Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Iron–sulphur cluster biogenesis and mitochondrial iron homeostasis

Abstract

Iron–sulphur clusters are important cofactors for proteins that are involved in many cellular processes, including electron transport, enzymatic catalysis and regulation. The enzymes that catalyse the formation of iron–sulphur clusters are widely conserved from bacteria to humans. Recent studies in model systems and humans reveal that iron–sulphur proteins have important roles in mitochondrial iron homeostasis and in the pathogenesis of the human disease Friedreich ataxia.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The structural and chemical versatility of iron–sulphur (Fe–S) clusters.
Figure 2: A proposed mechanism for iron–sulphur (Fe–S) cluster biosynthesis.
Figure 3: Mammalian iron overload and human diseases.
Figure 4: Iron–sulphur (Fe–S) cluster biogenesis in mammalian iron homeostasis.
Figure 5: Isoforms of mammalian iron–sulphur (Fe–S) cluster assembly proteins.

Similar content being viewed by others

References

  1. Beinert, H., Holm, R. H. & Munck, E. Iron–sulfur clusters: nature's modular, multipurpose structures. Science 277, 653–659 (1997).

    Article  CAS  Google Scholar 

  2. Rees, D. C. Great metalloclusters in enzymology. Annu. Rev. Biochem. 71, 221–246 (2002).

    Article  CAS  Google Scholar 

  3. Beinert, H. Iron–sulfur proteins: ancient structures, still full of surprises. J. Biol. Inorg. Chem. 5, 2–15 (2000).

    Article  CAS  Google Scholar 

  4. Schultz, B. E. & Chan, S. I. Structures and proton-pumping strategies of mitochondrial respiratory enzymes. Annu. Rev. Biophys. Biomol. Struct. 30, 23–65 (2001).

    Article  CAS  Google Scholar 

  5. Wollman, F. A., Minai, L. & Nechushtai, R. The biogenesis and assembly of photosynthetic proteins in thylakoid membranes. Biochim. Biophys. Acta 1411, 21–85 (1999).

    Article  CAS  Google Scholar 

  6. Frey, P. A. & Magnusson, O. T. S-adenosylmethionine: a wolf in sheep's clothing, or a rich man's adenosylcobalamin? Chem. Rev. 103, 2129–2148 (2003).

    Article  CAS  Google Scholar 

  7. Aspinwall, R. et al. Cloning and characterization of a functional human homolog of Escherichia coli endonuclease III. Proc. Natl Acad. Sci. USA 94, 109–114 (1997).

    Article  CAS  Google Scholar 

  8. McGoldrick, J. P. et al. Characterization of a mammalian homolog of the Escherichia coli MutY mismatch repair protein. Mol. Cell. Biol. 15, 989–996 (1995).

    Article  CAS  Google Scholar 

  9. Kiley, P. J. & Beinert, H. The role of Fe–S proteins in sensing and regulation in bacteria. Curr. Opin. Microbiol. 6, 181–185 (2003).

    Article  CAS  Google Scholar 

  10. Bouton, C. & Drapier, J. C. Iron regulatory proteins as NO signal transducers. Sci. STKE 182, pe17 (2003).

    Google Scholar 

  11. Rouault, T. & Klausner, R. Regulation of iron metabolism in eukaryotes. Curr. Top. Cell Regul. 35, 1–19 (1997).

    Article  CAS  Google Scholar 

  12. Meyron-Holtz, E. G., Ghosh, M. C. & Rouault, T. A. Mammalian tissue oxygen levels modulate iron-regulatory protein activities in vivo. Science 306, 2087–2090 (2004).

    Article  CAS  Google Scholar 

  13. Meyron-Holtz, E. G. et al. Genetic ablations of iron regulatory proteins 1 and 2 reveal why iron regulatory protein 2 dominates iron homeostasis. EMBO J. 23, 386–395 (2004).

    Article  CAS  Google Scholar 

  14. Pantopoulos, K. Iron metabolism and the IRE/IRP regulatory system: an update. Ann. NY Acad. Sci. 1012, 1–13 (2004).

    Article  CAS  Google Scholar 

  15. Frazzon, J. & Dean, D. R. Formation of iron–sulfur clusters in bacteria: an emerging field in bioinorganic chemistry. Curr. Opin. Chem. Biol. 7, 166–173 (2003).

    Article  CAS  Google Scholar 

  16. Gerber, J. & Lill, R. Biogenesis of iron–sulfur proteins in eukaryotes: components, mechanism and pathology. Mitochondrion 2, 71–86 (2002).

    Article  CAS  Google Scholar 

  17. Seidler, A., Jaschkowitz, K. & Wollenberg, M. Incorporation of iron–sulphur clusters in membrane-bound proteins. Biochem. Soc. Trans. 29, 418–421 (2001).

    Article  CAS  Google Scholar 

  18. Leon, S. et al. The AtNFS2 gene from Arabidopsis thaliana encodes a NifS-like plastidial cysteine desulphurase. Biochem. J. 366, 557–564 (2002).

    Article  CAS  Google Scholar 

  19. Agar, J. N. et al. IscU as a scaffold for iron–sulfur cluster biosynthesis: sequential assembly of [2Fe–2S] and [4Fe–4S] clusters in IscU. Biochemistry 39, 7856–7862 (2000).

    Article  CAS  Google Scholar 

  20. Muhlenhoff, U. et al. Components involved in assembly and dislocation of iron–sulfur clusters on the scaffold protein Isu1p. EMBO J. 22, 4815–4825 (2003).

    Article  Google Scholar 

  21. Nishio, K. & Nakai, M. Transfer of iron–sulfur cluster from NifU to apoferredoxin. J. Biol. Chem. 275, 22615–22618 (2000).

    Article  CAS  Google Scholar 

  22. Yabe, T. et al. The Arabidopsis chloroplastic NifU-like protein CnfU, which can act as an iron–sulfur cluster scaffold protein, is required for biogenesis of ferredoxin and photosystem I. Plant Cell 16, 993–1007 (2004).

    Article  CAS  Google Scholar 

  23. Land, T. & Rouault, T. A. Targeting of a human iron–sulfur cluster assembly enzyme, nifs, to different subcellular compartments is regulated through alternative AUG utilization. Mol. Cell 2, 807–815 (1998).

    Article  CAS  Google Scholar 

  24. Tong, W. H. & Rouault, T. Distinct iron–sulfur cluster assembly complexes exist in the cytosol and mitochondria of human cells. EMBO J. 19, 5692–5700 (2000).

    Article  CAS  Google Scholar 

  25. Tong, W. H. et al. Subcellular compartmentalization of human Nfu, an iron–sulfur cluster scaffold protein, and its ability to assemble a [4Fe–4S] cluster. Proc. Natl Acad. Sci. USA 100, 9762–9767 (2003).

    Article  CAS  Google Scholar 

  26. Kispal, G. et al. The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins. EMBO J. 18, 3981–3989 (1999).

    Article  CAS  Google Scholar 

  27. Li, J. et al. Yeast mitochondrial protein, Nfs1p, coordinately regulates iron–sulfur cluster proteins, cellular iron uptake, and iron distribution. J. Biol. Chem. 274, 33025–33034 (1999).

    Article  CAS  Google Scholar 

  28. Strain, J. et al. Suppressors of superoxide dismutase (SOD1) deficiency in S. cerevisiae. J. Biol. Chem. 273, 31138–31144 (1998).

    Article  CAS  Google Scholar 

  29. Knight, S. A. et al. Mt-Hsp70 homolog, Ssc2p, required for maturation of yeast frataxin and mitochondrial iron homeostasis. J. Biol. Chem. 273, 18389–18393 (1998).

    Article  CAS  Google Scholar 

  30. Garland, S. A. et al. Saccharomyces cerevisiae ISU1 and ISU2: members of a well-conserved gene family for iron–sulfur cluster assembly. J. Mol. Biol. 294, 897–907 (1999).

    Article  CAS  Google Scholar 

  31. Schilke, B. et al. Evidence for a conserved system for iron metabolism in the mitochondria of Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 96, 10206–10211 (1999).

    Article  CAS  Google Scholar 

  32. Chen, O. S. et al. Transcription of the yeast iron regulon responds not directly to iron but rather to iron–sulfur cluster biosynthesis. J. Biol. Chem. 279, 29513–29518 (2004).

    Article  CAS  Google Scholar 

  33. Rutherford, J. C. et al. Activation of the iron regulon by the yeast Aft1/Aft2 transcription factors depends on mitochondrial, but not cytosolic iron–sulfur protein biogenesis. J. Biol. Chem. 13 Jan 2005 (doi:10.1074/jbc.M413731200).

  34. Puccio, H. & Koenig, M. Recent advances in the molecular pathogenesis of Friedreich ataxia. Hum. Mol. Genet. 9, 887–892 (2000).

    Article  CAS  Google Scholar 

  35. Pandolfo, M. Friedreich ataxia. Semin. Pediatr. Neurol. 10, 163–172 (2003).

    Article  Google Scholar 

  36. Campuzano, V. et al. Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271, 1423–1427 (1996).

    Article  CAS  Google Scholar 

  37. Rotig, A. et al. Aconitase and mitochondrial iron–sulphur protein deficiency in Friedreich ataxia. Nature Genet. 17, 215–217 (1997).

    Article  CAS  Google Scholar 

  38. Babcock, M. et al. Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin. Science 276, 1709–1712 (1997).

    Article  CAS  Google Scholar 

  39. Gerber, J., Muhlenhoff, U. & Lill, R. An interaction between frataxin and Isu1/Nfs1 that is crucial for Fe/S cluster synthesis on Isu1. EMBO Rep. 4, 906–911 (2003).

    Article  CAS  Google Scholar 

  40. Ramazzotti, A., Vanmansart, V. & Foury, F. Mitochondrial functional interactions between frataxin and Isu1p, the iron–sulfur cluster scaffold protein, in Saccharomyces cerevisiae. FEBS Lett. 557, 215–220 (2004).

    Article  CAS  Google Scholar 

  41. Bulteau, A. L. et al. Frataxin acts as an iron chaperone protein to modulate mitochondrial aconitase activity. Science 305, 242–245 (2004).

    Article  CAS  Google Scholar 

  42. Seznec, H. et al. Idebenone delays the onset of cardiac functional alteration without correction of Fe–S enzymes deficit in a mouse model for Friedreich ataxia. Hum. Mol. Genet. 13, 1017–1024 (2004).

    Article  CAS  Google Scholar 

  43. Puccio, H. et al. Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe–S enzyme deficiency followed by intramitochondrial iron deposits. Nature Genet. 27, 181–186 (2001).

    Article  CAS  Google Scholar 

  44. Cavadini, P. et al. Assembly and iron-binding properties of human frataxin, the protein deficient in Friedreich ataxia. Hum. Mol. Genet. 11, 217–227 (2002).

    Article  CAS  Google Scholar 

  45. Gakh, O. et al. Physical evidence that yeast frataxin is an iron storage protein. Biochemistry 41, 6798–6804 (2002).

    Article  CAS  Google Scholar 

  46. Radisky, D. C., Babcock, M. C. & Kaplan, J. The yeast frataxin homologue mediates mitochondrial iron efflux. Evidence for a mitochondrial iron cycle. J. Biol. Chem. 274, 4497–4499 (1999).

    Article  CAS  Google Scholar 

  47. Aloria, K. et al. Iron-induced oligomerization of yeast frataxin homologue Yfh1 is dispensable in vivo. EMBO Rep. 5, 1096–1101 (2004).

    Article  CAS  Google Scholar 

  48. Hentze, M. W., Muckenthaler, M. U. & Andrews, N. C. Balancing acts: molecular control of mammalian iron metabolism. Cell 117, 285–297 (2004).

    Article  CAS  Google Scholar 

  49. Foury, F. & Talibi, D. Mitochondrial control of iron homeostasis. A genome wide analysis of gene expression in a yeast frataxin-deficient strain. J. Biol. Chem. 276, 7762–7768 (2001).

    Article  CAS  Google Scholar 

  50. Lill, R. & Kispal, G. Maturation of cellular Fe–S proteins: an essential function of mitochondria. Trends Biochem. Sci. 25, 352–356 (2000).

    Article  CAS  Google Scholar 

  51. Gerber, J. et al. The yeast scaffold proteins Isu1p and Isu2p are required inside mitochondria for maturation of cytosolic Fe/S proteins. Mol. Cell. Biol. 24, 4848–4857 (2004).

    Article  CAS  Google Scholar 

  52. Alcindor, T. & Bridges, K. R. Sideroblastic anaemias. Br. J. Haematol. 116, 733–743 (2002).

    Article  Google Scholar 

  53. Djaldetti, M. et al. Ultrastructural features of bone marrow cells from patients with acquired sideroblastic anemia. Microsc. Res. Tech. 63, 155–158 (2004).

    Article  Google Scholar 

  54. Balk, J. et al. The hydrogenase-like Nar1p is essential for maturation of cytosolic and nuclear iron–sulphur proteins. EMBO J. 23, 2105–2115 (2004).

    Article  CAS  Google Scholar 

  55. Chloupkova, M., LeBard, L. S. & Koeller, D. M. MDL1 is a high copy suppressor of ATM1: evidence for a role in resistance to oxidative stress. J. Mol. Biol. 331, 155–165 (2003).

    Article  CAS  Google Scholar 

  56. Li, L. & Kaplan, J. A mitochondrial–vacuolar signaling pathway in yeast that affects iron and copper metabolism. J. Biol. Chem. 279, 33653–33661 (2004).

    Article  CAS  Google Scholar 

  57. Butow, R. A. & Avadhani, N. G. Mitochondrial signaling: the retrograde response. Mol. Cell 14, 1–15 (2004).

    Article  CAS  Google Scholar 

  58. Zhao, Q. et al. A mitochondrial specific stress response in mammalian cells. EMBO J. 21, 4411–4419 (2002).

    Article  CAS  Google Scholar 

  59. Lesuisse, E. et al. Role of YHM1, encoding a mitochondrial carrier protein, in iron distribution of yeast. Biochem. J. 378, 599–607 (2004).

    Article  CAS  Google Scholar 

  60. Van Ho, A., Ward, D. M. & Kaplan, J. Transition metal transport in yeast. Annu. Rev. Microbiol. 56, 237–261 (2002).

    Article  CAS  Google Scholar 

  61. Tovar, J. et al. Mitochondrial remnant organelles of Giardia function in iron–sulphur protein maturation. Nature 426, 172–176 (2003).

    Article  CAS  Google Scholar 

  62. Roy, A. et al. A novel eukaryotic factor for cytosolic Fe–S cluster assembly. EMBO J. 22, 4826–4835 (2003).

    Article  CAS  Google Scholar 

  63. Nakai, Y., Nakai, M., Hayashi, H. & Kagamiyama, H. Nuclear localization of yeast Nfs1p is required for cell survival. J. Biol. Chem. 276, 8314–8320 (2001).

    Article  CAS  Google Scholar 

  64. Nakai, Y. et al. Yeast Nfs1p is involved in thio-modification of both mitochondrial and cytoplasmic tRNAs. J. Biol. Chem. 279, 12363–12368 (2004).

    Article  CAS  Google Scholar 

  65. Sutak, R. et al. Mitochondrial-type assembly of FeS centers in the hydrogenosomes of the amitochondriate eukaryote Trichomonas vaginalis. Proc. Natl Acad. Sci. USA 101, 10368–10373 (2004).

    Article  CAS  Google Scholar 

  66. Huynen, M. A. et al. The phylogenetic distribution of frataxin indicates a role in iron–sulfur cluster protein assembly. Hum. Mol. Genet. 10, 2463–2468 (2001).

    Article  CAS  Google Scholar 

  67. Lareau, L. F. et al. The evolving roles of alternative splicing. Curr. Opin. Struct. Biol. 14, 273–282 (2004).

    Article  CAS  Google Scholar 

  68. Morris, D. R. & Geballe, A. P. Upstream open reading frames as regulators of mRNA translation. Mol. Cell. Biol. 20, 8635–8642 (2000).

    Article  CAS  Google Scholar 

  69. Rees, D. C. & Howard, J. B. The interface between the biological and inorganic worlds: iron–sulfur metalloclusters. Science 300, 929–931 (2003).

    Article  CAS  Google Scholar 

  70. Foury, F. & Roganti, T. Deletion of the mitochondrial carrier genes MRS3 and MRS4 suppresses mitochondrial iron accumulation in a yeast frataxin-deficient strain. J. Biol. Chem. 277, 24475–24483 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Dancis, M. Pandolfo, H. Puccio and D. Dean for kindly sharing unpublished data.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

MRS3

MRS4

YHM1

Swiss-Prot

ABC7

ATM1

IRP1

IRP2

IscS

IscU

Nfu

Saccharomyces genome database

Aft1

Aft2

Mdl1

Nfs1

Yfh1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rouault, T., Tong, WH. Iron–sulphur cluster biogenesis and mitochondrial iron homeostasis. Nat Rev Mol Cell Biol 6, 345–351 (2005). https://doi.org/10.1038/nrm1620

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1620

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing