylation is generally associated with enhanced transcriptional activity of NF-κB.

  • RELA is modified by acetylation at key lysine residues. Site-specific acetylation controls different biological functions of NF-κB including DNA binding, transcriptional activity and assembly with IκBα. Deacetylation of RelA promotes IκBα binding and nuclear export of the NF-κB complex, thereby terminating the transcriptional response.

  • Activation of NF-κB-responsive genes also involves multiple modifications of histone proteins surrounding the target genes, so IKK can participate in both the first and second phases of the NF-κB activation response.

  • Analogous to the epigenetic histone code that might regulate gene expression through changes in chromatin structure, a transcription-factor code might exist, in which serial post-translational modifications of the transcription factor can alter its biological function.

Abstract

The NF-κB/REL family of transcription factors pivotally control the inflammatory and immune responses, as well as other genetic programmes that are central to cell growth and survival. The cytoplasmic regulation of NF-κB is well characterized and, recently, significant progress has been made in understanding how its nuclear action is regulated. Post-translational modification of the NF-κB subunits as well as histones surrounding the NF-κB target genes has a key role in this regulation. Here, we review the important advances that constitute this new and exciting chapter in NF-κB biology.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targeting of RELA by multiple protein kinases induced by distinct stimuli.
Figure 2: Differential acetylation regulates distinct functions of RELA.
Figure 3: Phosphorylation and acetylation of RELA and histone tails regulate NF-κB-target-gene expression.

Similar content being viewed by others

References

  1. Xu, X. et al. Functional interaction of the v-Rel and c-Rel oncoproteins with the TATA-binding protein and association with transcription factor IIB. Mol. Cell. Biol. 13, 6733–6741 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Schmitz, M. L., Stelzer, G., Altmann, H., Meisterernst, M. & Baeuerle, P. A. Interaction of the COOH-terminal transactivation domain of p65 NF-κB with TATA-binding protein, transcription factor IIB, and coactivators. J. Biol. Chem. 270, 7219–7226 (1995).

    CAS  PubMed  Google Scholar 

  3. Blair, W. S., Bogerd, H. P., Madore, S. J. & Cullen, B. R. Mutational analysis of the transcription activation domain of RelA: identification of a highly synergistic minimal acidic activation module. Mol. Cell. Biol. 14, 7226–7234 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Perkins, N. D. et al. Regulation of NF-κB by cyclin-dependent kinases associated with the p300 coactivator. Science 275, 523–527 (1997). This study shows that p300 functions as a coactivator for NF-κB-mediated transcriptional activation.

    CAS  PubMed  Google Scholar 

  5. Sheppard, K. A. et al. Transcriptional activation by NF-κB requires multiple coactivators. Mol. Cell. Biol. 19, 6367–6378 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ghosh, S., May, M. J. & Kopp, E. B. NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16, 225–260 (1998).

    CAS  PubMed  Google Scholar 

  7. Baldwin, A. S., Jr. The NF-κB and IκB proteins: new discoveries and insights. Annu. Rev. Immunol. 14, 649–683 (1996).

    CAS  PubMed  Google Scholar 

  8. Ghosh, S. & Karin, M. Missing pieces in the NF-κB puzzle. Cell 109 (Suppl.), S81–S96 (2002). This review article highlights recent advances concerning the regulation of NF-κB and delineates a series of unsolved problems in the field.

    CAS  PubMed  Google Scholar 

  9. Sun, S. C., Ganchi, P. A., Ballard, D. W. & Greene, W. C. NF-κB controls expression of inhibitor IκBα: evidence for an inducible autoregulatory pathway. Science 259, 1912–1915 (1993).

    CAS  PubMed  Google Scholar 

  10. Beg, A. A., Finco, T. S., Nantermet, P. V. & Baldwin, A. S. Jr. Tumor necrosis factor and interleukin-1 lead to phosphorylation and loss of IκBα: a mechanism for NF-κB activation. Mol. Cell. Biol. 13, 3301–3310 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Brown, K., Park, S., Kanno, T., Franzoso, G. & Siebenlist, U. Mutual regulation of the transcriptional activator NF-κB and its inhibitor, IκBα. Proc. Natl Acad. Sci. USA 90, 2532–2536 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Arenzana-Seisdedos, F. et al. Inducible nuclear expression of newly synthesized IκBα negatively regulates DNA-binding and transcriptional activities of NF-κB. Mol. Cell. Biol. 15, 2689–2696 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Arenzana-Seisdedos, F. et al. Nuclear localization of IκBα promotes active transport of NF-κB from the nucleus to the cytoplasm. J. Cell Sci. 110, 369–378 (1997).

    CAS  PubMed  Google Scholar 

  14. Tak, P. P. & Firestein, G. S. NF-κB: a key role in inflammatory diseases. J. Clin. Invest. 107, 7–11 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Sun, S. C. & Xiao, G. Deregulation of NF-κB and its upstream kinases in cancer. Cancer Metastasis Rev. 22, 405–422 (2003).

    CAS  PubMed  Google Scholar 

  16. Neri, A. et al. B cell lymphoma-associated chromosomal translocation involves candidate oncogene lyt-10, homologous to NF-κB p50. Cell 67, 1075–1087 (1991).

    CAS  PubMed  Google Scholar 

  17. Ohno, H., Takimoto, G. & McKeithan, T. W. The candidate proto-oncogene bcl-3 is related to genes implicated in cell lineage determination and cell cycle control. Cell 60, 991–997 (1990).

    CAS  PubMed  Google Scholar 

  18. Nabel, G. & Baltimore, D. An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature 326, 711–713 (1987).

    CAS  PubMed  Google Scholar 

  19. Ballard, D. W. et al. HTLV-I tax induces cellular proteins that activate the κB element in the IL-12 receptor α gene. Science 241, 1652–1655 (1988).

    CAS  PubMed  Google Scholar 

  20. Mosialos, G. & Gilmore, T. D. v-Rel and c-Rel are differentially affected by mutations at a consensus protein kinase recognition sequence. Oncogene 8, 721–730 (1993).

    CAS  PubMed  Google Scholar 

  21. Ganchi, P. A., Sun, S. C., Greene, W. C. & Ballard, D. W. A novel NF-κB complex containing p65 homodimers: implications for transcriptional control at the level of subunit dimerization. Mol. Cell. Biol. 13, 7826–7835 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhong, H., SuYang, H., Erdjument-Bromage, H., Tempst, P. & Ghosh, S. The transcriptional activity of NF-κB is regulated by the IκB-associated PKAc subunit through a cyclic AMP-independent mechanism. Cell 89, 413–424 (1997).

    CAS  PubMed  Google Scholar 

  23. Zhong, H., May, M. J., Jimi, E. & Ghosh, S. The phosphorylation status of nuclear NF-κB determines its association with CBP/p300 or HDAC-1. Mol. Cell 9, 625–636 (2002).

    CAS  PubMed  Google Scholar 

  24. Vermeulen, L., De Wilde, G., Damme, P. V., Vanden Berghe, W. & Haegeman, G. Transcriptional activation of the NF-κB p65 subunit by mitogen- and stress-activated protein kinase-1 (MSK1). EMBO J. 22, 1313–1324 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Leitges, M. et al. Targeted disruption of the ζPKC gene results in the impairment of the NF-κB pathway. Mol. Cell 8, 771–780 (2001).

    CAS  PubMed  Google Scholar 

  26. Duran, A., Diaz-Meco, M. T. & Moscat, J. Essential role of RelA Ser311 phosphorylation by ζPKC in NF-κB transcriptional activation. EMBO J. 22, 3910–3918 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bird, T. A., Schooley, K., Dower, S. K., Hagen, H. & Virca, G. D. Activation of nuclear transcription factor NF-κB by interleukin-1 is accompanied by casein kinase II-mediated phosphorylation of the p65 subunit. J. Biol. Chem. 272, 32606–32612 (1997).

    CAS  PubMed  Google Scholar 

  28. Wang, D. & Baldwin, A. S. Jr. Activation of nuclear factor-κB-dependent transcription by tumor necrosis factor-α is mediated through phosphorylation of RelA/p65 on serine 529. J. Biol. Chem. 273, 29411–29416 (1998).

    CAS  PubMed  Google Scholar 

  29. Wang, D., Westerheide, S. D., Hanson, J. L. & Baldwin, A. S. Jr. TNF-α-induced phosphorylation of RelA/p65 on Ser529 is controlled by casein kinase II. J. Biol. Chem. 275, 32592–32597 (2000).

    CAS  PubMed  Google Scholar 

  30. Sakurai, H., Chiba, H., Miyoshi, H., Sugita, T. & Toriumi, W. IκB kinases phosphorylate NF-κB p65 subunit on serine 536 in the transactivation domain. J. Biol. Chem. 274, 30353–30356 (1999).

    CAS  PubMed  Google Scholar 

  31. Sakurai, H. et al. Tumor necrosis factor-α-induced IKK phosphorylation of NF-κB p65 on serine 536 is mediated through TRAF2, TRAF5 and TAK1 signaling pathway. J. Biol. Chem. 278, 36916–36923 (2003).

    CAS  PubMed  Google Scholar 

  32. Bohuslav J., Chen, L. F., Kwon, H., Mu, Y. & Greene, W. C. p53 induces NF-κB activation by an IκB kinase-independent mechanism involving RSK1 phosphorylation of p65. J. Biol. Chem. (in the press).

  33. Bonnard, M. et al. Deficiency of T2K leads to apoptotic liver degeneration and impaired NF-κB-dependent gene transcription. EMBO J. 19, 4976–4985 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hoeflich, K. P. et al. Requirement for glycogen synthase kinase-3β in cell survival and NF-κB activation. Nature 406, 86–90 (2000).

    CAS  PubMed  Google Scholar 

  35. Sizemore, N., Leung, S. & Stark, G. R. Activation of phosphatidylinositol 3-kinase in response to interleukin-1 leads to phosphorylation and activation of the NF-κB p65/RelA subunit. Mol. Cell. Biol. 19, 4798–4805 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Schwabe, R. F. & Brenner, D. A. Role of glycogen synthase kinase-3 in TNF-α-induced NF-κB activation and apoptosis in hepatocytes. Am. J. Physiol. Gastrointest Liver Physiol. 283, G204–G211 (2002).

    CAS  PubMed  Google Scholar 

  37. Madrid, L. V., Mayo, M. W., Reuther, J. Y. & Baldwin, A. S. Jr. Akt stimulates the transactivation potential of the RelA/p65 subunit of NF-κB through utilization of the IκB kinase and activation of the mitogen-activated protein kinase p38. J. Biol. Chem. 276, 18934–18940 (2001).

    CAS  PubMed  Google Scholar 

  38. Fujita, F. et al. Identification of NAP1, a regulatory subunit of IκB kinase-related kinases that potentiates NF-κB signaling. Mol. Cell. Biol. 23, 7780–7793 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hunter, T. Signaling — 2000 and beyond. Cell 100, 113–127 (2000).

    CAS  PubMed  Google Scholar 

  40. Karin, M. & Hunter, T. Transcriptional control by protein phosphorylation: signal transmission from the cell surface to the nucleus. Curr. Biol. 5, 747–757 (1995).

    CAS  PubMed  Google Scholar 

  41. Parker, D. et al. Phosphorylation of CREB at Ser-133 induces complex formation with CREB-binding protein via a direct mechanism. Mol. Cell. Biol. 16, 694–703 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lambert, P. F., Kashanchi, F., Radonovich, M. F., Shiekhattar, R. & Brady, J. N. Phosphorylation of p53 serine 15 increases interaction with CBP. J. Biol. Chem. 273, 33048–33053 (1998).

    CAS  PubMed  Google Scholar 

  43. Yang, F., Tang, E., Guan, K. & Wang, C. Y. IKKβ plays an essential role in the phosphorylation of RelA/p65 on serine 536 induced by lipopolysaccharide. J. Immunol. 170, 5630–5635 (2003).

    CAS  PubMed  Google Scholar 

  44. Anrather, J., Csizmadia, V., Soares, M. P. & Winkler, H. Regulation of NF-κB RelA phosphorylation and transcriptional activity by p21(ras) and protein kinase Cζ in primary endothelial cells. J. Biol. Chem. 274, 13594–13603 (1999).

    CAS  PubMed  Google Scholar 

  45. Schwabe, R. F., Schnabl, B., Kweon, Y. O. & Brenner, D. A. CD40 activates NF-κB and c-Jun N-terminal kinase and enhances chemokine secretion on activated human hepatic stellate cells. J. Immunol. 166, 6812–6819 (2001).

    CAS  PubMed  Google Scholar 

  46. Jiang, X., Takahashi, N., Matsui, N., Tetsuka, T. & Okamoto, T. The NF-κB activation in lymphotoxin β receptor signaling depends on the phosphorylation of p65 at serine 536. J. Biol. Chem. 278, 919–926 (2003).

    CAS  PubMed  Google Scholar 

  47. O'Mahony, A., Montano M., Van Beneden K., Chen, L. F. & Greene, W. C. HTLV-I Tax induction of biologically active NF-κB requires IKK1-mediated phosphorylation of RelA/p65. J. Biol. Chem. 12 Feb 2004 (doi:10.1074/jbc.M401397200).

  48. Gu, W. & Roeder, R. G. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90, 595–606 (1997). The authors show that activation of p53 can be regulated by acetylation. This study provided the first example for the regulation of the activity of a transcription factor by reversible acetylation.

    CAS  PubMed  Google Scholar 

  49. Sterner, D. E. & Berger, S. L. Acetylation of histones and transcription-related factors. Microbiol. Mol. Biol. Rev. 64, 435–459 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen, H., Tini, M. & Evans, R. M. HATs on and beyond chromatin. Curr. Opin. Cell. Biol. 13, 218–224 (2001).

    CAS  PubMed  Google Scholar 

  51. Mart'nez-Balbás, M. A., Bauer, U. M., Nielsen, S. J., Brehm, A. & Kouzarides, T. Regulation of E2F1 activity by acetylation. EMBO J. 19, 662–671 (2000).

    Google Scholar 

  52. Boyes, J., Byfield, P., Nakatani, Y. & Ogryzko, V. Regulation of activity of the transcription factor GATA-1 by acetylation. Nature 396, 594–598 (1998).

    CAS  PubMed  Google Scholar 

  53. Chen, L., Fischle, W., Verdin, E. & Greene, W. C. Duration of nuclear NF-κB action regulated by reversible acetylation. Science 293, 1653–1657 (2001). This study shows that RELA is subject to reversible acetylation and that the acetylation status of RELA regulates its interaction with newly synthesized IκBα.

    CAS  Google Scholar 

  54. Kiernan, R. et al. Post-activation turn-off of NF-κB-dependent transcription is regulated by acetylation of p65. J. Biol. Chem. 278, 2758–2766 (2003).

    CAS  PubMed  Google Scholar 

  55. Chen, L. F., Mu, Y. & Greene, W. C. Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-κB. EMBO J. 21, 6539–6548 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Zeng, L. & Zhou, M. M. Bromodomain: an acetyl-lysine binding domain. FEBS Lett. 513, 124–128 (2002).

    CAS  PubMed  Google Scholar 

  57. Furia, B. et al. Enhancement of NF-κB acetylation by coactivator p300 and HIV-1 Tat proteins. J. Biol. Chem. 277, 4973–4980 (2002).

    CAS  PubMed  Google Scholar 

  58. Deng, W. G., Zhu, Y. & Wu, K. K. Up-regulation of p300 binding and p50 acetylation in TNF-α-induced cyclooxygenase-2 promoter activation. J. Biol. Chem. 278, 4770–4777 (2003).

    CAS  PubMed  Google Scholar 

  59. Sakaguchi, K. et al. DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev. 12, 2831–2841 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu, L. et al. p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol. Cell. Biol. 19, 1202–1209 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Chan, H. M., Krstic-Demonacos, M., Smith, L., Demonacos, C. & La Thangue, N. B. Acetylation control of the retinoblastoma tumour-suppressor protein. Nature Cell Biol. 3, 667–674 (2001).

    CAS  PubMed  Google Scholar 

  62. Zhong, H., Voll, R. E. & Ghosh, S. Phosphorylation of NF-κB p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol. Cell 1, 661–671 (1998). The authors show that phosphorylation of RELA at serine 276 by PKA c enhances the recruitment of the CBP coactivator, thereby providing a potential link between the phosphorylation events and the subsequent transcriptional response.

    CAS  PubMed  Google Scholar 

  63. Horn, P. J. & Peterson, C. L. Molecular biology. Chromatin higher order folding — wrapping up transcription. Science 297, 1824–1827 (2002).

    CAS  PubMed  Google Scholar 

  64. Imhof, A. & Wolffe, A. P. Transcription: gene control by targeted histone acetylation. Curr. Biol. 8, R422–R424 (1998).

    CAS  PubMed  Google Scholar 

  65. Kuo, M. H. & Allis, C. D. Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays 20, 615–626 (1998).

    CAS  PubMed  Google Scholar 

  66. Ito, K., Jazrawi, E., Cosio, B., Barnes, P. J. & Adcock, I. M. p65-activated histone acetyltransferase activity is repressed by glucocorticoids: mifepristone fails to recruit HDAC2 to the p65–HAT complex. J. Biol. Chem. 276, 30208–30215 (2001).

    CAS  PubMed  Google Scholar 

  67. Ito, K., Barnes, P. J. & Adcock, I. M. Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-1β-induced histone H4 acetylation on lysines 8 and 12. Mol. Cell. Biol. 20, 6891–6903 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Saccani, S. & Natoli, G. Dynamic changes in histone H3 Lys 9 methylation occurring at tightly regulated inducible inflammatory genes. Genes Dev. 16, 2219–2224 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Saccani, S., Pantano, S. & Natoli, G. Two waves of nuclear factor κB recruitment to target promoters. J. Exp. Med. 193, 1351–1359 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Parekh, B. S. & Maniatis, T. Virus infection leads to localized hyperacetylation of histones H3 and H4 at the IFN-β promoter. Mol. Cell 3, 125–129 (1999).

    CAS  PubMed  Google Scholar 

  71. Almawi, W. Y. & Melemedjian, O. K. Negative regulation of nuclear factor-κB activation and function by glucocorticoids. J. Mol. Endocrinol. 28, 69–78 (2002).

    CAS  PubMed  Google Scholar 

  72. Berger, S. L. Histone modifications in transcriptional regulation. Curr. Opin. Genet. Dev. 12, 142–148 (2002).

    CAS  PubMed  Google Scholar 

  73. Wei, Y., Yu, L., Bowen, J., Gorovsky, M. A. & Allis, C. D. Phosphorylation of histone H3 is required for proper chromosome condensation and segregation. Cell 97, 99–109 (1999).

    CAS  PubMed  Google Scholar 

  74. Wei, Y., Mizzen, C. A., Cook, R. G., Gorovsky, M. A. & Allis, C. D. Phosphorylation of histone H3 at serine 10 is correlated with chromosome condensation during mitosis and meiosis in Tetrahymena. Proc. Natl Acad. Sci. USA 95, 7480–7484 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Mahadevan, L. C., Willis, A. C. & Barratt, M. J. Rapid histone H3 phosphorylation in response to growth factors, phorbol esters, okadaic acid, and protein synthesis inhibitors. Cell 65, 775–783 (1991).

    CAS  PubMed  Google Scholar 

  76. Cheung, P. et al. Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol. Cell 5, 905–915 (2000).

    CAS  PubMed  Google Scholar 

  77. Clayton, A. L., Rose, S., Barratt, M. J. & Mahadevan, L. C. Phosphoacetylation of histone H3 on c-fos- and c-jun-associated nucleosomes upon gene activation. EMBO J. 19, 3714–3726 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Sassone-Corsi, P. et al. Requirement of Rsk-2 for epidermal growth factor-activated phosphorylation of histone H3. Science 285, 886–891 (1999).

    CAS  PubMed  Google Scholar 

  79. Barratt, M. J., Hazzalin, C. A., Cano, E. & Mahadevan, L. C. Mitogen-stimulated phosphorylation of histone H3 is targeted to a small hyperacetylation-sensitive fraction. Proc. Natl Acad. Sci. USA 91, 4781–4785 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Saccani, S., Pantano, S. & Natoli, G. p38-Dependent marking of inflammatory genes for increased NF-κB recruitment. Nature Immunol. 3, 69–75 (2002). This paper reports direct evidence that phosphorylation and acetylation of histone proteins correlates with the recruitment of NF-κB and is required for the activation of inflammatory genes.

    CAS  Google Scholar 

  81. Yamamoto, Y., Verma, U. N., Prajapati, S., Kwak, Y. T. & Gaynor, R. B. Histone H3 phosphorylation by IKK-α is critical for cytokine-induced gene expression. Nature 423, 655–659 (2003).

    CAS  PubMed  Google Scholar 

  82. Anest, V. et al. A nucleosomal function for IκB kinase-α in NF-κB-dependent gene expression. Nature 423, 659–663 (2003). References 81 and 82 propose a novel nuclear function of IKKα as a histone-H3-serine-10 kinase, which has an important role in the activation of NF-κB-responsive genes.

    CAS  PubMed  Google Scholar 

  83. Cao, Y. et al. IKKα provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development. Cell 107, 763–775 (2001).

    CAS  PubMed  Google Scholar 

  84. Soloaga, A. et al. MSK2 and MSK1 mediate the mitogen- and stress-induced phosphorylation of histone H3 and HMG-14. EMBO J. 22, 2788–2797 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Salvador, L. M. et al. Follicle-stimulating hormone stimulates protein kinase A-mediated histone H3 phosphorylation and acetylation leading to select gene activation in ovarian granulosa cells. J. Biol. Chem. 276, 40146–40155 (2001).

    CAS  PubMed  Google Scholar 

  86. Chen, L. F. & Greene, W. C. Regulation of distinct biological activities of the NF-κB transcription factor complex by acetylation. J. Mol. Med. 81, 549–557 (2003).

    CAS  PubMed  Google Scholar 

  87. Vermeulen, L., De Wilde, G., Notebaert, S., Vanden Berghe, W. & Haegeman, G. Regulation of the transcriptional activity of the nuclear factor-κB p65 subunit. Biochem. Pharmacol. 64, 963–970 (2002).

    CAS  PubMed  Google Scholar 

  88. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    CAS  PubMed  Google Scholar 

  89. Lo, W. S. et al. Snf1 — a histone kinase that works in concert with the histone acetyltransferase Gcn5 to regulate transcription. Science 293, 1142–1146 (2001).

    CAS  PubMed  Google Scholar 

  90. Lo, W. S. et al. Phosphorylation of serine 10 in histone H3 is functionally linked in vitro and in vivo to Gcn5-mediated acetylation at lysine 14. Mol. Cell 5, 917–926 (2000).

    CAS  PubMed  Google Scholar 

  91. Clements, A. et al. Structural basis for histone and phosphohistone binding by the GCN5 histone acetyltransferase. Mol. Cell 12, 461–473 (2003).

    CAS  PubMed  Google Scholar 

  92. Thomson, S., Clayton, A. L. & Mahadevan, L. C. Independent dynamic regulation of histone phosphorylation and acetylation during immediate-early gene induction. Mol. Cell 8, 1231–1241 (2001).

    CAS  PubMed  Google Scholar 

  93. Rosenfeld, M. G. & Glass, C. K. Coregulator codes of transcriptional regulation by nuclear receptors. J. Biol. Chem. 276, 36865–36868 (2001).

    CAS  PubMed  Google Scholar 

  94. Tansey, W. P. Transcriptional activation: risky business. Genes Dev. 15, 1045–1050 (2001).

    CAS  PubMed  Google Scholar 

  95. Gamble, M. J. & Freedman, L. P. A coactivator code for transcription. Trends Biochem. Sci. 27, 165–167 (2002).

    CAS  PubMed  Google Scholar 

  96. Baeuerle, P. A. IκB–NF-κB structures: at the interface of inflammation control. Cell 95, 729–731 (1998).

    CAS  PubMed  Google Scholar 

  97. Lin, L., DeMartino, G. N. & Greene, W. C. Cotranslational biogenesis of NF-κB p50 by the 26S proteasome. Cell 92, 819–828 (1998).

    CAS  PubMed  Google Scholar 

  98. Xiao, G., Harhaj, E. W. & Sun, S. C. NF-κB-inducing kinase regulates the processing of NF-κB2 p100. Mol. Cell 7, 401–409 (2001). This study shows that NF-κB-inducing kinase is required for the inducible post-translational processing of p100 to p52.

    CAS  PubMed  Google Scholar 

  99. Senftleben, U. et al. Activation by IKKα of a second, evolutionary conserved, NF-κB signaling pathway. Science 293, 1495–1499 (2001).

    CAS  PubMed  Google Scholar 

  100. Claudio, E., Brown, K., Park, S., Wang, H. & Siebenlist, U. BAFF-induced NEMO-independent processing of NF-κB2 in maturing B cells. Nature Immunol. 3, 958–965 (2002).

    CAS  Google Scholar 

  101. Coope, H. J. et al. CD40 regulates the processing of NF-κB2 p100 to p52. EMBO J. 21, 5375–5385 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Karin, M. How NF-κB is activated: the role of the IκB kinase (IKK) complex. Oncogene 18, 6867–6874 (1999).

    CAS  PubMed  Google Scholar 

  103. Fischle, W., Wang, Y. & Allis, C. D. Binary switches and modification cassettes in histone biology and beyond. Nature 425, 475–479 (2003).

    CAS  PubMed  Google Scholar 

  104. Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).

    CAS  PubMed  Google Scholar 

  105. Kunsch, C. & Rosen, C. A. NF-κB subunit-specific regulation of the interleukin-8 promoter. Mol. Cell. Biol. 13, 6137–6146 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Chen, F. E., Huang, D. B., Chen, Y. Q. & Ghosh, G. Crystal structure of p50/p65 heterodimer of transcription factor NF-κB bound to DNA. Nature 391, 410–413 (1998).

    CAS  PubMed  Google Scholar 

  107. Rahman, A., Anwar, K. N., True, A. L. & Malik, A. B. Thrombin-induced p65 homodimer binding to downstream NF-κB site of the promoter mediates endothelial ICAM-1 expression and neutrophil adhesion. J. Immunol. 162, 5466–5476 (1999).

    CAS  PubMed  Google Scholar 

  108. Libermann, T. A. & Baltimore, D. Activation of interleukin-6 gene expression through the NF-κB transcription factor. Mol. Cell. Biol. 10, 2327–2334 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Shakhov, A. N., Collart, M. A., Vassalli, P., Nedospasov, S. A. & Jongeneel, C. V. κB-type enhancers are involved in lipopolysaccharide-mediated transcriptional activation of the tumor necrosis factor α gene in primary macrophages. J. Exp. Med. 171, 35–47 (1990).

    CAS  PubMed  Google Scholar 

  110. Schreck, R. & Baeuerle, P. A. NF-κ B as inducible transcriptional activator of the granulocyte-macrophage colony-stimulating factor gene. Mol. Cell. Biol. 10, 1281–1286 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Nabel, G. & Baltimore, D. An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature 326, 711–713 (1987).

    CAS  PubMed  Google Scholar 

  112. Hansen, S. K. et al. A novel complex between the p65 subunit of NF-κB and c-Rel binds to a DNA element involved in the phorbol ester induction of the human urokinase gene. EMBO J. 11, 205–213 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Pierce, J. W., Jamieson, C. A., Ross, J. L. & Sen, R. Activation of IL-2 receptor α-chain gene by individual members of the rel oncogene family in association with serum response factor. J. Immunol. 155, 1972–1980 (1995).

    CAS  PubMed  Google Scholar 

  114. Ueda, A., Ishigatsubo, Y., Okubo, T. & Yoshimura, T. Transcriptional regulation of the human monocyte chemoattractant protein-1 gene. Cooperation of two NF-κB sites and NF-κB/Rel subunit specificity. J. Biol. Chem. 272, 31092–31099 (1997).

    CAS  PubMed  Google Scholar 

  115. Saccani, S., Pantano, S. & Natoli, G. Modulation of NF-κB activity by exchange of dimers. Mol. Cell 11, 1563–1574 (2003).

    CAS  PubMed  Google Scholar 

  116. Dejardin, E. et al. The lymphotoxin-β receptor induces different patterns of gene expression via two NF-κB pathways. Immunity 17, 525–535 (2002).

    CAS  PubMed  Google Scholar 

  117. Sanjabi, S., Hoffmann, A., Liou, H. C., Baltimore, D. & Smale, S. T. Selective requirement for c-Rel during IL-12 P40 gene induction in macrophages. Proc. Natl Acad. Sci. USA 97, 12705–12710 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Grumont, R. et al. c-Rel regulates interleukin 12 p70 expression in CD8(+) dendritic cells by specifically inducing p35 gene transcription. J. Exp. Med. 194, 1021–1032 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Brown, A. M. et al. Function of NF-κB/Rel binding sites in the major histocompatibility complex class II invariant chain promoter is dependent on cell-specific binding of different NF-κB/Rel subunits. Mol. Cell. Biol. 14, 2926–2935 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Viatour, P. et al. NF-κB2/p100 induces Bcl-2 expression. Leukemia 17, 1349–1356 (2003).

    CAS  PubMed  Google Scholar 

  121. Westerheide, S. D., Mayo, M. W., Anest, V., Hanson, J. L. & Baldwin, A. S. Jr. The putative oncoprotein Bcl-3 induces cyclin D1 to stimulate G(1) transition. Mol. Cell. Biol. 21, 8428–8436 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Li, Q. & Verma, I. M. NF-κB regulation in the immune system. Nature Rev. Immunol. 2, 725–734 (2002).

    CAS  Google Scholar 

  123. O'Mahony, A., Lin, X., Geleziunas, R. & Greene, W. C. Activation of the heterodimeric IκB kinase α (IKKα)–IKKβ complex is directional: IKKα regulates IKKβ under both basal and stimulated conditions. Mol. Cell. Biol. 20, 1170–1178 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

L.F.C. is the recipient of an Arthritis Foundation Investigator Award. This work was supported in part by a National Institutes of Health grant to W.C.G., a National Institutes of Health training grant to L.F.C., and by funds from the J. David Gladstone Institutes and Pfizer, Inc. This work also benefited from core facilities provided through the University of California San Francisco-Gladstone Institute for Virology and Immunology Center for AIDS Research. We thank J. Carroll and C. Goodfellow for assistance in the preparation of the figures, S. Ordway and G. Howard for editorial assistance, and R. Givens for administrative support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warner C. Greene.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

LocusLink

NFKB1

NFKB2

RELA

RELB

c-REL

Swiss-Prot

AKT

CBP

GSK3β

HDAC1

HDAC2

HDAC3

IKK1

IKK2

MSK1

p300

PCAF

PKAc

PKCζ

RELA

c-REL

RSK1

FURTHER INFORMATION

Greene laboratory

Glossary

REL-HOMOLOGY DOMAIN

(RHD). A conserved region of 300 amino acids within the amino-terminal region of all NF-κB/REL-family members. This region is responsible for DNA binding, dimerization and the interaction with IκB-family members.

TRANSACTIVATION DOMAIN

(TAD). A protein domain that is present within transcription factors and that interacts directly with co-activators or components of the general transcription machinery. When tethered to a heterologous DNA-binding domain, this protein domain can stimulate transcription.

CO-ACTIVATOR

A protein that forms a 'bridge' between the transcriptional activators and general transcription factors that promote gene expression.

PROTEASOME

A large protein complex that is responsible for degrading intracellular proteins that have been targeted for destruction, usually by the addition of ubiquitin polymers.

ANKYRIN REPEAT

A protein–protein-interaction motif that comprises repeated modules of approximately 33 amino acids. Ankyrin repeats are found in proteins with diverse functions including transcription factors, cell-cycle regulators, ion transporters and signal transducers. The IκB-family proteins and some NF-κB/REL-family proteins contain ankyrin-repeat domains.

PHOSPHOACCEPTOR

An amino acid such as serine, threonine or tyrosine that can be phosphorylated by kinases.

LIPOPOLYSACCHARIDE

(LPS). A lipid-containing polysaccharide that is an endotoxin and an important group-specific antigen and that is derived from the cell wall of Gram-negative bacteria.

SIGNALSOME

A multiprotein kinase complex that mediates stimulus-coupled phosphorylation of two regulatory serine residues in the IκBs. This complex contains IKK1/IKKα, IKK2/IKKβ and NEMO/IKKγ. IKK1/IKKα and IKK2/IKKβ are the catalytic subunits of the kinase complex, whereas NEMO/IKKγ is a key non-enzymatic regulatory subunit.

HISTONE DEACETYLASE

(HDAC). An enzyme that removes the acetyl groups from core histones or certain transcription factors; its activity contributes to transcriptional regulation and cell-cycle progression through alterations in chromatin structure or transcription-factor activity.

HEPATIC STELLATE CELLS

The principal producers of extracellular matrix in the fibrotic liver that contribute to hepatic inflammation through the secretion of chemokines and the recruitment of leukocytes.

HISTONE ACETYLTRANSFERASE

(HAT). An enzyme that adds acetyl groups to histones. Many HATs function as transcriptional co-activators.

CHROMOSOMAL-REGION MAINTENANCE-1

A nuclear-export protein also known as exportin-1, the activity of which is specifically inhibited by leptomycin B.

HETEROCHROMATIN

A condensed form of chromatin in which the degree of compaction is similar to that of mitotic chromosomes. It is usually found around the centromere.

HISTONE TAIL

The amino-terminus of histone polypeptides that protrudes out of the nucleosome. It is subject to different covalent modifications, including phosphorylation, acetylation, methylation, ubiquitylation and ADP-ribosylation. These modifications affect chromatin structure and contribute to the regulation of transcription.

IMMEDIATE-EARLY GENES

Genes that are induced rapidly and transiently and do not require new protein synthesis. They are directly connected to intracellular signalling systems and control the transcription of other genes.

HISTONE CODE

Post-translational modifications of histone tails that involve characteristic clusters of modifications, including acetylation, phosphorylation, ubiquitylation, methylation and ADP-ribosylation that combine to create an epigenetic mechanism for the regulation of gene expression.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, LF., Greene, W. Shaping the nuclear action of NF-κB. Nat Rev Mol Cell Biol 5, 392–401 (2004). https://doi.org/10.1038/nrm1368

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1368

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing